scummvm/backends/graphics/opengl/opengl-graphics.cpp

1142 lines
36 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "backends/graphics/opengl/opengl-graphics.h"
#include "backends/graphics/opengl/texture.h"
#include "backends/graphics/opengl/debug.h"
#include "backends/graphics/opengl/extensions.h"
#include "common/textconsole.h"
#include "common/translation.h"
#include "common/algorithm.h"
#include "common/file.h"
#ifdef USE_OSD
#include "common/tokenizer.h"
#include "common/rect.h"
#endif
#include "graphics/conversion.h"
#ifdef USE_OSD
#include "graphics/fontman.h"
#include "graphics/font.h"
#endif
namespace OpenGL {
OpenGLGraphicsManager::OpenGLGraphicsManager()
: _currentState(), _oldState(), _transactionMode(kTransactionNone), _screenChangeID(1 << (sizeof(int) * 8 - 2)),
_outputScreenWidth(0), _outputScreenHeight(0), _displayX(0), _displayY(0),
_displayWidth(0), _displayHeight(0), _defaultFormat(), _defaultFormatAlpha(),
_gameScreen(nullptr), _gameScreenShakeOffset(0), _overlay(nullptr),
_overlayVisible(false), _cursor(nullptr),
_cursorX(0), _cursorY(0), _cursorHotspotX(0), _cursorHotspotY(0), _cursorHotspotXScaled(0),
_cursorHotspotYScaled(0), _cursorWidthScaled(0), _cursorHeightScaled(0), _cursorKeyColor(0),
_cursorVisible(false), _cursorDontScale(false), _cursorPaletteEnabled(false)
#ifdef USE_OSD
, _osdAlpha(0), _osdFadeStartTime(0), _osd(nullptr)
#endif
{
memset(_gamePalette, 0, sizeof(_gamePalette));
}
OpenGLGraphicsManager::~OpenGLGraphicsManager() {
delete _gameScreen;
delete _overlay;
delete _cursor;
#ifdef USE_OSD
delete _osd;
#endif
}
bool OpenGLGraphicsManager::hasFeature(OSystem::Feature f) {
switch (f) {
case OSystem::kFeatureAspectRatioCorrection:
case OSystem::kFeatureCursorPalette:
return true;
case OSystem::kFeatureOverlaySupportsAlpha:
return _defaultFormatAlpha.aBits() > 3;
default:
return false;
}
}
void OpenGLGraphicsManager::setFeatureState(OSystem::Feature f, bool enable) {
switch (f) {
case OSystem::kFeatureAspectRatioCorrection:
assert(_transactionMode != kTransactionNone);
_currentState.aspectRatioCorrection = enable;
break;
case OSystem::kFeatureCursorPalette:
_cursorPaletteEnabled = enable;
updateCursorPalette();
break;
default:
break;
}
}
bool OpenGLGraphicsManager::getFeatureState(OSystem::Feature f) {
switch (f) {
case OSystem::kFeatureAspectRatioCorrection:
return _currentState.aspectRatioCorrection;
case OSystem::kFeatureCursorPalette:
return _cursorPaletteEnabled;
default:
return false;
}
}
namespace {
const OSystem::GraphicsMode glGraphicsModes[] = {
{ "opengl_linear", _s("OpenGL"), GFX_LINEAR },
{ "opengl_nearest", _s("OpenGL (No filtering)"), GFX_NEAREST },
{ nullptr, nullptr, 0 }
};
} // End of anonymous namespace
const OSystem::GraphicsMode *OpenGLGraphicsManager::getSupportedGraphicsModes() const {
return glGraphicsModes;
}
int OpenGLGraphicsManager::getDefaultGraphicsMode() const {
return GFX_LINEAR;
}
bool OpenGLGraphicsManager::setGraphicsMode(int mode) {
assert(_transactionMode != kTransactionNone);
switch (mode) {
case GFX_LINEAR:
case GFX_NEAREST:
_currentState.graphicsMode = mode;
if (_gameScreen) {
_gameScreen->enableLinearFiltering(mode == GFX_LINEAR);
}
if (_cursor) {
_cursor->enableLinearFiltering(mode == GFX_LINEAR);
}
return true;
default:
warning("OpenGLGraphicsManager::setGraphicsMode(%d): Unknown graphics mode", mode);
return false;
}
}
int OpenGLGraphicsManager::getGraphicsMode() const {
return _currentState.graphicsMode;
}
#ifdef USE_RGB_COLOR
Graphics::PixelFormat OpenGLGraphicsManager::getScreenFormat() const {
return _currentState.gameFormat;
}
#endif
void OpenGLGraphicsManager::beginGFXTransaction() {
assert(_transactionMode == kTransactionNone);
// Start a transaction.
_oldState = _currentState;
_transactionMode = kTransactionActive;
}
OSystem::TransactionError OpenGLGraphicsManager::endGFXTransaction() {
assert(_transactionMode == kTransactionActive);
uint transactionError = OSystem::kTransactionSuccess;
bool setupNewGameScreen = false;
if ( _oldState.gameWidth != _currentState.gameWidth
|| _oldState.gameHeight != _currentState.gameHeight) {
setupNewGameScreen = true;
}
#ifdef USE_RGB_COLOR
if (_oldState.gameFormat != _currentState.gameFormat) {
setupNewGameScreen = true;
}
// Check whether the requested format can actually be used.
Common::List<Graphics::PixelFormat> supportedFormats = getSupportedFormats();
// In case the requested format is not usable we will fall back to CLUT8.
if (Common::find(supportedFormats.begin(), supportedFormats.end(), _currentState.gameFormat) == supportedFormats.end()) {
_currentState.gameFormat = Graphics::PixelFormat::createFormatCLUT8();
transactionError |= OSystem::kTransactionFormatNotSupported;
}
#endif
do {
uint requestedWidth = _currentState.gameWidth;
uint requestedHeight = _currentState.gameHeight;
const uint desiredAspect = getDesiredGameScreenAspect();
requestedHeight = intToFrac(requestedWidth) / desiredAspect;
if (!loadVideoMode(requestedWidth, requestedHeight,
#ifdef USE_RGB_COLOR
_currentState.gameFormat
#else
Graphics::PixelFormat::createFormatCLUT8()
#endif
)
// HACK: This is really nasty but we don't have any guarantees of
// a context existing before, which means we don't know the maximum
// supported texture size before this. Thus, we check whether the
// requested game resolution is supported over here.
|| ( _currentState.gameWidth > (uint)Texture::getMaximumTextureSize()
|| _currentState.gameHeight > (uint)Texture::getMaximumTextureSize())) {
if (_transactionMode == kTransactionActive) {
// Try to setup the old state in case its valid and is
// actually different from the new one.
if (_oldState.valid && _oldState != _currentState) {
// Give some hints on what failed to set up.
if ( _oldState.gameWidth != _currentState.gameWidth
|| _oldState.gameHeight != _currentState.gameHeight) {
transactionError |= OSystem::kTransactionSizeChangeFailed;
}
#ifdef USE_RGB_COLOR
if (_oldState.gameFormat != _currentState.gameFormat) {
transactionError |= OSystem::kTransactionFormatNotSupported;
}
#endif
if (_oldState.aspectRatioCorrection != _currentState.aspectRatioCorrection) {
transactionError |= OSystem::kTransactionAspectRatioFailed;
}
if (_oldState.graphicsMode != _currentState.graphicsMode) {
transactionError |= OSystem::kTransactionModeSwitchFailed;
}
// Roll back to the old state.
_currentState = _oldState;
_transactionMode = kTransactionRollback;
// Try to set up the old state.
continue;
}
}
// DON'T use error(), as this tries to bring up the debug
// console, which WON'T WORK now that we might no have a
// proper screen.
warning("OpenGLGraphicsManager::endGFXTransaction: Could not load any graphics mode!");
g_system->quit();
}
// In case we reach this we have a valid state, yay.
_transactionMode = kTransactionNone;
_currentState.valid = true;
} while (_transactionMode == kTransactionRollback);
if (setupNewGameScreen) {
delete _gameScreen;
_gameScreen = nullptr;
GLenum glIntFormat, glFormat, glType;
#ifdef USE_RGB_COLOR
if (_currentState.gameFormat.bytesPerPixel == 1) {
#endif
const bool supported = getGLPixelFormat(_defaultFormat, glIntFormat, glFormat, glType);
assert(supported);
_gameScreen = new TextureCLUT8(glIntFormat, glFormat, glType, _defaultFormat);
_gameScreen->setPalette(0, 255, _gamePalette);
#ifdef USE_RGB_COLOR
} else {
const bool supported = getGLPixelFormat(_currentState.gameFormat, glIntFormat, glFormat, glType);
assert(supported);
_gameScreen = new Texture(glIntFormat, glFormat, glType, _currentState.gameFormat);
}
#endif
_gameScreen->allocate(_currentState.gameWidth, _currentState.gameHeight);
_gameScreen->enableLinearFiltering(_currentState.graphicsMode == GFX_LINEAR);
// We fill the screen to all black or index 0 for CLUT8.
if (_currentState.gameFormat.bytesPerPixel == 1) {
_gameScreen->fill(0);
} else {
_gameScreen->fill(_gameScreen->getSurface()->format.RGBToColor(0, 0, 0));
}
}
// Update our display area and cursor scaling. This makes sure we pick up
// aspect ratio correction and game screen changes correctly.
recalculateDisplayArea();
recalculateCursorScaling();
// Something changed, so update the screen change ID.
++_screenChangeID;
// Since transactionError is a ORd list of TransactionErrors this is
// clearly wrong. But our API is simply broken.
return (OSystem::TransactionError)transactionError;
}
int OpenGLGraphicsManager::getScreenChangeID() const {
return _screenChangeID;
}
void OpenGLGraphicsManager::initSize(uint width, uint height, const Graphics::PixelFormat *format) {
Graphics::PixelFormat requestedFormat;
#ifdef USE_RGB_COLOR
if (!format) {
requestedFormat = Graphics::PixelFormat::createFormatCLUT8();
} else {
requestedFormat = *format;
}
_currentState.gameFormat = requestedFormat;
#endif
_currentState.gameWidth = width;
_currentState.gameHeight = height;
}
int16 OpenGLGraphicsManager::getWidth() {
return _currentState.gameWidth;
}
int16 OpenGLGraphicsManager::getHeight() {
return _currentState.gameHeight;
}
void OpenGLGraphicsManager::copyRectToScreen(const void *buf, int pitch, int x, int y, int w, int h) {
_gameScreen->copyRectToTexture(x, y, w, h, buf, pitch);
}
void OpenGLGraphicsManager::fillScreen(uint32 col) {
// FIXME: This does not conform to the OSystem specs because fillScreen
// is always taking CLUT8 color values and use color indexed mode. This is,
// however, plain odd and probably was a forgotten when we introduced
// RGB support. Thus, we simply do the "sane" thing here and hope OSystem
// gets fixed one day.
_gameScreen->fill(col);
}
void OpenGLGraphicsManager::setShakePos(int shakeOffset) {
_gameScreenShakeOffset = shakeOffset;
}
void OpenGLGraphicsManager::updateScreen() {
if (!_gameScreen) {
return;
}
// Clear the screen buffer
GLCALL(glClear(GL_COLOR_BUFFER_BIT));
const GLfloat shakeOffset = _gameScreenShakeOffset * (GLfloat)_displayHeight / _gameScreen->getHeight();
// First step: Draw the (virtual) game screen.
glPushMatrix();
// Adjust game screen shake position
GLCALL(glTranslatef(0, shakeOffset, 0));
// Draw the game screen
_gameScreen->draw(_displayX, _displayY, _displayWidth, _displayHeight);
glPopMatrix();
// Second step: Draw the overlay if visible.
if (_overlayVisible) {
_overlay->draw(0, 0, _outputScreenWidth, _outputScreenHeight);
}
// Third step: Draw the cursor if visible.
if (_cursorVisible && _cursor) {
glPushMatrix();
// Adjust game screen shake position, but only when the overlay is not
// visible.
if (!_overlayVisible) {
GLCALL(glTranslatef(0, shakeOffset, 0));
}
_cursor->draw(_cursorX - _cursorHotspotXScaled, _cursorY - _cursorHotspotYScaled,
_cursorWidthScaled, _cursorHeightScaled);
glPopMatrix();
}
#ifdef USE_OSD
// Fourth step: Draw the OSD.
if (_osdAlpha > 0) {
Common::StackLock lock(_osdMutex);
// Update alpha value.
const int diff = g_system->getMillis(false) - _osdFadeStartTime;
if (diff > 0) {
if (diff >= kOSDFadeOutDuration) {
// Back to full transparency.
_osdAlpha = 0;
} else {
// Do a fade out.
_osdAlpha = kOSDInitialAlpha - diff * kOSDInitialAlpha / kOSDFadeOutDuration;
}
}
// Set the OSD transparency.
GLCALL(glColor4f(1.0f, 1.0f, 1.0f, _osdAlpha / 100.0f));
// Draw the OSD texture.
_osd->draw(0, 0, _outputScreenWidth, _outputScreenHeight);
// Reset color.
GLCALL(glColor4f(1.0f, 1.0f, 1.0f, 1.0f));
}
#endif
}
Graphics::Surface *OpenGLGraphicsManager::lockScreen() {
return _gameScreen->getSurface();
}
void OpenGLGraphicsManager::unlockScreen() {
_gameScreen->flagDirty();
}
void OpenGLGraphicsManager::setFocusRectangle(const Common::Rect& rect) {
}
void OpenGLGraphicsManager::clearFocusRectangle() {
}
int16 OpenGLGraphicsManager::getOverlayWidth() {
if (_overlay) {
return _overlay->getWidth();
} else {
return 0;
}
}
int16 OpenGLGraphicsManager::getOverlayHeight() {
if (_overlay) {
return _overlay->getHeight();
} else {
return 0;
}
}
void OpenGLGraphicsManager::showOverlay() {
_overlayVisible = true;
}
void OpenGLGraphicsManager::hideOverlay() {
_overlayVisible = false;
}
Graphics::PixelFormat OpenGLGraphicsManager::getOverlayFormat() const {
return _overlay->getFormat();
}
void OpenGLGraphicsManager::copyRectToOverlay(const void *buf, int pitch, int x, int y, int w, int h) {
_overlay->copyRectToTexture(x, y, w, h, buf, pitch);
}
void OpenGLGraphicsManager::clearOverlay() {
_overlay->fill(0);
}
void OpenGLGraphicsManager::grabOverlay(void *buf, int pitch) {
const Graphics::Surface *overlayData = _overlay->getSurface();
const byte *src = (const byte *)overlayData->getPixels();
byte *dst = (byte *)buf;
for (uint h = overlayData->h; h > 0; --h) {
memcpy(dst, src, overlayData->w * overlayData->format.bytesPerPixel);
dst += pitch;
src += overlayData->pitch;
}
}
bool OpenGLGraphicsManager::showMouse(bool visible) {
bool last = _cursorVisible;
_cursorVisible = visible;
return last;
}
void OpenGLGraphicsManager::warpMouse(int x, int y) {
int16 currentX = _cursorX;
int16 currentY = _cursorY;
adjustMousePosition(currentX, currentY);
// Check whether the (virtual) coordinate actually changed. If not, then
// simply do nothing. This avoids ugly "jittering" due to the actual
// output screen having a bigger resolution than the virtual coordinates.
if (currentX == x && currentY == y) {
return;
}
// Scale the virtual coordinates into actual physical coordinates.
if (_overlayVisible) {
if (!_overlay) {
return;
}
// It might be confusing that we actually have to handle something
// here when the overlay is visible. This is because for very small
// resolutions we have a minimal overlay size and have to adjust
// for that.
x = (x * _outputScreenWidth) / _overlay->getWidth();
y = (y * _outputScreenHeight) / _overlay->getHeight();
} else {
if (!_gameScreen) {
return;
}
x = (x * _displayWidth) / _gameScreen->getWidth();
y = (y * _displayHeight) / _gameScreen->getHeight();
x += _displayX;
y += _displayY;
}
setMousePosition(x, y);
setInternalMousePosition(x, y);
}
namespace {
template<typename DstPixel, typename SrcPixel>
void applyColorKey(DstPixel *dst, const SrcPixel *src, uint w, uint h, uint dstPitch, uint srcPitch, SrcPixel keyColor, DstPixel alphaMask) {
const uint srcAdd = srcPitch - w * sizeof(SrcPixel);
const uint dstAdd = dstPitch - w * sizeof(DstPixel);
while (h-- > 0) {
for (uint x = w; x > 0; --x, ++dst, ++src) {
if (*src == keyColor) {
*dst &= ~alphaMask;
}
}
dst = (DstPixel *)((byte *)dst + dstAdd);
src = (const SrcPixel *)((const byte *)src + srcAdd);
}
}
} // End of anonymous namespace
void OpenGLGraphicsManager::setMouseCursor(const void *buf, uint w, uint h, int hotspotX, int hotspotY, uint32 keycolor, bool dontScale, const Graphics::PixelFormat *format) {
Graphics::PixelFormat inputFormat;
#ifdef USE_RGB_COLOR
if (format) {
inputFormat = *format;
} else {
inputFormat = Graphics::PixelFormat::createFormatCLUT8();
}
#else
inputFormat = Graphics::PixelFormat::createFormatCLUT8();
#endif
// In case the color format has changed we will need to create the texture.
if (!_cursor || _cursor->getFormat() != inputFormat) {
delete _cursor;
_cursor = nullptr;
GLenum glIntFormat, glFormat, glType;
if (inputFormat.bytesPerPixel == 1) {
// In case this is not supported this is a serious programming
// error and the assert a bit below will trigger!
const bool supported = getGLPixelFormat(_defaultFormatAlpha, glIntFormat, glFormat, glType);
assert(supported);
_cursor = new TextureCLUT8(glIntFormat, glFormat, glType, _defaultFormatAlpha);
} else {
// Try to use the format specified as input directly. We can only
// do so when it actually has alpha bits.
if (inputFormat.aBits() != 0 && getGLPixelFormat(inputFormat, glIntFormat, glFormat, glType)) {
_cursor = new Texture(glIntFormat, glFormat, glType, inputFormat);
}
// Otherwise fall back to the default alpha format.
if (!_cursor) {
const bool supported = getGLPixelFormat(_defaultFormatAlpha, glIntFormat, glFormat, glType);
assert(supported);
_cursor = new Texture(glIntFormat, glFormat, glType, _defaultFormatAlpha);
}
}
assert(_cursor);
_cursor->enableLinearFiltering(_currentState.graphicsMode == GFX_LINEAR);
}
_cursorKeyColor = keycolor;
_cursorHotspotX = hotspotX;
_cursorHotspotY = hotspotY;
_cursorDontScale = dontScale;
_cursor->allocate(w, h);
if (inputFormat.bytesPerPixel == 1) {
// For CLUT8 cursors we can simply copy the input data into the
// texture.
_cursor->copyRectToTexture(0, 0, w, h, buf, w * inputFormat.bytesPerPixel);
} else {
// Otherwise it is a bit more ugly because we have to handle a key
// color properly.
Graphics::Surface *dst = _cursor->getSurface();
const uint srcPitch = w * inputFormat.bytesPerPixel;
// Copy the cursor data to the actual texture surface. This will make
// sure that the data is also converted to the expected format.
Graphics::crossBlit((byte *)dst->getPixels(), (const byte *)buf, dst->pitch, srcPitch,
w, h, dst->format, inputFormat);
// We apply the color key by setting the alpha bits of the pixels to
// fully transparent.
const uint32 aMask = (0xFF >> dst->format.aLoss) << dst->format.aShift;
if (dst->format.bytesPerPixel == 2) {
if (inputFormat.bytesPerPixel == 2) {
applyColorKey<uint16, uint16>((uint16 *)dst->getPixels(), (const uint16 *)buf, w, h,
dst->pitch, srcPitch, keycolor, aMask);
} else if (inputFormat.bytesPerPixel == 4) {
applyColorKey<uint16, uint32>((uint16 *)dst->getPixels(), (const uint32 *)buf, w, h,
dst->pitch, srcPitch, keycolor, aMask);
}
} else {
if (inputFormat.bytesPerPixel == 2) {
applyColorKey<uint32, uint16>((uint32 *)dst->getPixels(), (const uint16 *)buf, w, h,
dst->pitch, srcPitch, keycolor, aMask);
} else if (inputFormat.bytesPerPixel == 4) {
applyColorKey<uint32, uint32>((uint32 *)dst->getPixels(), (const uint32 *)buf, w, h,
dst->pitch, srcPitch, keycolor, aMask);
}
}
// Flag the texture as dirty.
_cursor->flagDirty();
}
// In case we actually use a palette set that up properly.
if (inputFormat.bytesPerPixel == 1) {
updateCursorPalette();
}
// Update the scaling.
recalculateCursorScaling();
}
void OpenGLGraphicsManager::setCursorPalette(const byte *colors, uint start, uint num) {
// FIXME: For some reason client code assumes that usage of this function
// automatically enables the cursor palette.
_cursorPaletteEnabled = true;
memcpy(_cursorPalette + start * 3, colors, num * 3);
updateCursorPalette();
}
void OpenGLGraphicsManager::displayMessageOnOSD(const char *msg) {
#ifdef USE_OSD
// HACK: Actually no client code should use graphics functions from
// another thread. But the MT-32 emulator still does, thus we need to
// make sure this doesn't happen while a updateScreen call is done.
Common::StackLock lock(_osdMutex);
// Slip up the lines.
Common::Array<Common::String> osdLines;
Common::StringTokenizer tokenizer(msg, "\n");
while (!tokenizer.empty()) {
osdLines.push_back(tokenizer.nextToken());
}
// Do the actual drawing like the SDL backend.
const Graphics::Font *font = getFontOSD();
Graphics::Surface *dst = _osd->getSurface();
_osd->fill(0);
_osd->flagDirty();
// Determine a rect which would contain the message string (clipped to the
// screen dimensions).
const int vOffset = 6;
const int lineSpacing = 1;
const int lineHeight = font->getFontHeight() + 2 * lineSpacing;
int width = 0;
int height = lineHeight * osdLines.size() + 2 * vOffset;
for (uint i = 0; i < osdLines.size(); i++) {
width = MAX(width, font->getStringWidth(osdLines[i]) + 14);
}
// Clip the rect
width = MIN<int>(width, dst->w);
height = MIN<int>(height, dst->h);
int dstX = (dst->w - width) / 2;
int dstY = (dst->h - height) / 2;
// Draw a dark gray rect.
const uint32 color = dst->format.RGBToColor(40, 40, 40);
dst->fillRect(Common::Rect(dstX, dstY, dstX + width, dstY + height), color);
// Render the message, centered, and in white
const uint32 white = dst->format.RGBToColor(255, 255, 255);
for (uint i = 0; i < osdLines.size(); ++i) {
font->drawString(dst, osdLines[i],
dstX, dstY + i * lineHeight + vOffset + lineSpacing, width,
white, Graphics::kTextAlignCenter);
}
// Init the OSD display parameters.
_osdAlpha = kOSDInitialAlpha;
_osdFadeStartTime = g_system->getMillis() + kOSDFadeOutDelay;
#endif
}
void OpenGLGraphicsManager::setPalette(const byte *colors, uint start, uint num) {
assert(_gameScreen->hasPalette());
memcpy(_gamePalette + start * 3, colors, num * 3);
_gameScreen->setPalette(start, num, colors);
// We might need to update the cursor palette here.
updateCursorPalette();
}
void OpenGLGraphicsManager::grabPalette(byte *colors, uint start, uint num) {
assert(_gameScreen->hasPalette());
memcpy(colors, _gamePalette + start * 3, num * 3);
}
void OpenGLGraphicsManager::setActualScreenSize(uint width, uint height) {
_outputScreenWidth = width;
_outputScreenHeight = height;
// Setup coordinates system.
GLCALL(glViewport(0, 0, _outputScreenWidth, _outputScreenHeight));
GLCALL(glMatrixMode(GL_PROJECTION));
GLCALL(glLoadIdentity());
#ifdef USE_GLES
GLCALL(glOrthof(0, _outputScreenWidth, _outputScreenHeight, 0, -1, 1));
#else
GLCALL(glOrtho(0, _outputScreenWidth, _outputScreenHeight, 0, -1, 1));
#endif
GLCALL(glMatrixMode(GL_MODELVIEW));
GLCALL(glLoadIdentity());
uint overlayWidth = width;
uint overlayHeight = height;
// WORKAROUND: We can only support surfaces up to the maximum supported
// texture size. Thus, in case we encounter a physical size bigger than
// this maximum texture size we will simply use an overlay as big as
// possible and then scale it to the physical display size. This sounds
// bad but actually all recent chips should support full HD resolution
// anyway. Thus, it should not be a real issue for modern hardware.
if ( overlayWidth > (uint)Texture::getMaximumTextureSize()
|| overlayHeight > (uint)Texture::getMaximumTextureSize()) {
const frac_t outputAspect = intToFrac(_outputScreenWidth) / _outputScreenHeight;
if (outputAspect > (frac_t)FRAC_ONE) {
overlayWidth = Texture::getMaximumTextureSize();
overlayHeight = intToFrac(overlayWidth) / outputAspect;
} else {
overlayHeight = Texture::getMaximumTextureSize();
overlayWidth = fracToInt(overlayHeight * outputAspect);
}
}
// HACK: We limit the minimal overlay size to 256x200, which is the
// minimum of the dimensions of the two resolutions 256x240 (NES) and
// 320x200 (many DOS games use this). This hopefully assure that our
// GUI has working layouts.
overlayWidth = MAX<uint>(overlayWidth, 256);
overlayHeight = MAX<uint>(overlayHeight, 200);
if (!_overlay || _overlay->getFormat() != _defaultFormatAlpha) {
delete _overlay;
_overlay = nullptr;
GLenum glIntFormat, glFormat, glType;
const bool supported = getGLPixelFormat(_defaultFormatAlpha, glIntFormat, glFormat, glType);
assert(supported);
_overlay = new Texture(glIntFormat, glFormat, glType, _defaultFormatAlpha);
// We always filter the overlay with GL_LINEAR. This assures it's
// readable in case it needs to be scaled and does not affect it
// otherwise.
_overlay->enableLinearFiltering(true);
}
_overlay->allocate(overlayWidth, overlayHeight);
_overlay->fill(0);
#ifdef USE_OSD
if (!_osd || _osd->getFormat() != _defaultFormatAlpha) {
delete _osd;
_osd = nullptr;
GLenum glIntFormat, glFormat, glType;
const bool supported = getGLPixelFormat(_defaultFormatAlpha, glIntFormat, glFormat, glType);
assert(supported);
_osd = new Texture(glIntFormat, glFormat, glType, _defaultFormatAlpha);
// We always filter the osd with GL_LINEAR. This assures it's
// readable in case it needs to be scaled and does not affect it
// otherwise.
_osd->enableLinearFiltering(true);
}
_osd->allocate(_overlay->getWidth(), _overlay->getHeight());
_osd->fill(0);
#endif
// Re-setup the scaling for the screen and cursor
recalculateDisplayArea();
recalculateCursorScaling();
// Something changed, so update the screen change ID.
++_screenChangeID;
}
void OpenGLGraphicsManager::notifyContextChange(const Graphics::PixelFormat &defaultFormat, const Graphics::PixelFormat &defaultFormatAlpha) {
// Initialize all extensions.
initializeGLExtensions();
// Disable 3D properties.
GLCALL(glDisable(GL_CULL_FACE));
GLCALL(glDisable(GL_DEPTH_TEST));
GLCALL(glDisable(GL_LIGHTING));
GLCALL(glDisable(GL_FOG));
GLCALL(glDisable(GL_DITHER));
GLCALL(glShadeModel(GL_FLAT));
GLCALL(glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST));
// Default to black as clear color.
GLCALL(glClearColor(0.0f, 0.0f, 0.0f, 0.0f));
GLCALL(glColor4f(1.0f, 1.0f, 1.0f, 1.0f));
// Setup alpha blend (for overlay and cursor).
GLCALL(glEnable(GL_BLEND));
GLCALL(glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));
// Enable rendering with vertex and coord arrays.
GLCALL(glEnableClientState(GL_VERTEX_ARRAY));
GLCALL(glEnableClientState(GL_TEXTURE_COORD_ARRAY));
GLCALL(glEnable(GL_TEXTURE_2D));
// We use a "pack" alignment (when reading from textures) to 4 here,
// since the only place where we really use it is the BMP screenshot
// code and that requires the same alignment too.
GLCALL(glPixelStorei(GL_PACK_ALIGNMENT, 4));
// Query information needed by textures.
Texture::queryTextureInformation();
// Refresh the output screen dimensions if some are set up.
if (_outputScreenWidth != 0 && _outputScreenHeight != 0) {
setActualScreenSize(_outputScreenWidth, _outputScreenHeight);
}
// TODO: Should we try to convert textures into one of those formats if
// possible? For example, when _gameScreen is CLUT8 we might want to use
// defaultFormat now.
_defaultFormat = defaultFormat;
_defaultFormatAlpha = defaultFormatAlpha;
if (_gameScreen) {
_gameScreen->recreateInternalTexture();
}
if (_overlay) {
_overlay->recreateInternalTexture();
}
if (_cursor) {
_cursor->recreateInternalTexture();
}
#ifdef USE_OSD
if (_osd) {
_osd->recreateInternalTexture();
}
#endif
}
void OpenGLGraphicsManager::adjustMousePosition(int16 &x, int16 &y) {
if (_overlayVisible) {
// It might be confusing that we actually have to handle something
// here when the overlay is visible. This is because for very small
// resolutions we have a minimal overlay size and have to adjust
// for that.
// This can also happen when the overlay is smaller than the actual
// display size because of texture size limitations.
if (_overlay) {
x = (x * _overlay->getWidth()) / _outputScreenWidth;
y = (y * _overlay->getHeight()) / _outputScreenHeight;
}
} else if (_gameScreen) {
x -= _displayX;
y -= _displayY;
const int16 width = _gameScreen->getWidth();
const int16 height = _gameScreen->getHeight();
x = (x * width) / _displayWidth;
y = (y * height) / _displayHeight;
// Make sure we only supply valid coordinates.
x = CLIP<int16>(x, 0, width - 1);
y = CLIP<int16>(y, 0, height - 1);
}
}
bool OpenGLGraphicsManager::getGLPixelFormat(const Graphics::PixelFormat &pixelFormat, GLenum &glIntFormat, GLenum &glFormat, GLenum &glType) const {
if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 24, 16, 8, 0)) { // RGBA8888
glIntFormat = GL_RGBA;
glFormat = GL_RGBA;
glType = GL_UNSIGNED_INT_8_8_8_8;
return true;
} else if (pixelFormat == Graphics::PixelFormat(2, 5, 6, 5, 0, 11, 5, 0, 0)) { // RGB565
glIntFormat = GL_RGB;
glFormat = GL_RGB;
glType = GL_UNSIGNED_SHORT_5_6_5;
return true;
} else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 1, 11, 6, 1, 0)) { // RGBA5551
glIntFormat = GL_RGBA;
glFormat = GL_RGBA;
glType = GL_UNSIGNED_SHORT_5_5_5_1;
return true;
} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 12, 8, 4, 0)) { // RGBA4444
glIntFormat = GL_RGBA;
glFormat = GL_RGBA;
glType = GL_UNSIGNED_SHORT_4_4_4_4;
return true;
#ifndef USE_GLES
} else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 0, 10, 5, 0, 0)) { // RGB555
// GL_BGRA does not exist in every GLES implementation so should not be configured if
// USE_GLES is set.
glIntFormat = GL_RGB;
glFormat = GL_BGRA;
glType = GL_UNSIGNED_SHORT_1_5_5_5_REV;
return true;
} else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 16, 8, 0, 24)) { // ARGB8888
glIntFormat = GL_RGBA;
glFormat = GL_BGRA;
glType = GL_UNSIGNED_INT_8_8_8_8_REV;
return true;
} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 8, 4, 0, 12)) { // ARGB4444
glIntFormat = GL_RGBA;
glFormat = GL_BGRA;
glType = GL_UNSIGNED_SHORT_4_4_4_4_REV;
return true;
} else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 0, 8, 16, 24)) { // ABGR8888
glIntFormat = GL_RGBA;
glFormat = GL_RGBA;
glType = GL_UNSIGNED_INT_8_8_8_8_REV;
return true;
} else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 8, 16, 24, 0)) { // BGRA8888
glIntFormat = GL_RGBA;
glFormat = GL_BGRA;
glType = GL_UNSIGNED_INT_8_8_8_8;
return true;
} else if (pixelFormat == Graphics::PixelFormat(2, 5, 6, 5, 0, 0, 5, 11, 0)) { // BGR565
glIntFormat = GL_RGB;
glFormat = GL_BGR;
glType = GL_UNSIGNED_SHORT_5_6_5;
return true;
} else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 1, 1, 6, 11, 0)) { // BGRA5551
glIntFormat = GL_RGBA;
glFormat = GL_BGRA;
glType = GL_UNSIGNED_SHORT_5_5_5_1;
return true;
} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 0, 4, 8, 12)) { // ABGR4444
glIntFormat = GL_RGBA;
glFormat = GL_RGBA;
glType = GL_UNSIGNED_SHORT_4_4_4_4_REV;
return true;
} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 4, 8, 12, 0)) { // BGRA4444
glIntFormat = GL_RGBA;
glFormat = GL_BGRA;
glType = GL_UNSIGNED_SHORT_4_4_4_4;
return true;
#endif
} else {
return false;
}
}
frac_t OpenGLGraphicsManager::getDesiredGameScreenAspect() const {
const uint width = _currentState.gameWidth;
const uint height = _currentState.gameHeight;
if (_currentState.aspectRatioCorrection) {
// In case we enable aspect ratio correction we force a 4/3 ratio.
// But just for 320x200 and 640x400 games, since other games do not need
// this.
if ((width == 320 && height == 200) || (width == 640 && height == 400)) {
return intToFrac(4) / 3;
}
}
return intToFrac(width) / height;
}
void OpenGLGraphicsManager::recalculateDisplayArea() {
if (!_gameScreen || _outputScreenHeight == 0) {
return;
}
const frac_t outputAspect = intToFrac(_outputScreenWidth) / _outputScreenHeight;
const frac_t desiredAspect = getDesiredGameScreenAspect();
_displayWidth = _outputScreenWidth;
_displayHeight = _outputScreenHeight;
// Adjust one dimension for mantaining the aspect ratio.
if (outputAspect < desiredAspect) {
_displayHeight = intToFrac(_displayWidth) / desiredAspect;
} else if (outputAspect > desiredAspect) {
_displayWidth = fracToInt(_displayHeight * desiredAspect);
}
// We center the screen in the middle for now.
_displayX = (_outputScreenWidth - _displayWidth ) / 2;
_displayY = (_outputScreenHeight - _displayHeight) / 2;
}
void OpenGLGraphicsManager::updateCursorPalette() {
if (!_cursor || !_cursor->hasPalette()) {
return;
}
if (_cursorPaletteEnabled) {
_cursor->setPalette(0, 256, _cursorPalette);
} else {
_cursor->setPalette(0, 256, _gamePalette);
}
// We remove all alpha bits from the palette entry of the color key.
// This makes sure its properly handled as color key.
const Graphics::PixelFormat &hardwareFormat = _cursor->getHardwareFormat();
const uint32 aMask = (0xFF >> hardwareFormat.aLoss) << hardwareFormat.aShift;
if (hardwareFormat.bytesPerPixel == 2) {
uint16 *palette = (uint16 *)_cursor->getPalette() + _cursorKeyColor;
*palette &= ~aMask;
} else if (hardwareFormat.bytesPerPixel == 4) {
uint32 *palette = (uint32 *)_cursor->getPalette() + _cursorKeyColor;
*palette &= ~aMask;
} else {
warning("OpenGLGraphicsManager::updateCursorPalette: Unsupported pixel depth %d", hardwareFormat.bytesPerPixel);
}
}
void OpenGLGraphicsManager::recalculateCursorScaling() {
if (!_cursor || !_gameScreen) {
return;
}
// By default we use the unscaled versions.
_cursorHotspotXScaled = _cursorHotspotX;
_cursorHotspotYScaled = _cursorHotspotY;
_cursorWidthScaled = _cursor->getWidth();
_cursorHeightScaled = _cursor->getHeight();
// In case scaling is actually enabled we will scale the cursor according
// to the game screen.
if (!_cursorDontScale) {
const uint screenScaleFactorX = _displayWidth * 10000 / _gameScreen->getWidth();
const uint screenScaleFactorY = _displayHeight * 10000 / _gameScreen->getHeight();
_cursorHotspotXScaled = (_cursorHotspotXScaled * screenScaleFactorX) / 10000;
_cursorWidthScaled = (_cursorWidthScaled * screenScaleFactorX) / 10000;
_cursorHotspotYScaled = (_cursorHotspotYScaled * screenScaleFactorY) / 10000;
_cursorHeightScaled = (_cursorHeightScaled * screenScaleFactorY) / 10000;
}
}
#ifdef USE_OSD
const Graphics::Font *OpenGLGraphicsManager::getFontOSD() {
return FontMan.getFontByUsage(Graphics::FontManager::kLocalizedFont);
}
#endif
void OpenGLGraphicsManager::saveScreenshot(const Common::String &filename) const {
const uint width = _outputScreenWidth;
const uint height = _outputScreenHeight;
// A line of a BMP image must have a size divisible by 4.
// We calculate the padding bytes needed here.
// Since we use a 3 byte per pixel mode, we can use width % 4 here, since
// it is equal to 4 - (width * 3) % 4. (4 - (width * Bpp) % 4, is the
// usual way of computing the padding bytes required).
const uint linePaddingSize = width % 4;
const uint lineSize = width * 3 + linePaddingSize;
// Allocate memory for screenshot
uint8 *pixels = new uint8[lineSize * height];
// Get pixel data from OpenGL buffer
GLCALL(glReadPixels(0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, pixels));
// BMP stores as BGR. Since we can't assume that GL_BGR is supported we
// will swap the components from the RGB we read to BGR on our own.
for (uint y = height; y-- > 0;) {
uint8 *line = pixels + y * lineSize;
for (uint x = width; x > 0; --x, line += 3) {
SWAP(line[0], line[2]);
}
}
// Open file
Common::DumpFile out;
out.open(filename);
// Write BMP header
out.writeByte('B');
out.writeByte('M');
out.writeUint32LE(height * lineSize + 54);
out.writeUint32LE(0);
out.writeUint32LE(54);
out.writeUint32LE(40);
out.writeUint32LE(width);
out.writeUint32LE(height);
out.writeUint16LE(1);
out.writeUint16LE(24);
out.writeUint32LE(0);
out.writeUint32LE(0);
out.writeUint32LE(0);
out.writeUint32LE(0);
out.writeUint32LE(0);
out.writeUint32LE(0);
// Write pixel data to BMP
out.write(pixels, lineSize * height);
// Free allocated memory
delete[] pixels;
}
} // End of namespace OpenGL