scummvm/audio/fmopl.cpp
Vincent Bernat 9edd8eff01 AUDIO: add support for OPL2LPT
The OPL2LPT is an OPL2 chip plugged on a parallel port. It is
write-only but otherwise acts as a classic AdLib. This commit adds
support for this device.

User is expected to have the right permissions on the parallel
port. By default, the first suitable parallel port is used. It is
possible to override that with the hidden configuration setting
"opl2lpt_parport".

It depends on the presence of the libieee1284 library which abstracts
a bit parallel port handling. An alternative would be to access
directly /dev/parportX on Linux. This would amount of code but it
would be Linux-only.

Tested with Indy 3 and SOMI.
2018-04-08 09:17:19 +02:00

363 lines
9.0 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "audio/fmopl.h"
#include "audio/mixer.h"
#include "audio/softsynth/opl/dosbox.h"
#include "audio/softsynth/opl/mame.h"
#include "audio/softsynth/opl/nuked.h"
#include "common/config-manager.h"
#include "common/system.h"
#include "common/textconsole.h"
#include "common/timer.h"
#include "common/translation.h"
namespace OPL {
// Factory functions
#ifdef USE_ALSA
namespace ALSA {
OPL *create(Config::OplType type);
} // End of namespace ALSA
#endif // USE_ALSA
#ifdef ENABLE_OPL2LPT
namespace OPL2LPT {
OPL *create();
} // End of namespace OPL2LPT
#endif // ENABLE_OPL2LPT
// Config implementation
enum OplEmulator {
kAuto = 0,
kMame = 1,
kDOSBox = 2,
kALSA = 3,
kNuked = 4,
kOPL2LPT = 5
};
OPL::OPL() {
if (_hasInstance)
error("There are multiple OPL output instances running");
_hasInstance = true;
}
const Config::EmulatorDescription Config::_drivers[] = {
{ "auto", "<default>", kAuto, kFlagOpl2 | kFlagDualOpl2 | kFlagOpl3 },
{ "mame", _s("MAME OPL emulator"), kMame, kFlagOpl2 },
#ifndef DISABLE_DOSBOX_OPL
{ "db", _s("DOSBox OPL emulator"), kDOSBox, kFlagOpl2 | kFlagDualOpl2 | kFlagOpl3 },
#endif
#ifndef DISABLE_NUKED_OPL
{ "nuked", _s("Nuked OPL emulator"), kNuked, kFlagOpl2 | kFlagDualOpl2 | kFlagOpl3 },
#endif
#ifdef USE_ALSA
{ "alsa", _s("ALSA Direct FM"), kALSA, kFlagOpl2 | kFlagDualOpl2 | kFlagOpl3 },
#endif
#ifdef ENABLE_OPL2LPT
{ "opl2lpt", _s("OPL2LPT"), kOPL2LPT, kFlagOpl2 },
#endif
{ 0, 0, 0, 0 }
};
Config::DriverId Config::parse(const Common::String &name) {
for (int i = 0; _drivers[i].name; ++i) {
if (name.equalsIgnoreCase(_drivers[i].name))
return _drivers[i].id;
}
return -1;
}
const Config::EmulatorDescription *Config::findDriver(DriverId id) {
for (int i = 0; _drivers[i].name; ++i) {
if (_drivers[i].id == id)
return &_drivers[i];
}
return 0;
}
Config::DriverId Config::detect(OplType type) {
uint32 flags = 0;
switch (type) {
case kOpl2:
flags = kFlagOpl2;
break;
case kDualOpl2:
flags = kFlagDualOpl2;
break;
case kOpl3:
flags = kFlagOpl3;
break;
}
DriverId drv = parse(ConfMan.get("opl_driver"));
if (drv == kAuto) {
// Since the "auto" can be explicitly set for a game, and this
// driver shows up in the GUI as "<default>", check if there is
// a global setting for it before resorting to auto-detection.
drv = parse(ConfMan.get("opl_driver", Common::ConfigManager::kApplicationDomain));
}
// When a valid driver is selected, check whether it supports
// the requested OPL chip.
if (drv != -1 && drv != kAuto) {
const EmulatorDescription *driverDesc = findDriver(drv);
// If the chip is supported, just use the driver.
if (!driverDesc) {
warning("The selected OPL driver %d could not be found", drv);
} else if ((flags & driverDesc->flags)) {
return drv;
} else {
// Else we will output a warning and just
// return that no valid driver is found.
warning("Your selected OPL driver \"%s\" does not support type %d emulation, which is requested by your game", _drivers[drv].description, type);
return -1;
}
}
// Detect the first matching emulator
drv = -1;
for (int i = 1; _drivers[i].name; ++i) {
if (_drivers[i].flags & flags) {
drv = _drivers[i].id;
break;
}
}
return drv;
}
OPL *Config::create(OplType type) {
return create(kAuto, type);
}
OPL *Config::create(DriverId driver, OplType type) {
// On invalid driver selection, we try to do some fallback detection
if (driver == -1) {
warning("Invalid OPL driver selected, trying to detect a fallback emulator");
driver = kAuto;
}
// If autodetection is selected, we search for a matching
// driver.
if (driver == kAuto) {
driver = detect(type);
// No emulator for the specified OPL chip could
// be found, thus stop here.
if (driver == -1) {
warning("No OPL emulator available for type %d", type);
return 0;
}
}
switch (driver) {
case kMame:
if (type == kOpl2)
return new MAME::OPL();
else
warning("MAME OPL emulator only supports OPL2 emulation");
return 0;
#ifndef DISABLE_DOSBOX_OPL
case kDOSBox:
return new DOSBox::OPL(type);
#endif
#ifndef DISABLE_NUKED_OPL
case kNuked:
return new NUKED::OPL(type);
#endif
#ifdef USE_ALSA
case kALSA:
return ALSA::create(type);
#endif
#ifdef ENABLE_OPL2LPT
case kOPL2LPT:
if (type == kOpl2)
return OPL2LPT::create();
else
warning("OPL2LPT only supports OPL2");
return 0;
#endif
default:
warning("Unsupported OPL emulator %d", driver);
// TODO: Maybe we should add some dummy emulator too, which just outputs
// silence as sound?
return 0;
}
}
void OPL::start(TimerCallback *callback, int timerFrequency) {
_callback.reset(callback);
startCallbacks(timerFrequency);
}
void OPL::stop() {
stopCallbacks();
_callback.reset();
}
bool OPL::_hasInstance = false;
RealOPL::RealOPL() : _baseFreq(0), _remainingTicks(0) {
}
RealOPL::~RealOPL() {
// Stop callbacks, just in case. If it's still playing at this
// point, there's probably a bigger issue, though. The subclass
// needs to call stop() or the pointer can still use be used in
// the mixer thread at the same time.
stop();
}
void RealOPL::setCallbackFrequency(int timerFrequency) {
stopCallbacks();
startCallbacks(timerFrequency);
}
void RealOPL::startCallbacks(int timerFrequency) {
_baseFreq = timerFrequency;
assert(_baseFreq > 0);
// We can't request more a timer faster than 100Hz. We'll handle this by calling
// the proc multiple times in onTimer() later on.
if (timerFrequency > kMaxFreq)
timerFrequency = kMaxFreq;
_remainingTicks = 0;
g_system->getTimerManager()->installTimerProc(timerProc, 1000000 / timerFrequency, this, "RealOPL");
}
void RealOPL::stopCallbacks() {
g_system->getTimerManager()->removeTimerProc(timerProc);
_baseFreq = 0;
_remainingTicks = 0;
}
void RealOPL::timerProc(void *refCon) {
static_cast<RealOPL *>(refCon)->onTimer();
}
void RealOPL::onTimer() {
uint callbacks = 1;
if (_baseFreq > kMaxFreq) {
// We run faster than our max, so run the callback multiple
// times to approximate the actual timer callback frequency.
uint totalTicks = _baseFreq + _remainingTicks;
callbacks = totalTicks / kMaxFreq;
_remainingTicks = totalTicks % kMaxFreq;
}
// Call the callback multiple times. The if is on the inside of the
// loop in case the callback removes itself.
for (uint i = 0; i < callbacks; i++)
if (_callback && _callback->isValid())
(*_callback)();
}
EmulatedOPL::EmulatedOPL() :
_nextTick(0),
_samplesPerTick(0),
_baseFreq(0),
_handle(new Audio::SoundHandle()) {
}
EmulatedOPL::~EmulatedOPL() {
// Stop callbacks, just in case. If it's still playing at this
// point, there's probably a bigger issue, though. The subclass
// needs to call stop() or the pointer can still use be used in
// the mixer thread at the same time.
stop();
delete _handle;
}
int EmulatedOPL::readBuffer(int16 *buffer, const int numSamples) {
const int stereoFactor = isStereo() ? 2 : 1;
int len = numSamples / stereoFactor;
int step;
do {
step = len;
if (step > (_nextTick >> FIXP_SHIFT))
step = (_nextTick >> FIXP_SHIFT);
generateSamples(buffer, step * stereoFactor);
_nextTick -= step << FIXP_SHIFT;
if (!(_nextTick >> FIXP_SHIFT)) {
if (_callback && _callback->isValid())
(*_callback)();
_nextTick += _samplesPerTick;
}
buffer += step * stereoFactor;
len -= step;
} while (len);
return numSamples;
}
int EmulatedOPL::getRate() const {
return g_system->getMixer()->getOutputRate();
}
void EmulatedOPL::startCallbacks(int timerFrequency) {
setCallbackFrequency(timerFrequency);
g_system->getMixer()->playStream(Audio::Mixer::kPlainSoundType, _handle, this, -1, Audio::Mixer::kMaxChannelVolume, 0, DisposeAfterUse::NO, true);
}
void EmulatedOPL::stopCallbacks() {
g_system->getMixer()->stopHandle(*_handle);
}
void EmulatedOPL::setCallbackFrequency(int timerFrequency) {
_baseFreq = timerFrequency;
assert(_baseFreq != 0);
int d = getRate() / _baseFreq;
int r = getRate() % _baseFreq;
// This is equivalent to (getRate() << FIXP_SHIFT) / BASE_FREQ
// but less prone to arithmetic overflow.
_samplesPerTick = (d << FIXP_SHIFT) + (r << FIXP_SHIFT) / _baseFreq;
}
} // End of namespace OPL