scummvm/engines/sword1/router.cpp
Torbjörn Andersson c5cf806f82 Removed the "extra bars/nodes" code, since nothing ever added the extra bars or
nodes.

Removed the path-plotting debugging code, since the line-drawing function has
been a stub for the past few years, as far as I can tell.

Similar code was removed from the BS2 router long ago, so this could be a first
tiny step towards bringing them together.

svn-id: r20805
2006-02-21 10:22:37 +00:00

2441 lines
62 KiB
C++

/* ScummVM - Scumm Interpreter
* Copyright (C) 2003-2006 The ScummVM project
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "common/stdafx.h"
#include "sword1/router.h"
#include "common/util.h"
#include "common/scummsys.h"
#include "sword1/swordres.h"
#include "sword1/sworddefs.h"
#include "sword1/objectman.h"
#include "sword1/resman.h"
namespace Sword1 {
/****************************************************************************
* JROUTER.C polygon router with modular walks
* using a tree of modules
* 21 july 94
* 3 november 94
* System currently works by scanning grid data and coming up with a ROUTE
* as a series of way points(nodes), the smoothest eight directional PATH
* through these nodes is then found, and a WALK created to fit the PATH.
*
* Two funtions are called by the user, RouteFinder creates a route as a
* module list, HardWalk creates an animation list from the module list.
* The split is only provided to allow the possibility of turning the
* autorouter over two game cycles.
****************************************************************************
*
* Routine timings on osborne 486
*
* Read floor resource (file already loaded) 112 pixels
*
* Read mega resource (file already loaded) 112 pixels
*
*
*
****************************************************************************
*
* Modified 12 Oct 95
*
* Target Points within 1 pixel of a line are ignored ???
*
* Modules split into Points within 1 pixel of a line are ignored ???
*
****************************************************************************/
#define NO_DIRECTIONS 8
#define SLOW_IN 3
#define SLOW_OUT 7
#define ROUTE_END_FLAG 255
Router::Router(ObjectMan *pObjMan, ResMan *pResMan) {
_objMan = pObjMan;
_resMan = pResMan;
nnodes = nbars = 0;
_playerTargetX = _playerTargetY = _playerTargetDir = _playerTargetStance = 0;
diagonalx = diagonaly = 0;
}
/*
* CODE
*/
int32 Router::routeFinder(int32 id, Object *megaObject, int32 x, int32 y, int32 dir)
{
/****************************************************************************
* RouteFinder.C polygon router with modular walks
* 21 august 94
* 3 november 94
* RouteFinder creates a list of modules that enables HardWalk to create
* an animation list.
*
* RouteFinder currently works by scanning grid data and coming up with a ROUTE
* as a series of way points(nodes), the smoothest eight directional PATH
* through these nodes is then found, this information is made available to
* HardWalk for a WALK to be created to fit the PATH.
*
* 30 november 94 return values modified
*
* return 0 = failed to find a route
*
* 1 = found a route
*
* 2 = mega already at target
*
****************************************************************************/
int32 routeFlag = 0;
int32 solidFlag = 0;
megaId = id;
LoadWalkResources(megaObject, x, y, dir);
framesPerStep = nWalkFrames/2;
framesPerChar = nWalkFrames * NO_DIRECTIONS;
// offset pointers added Oct 30 95 JPS
standFrames = framesPerChar;
turnFramesLeft = standFrames;
turnFramesRight = standFrames;
walkFramesLeft = 0;
walkFramesRight = 0;
slowInFrames = 0;
slowOutFrames = 0;
if (megaId == GEORGE)
{
turnFramesLeft = 3 * framesPerChar + NO_DIRECTIONS + 2 * SLOW_IN + 4 * SLOW_OUT;
turnFramesRight = 3 * framesPerChar + NO_DIRECTIONS + 2 * SLOW_IN + 4 * SLOW_OUT + NO_DIRECTIONS;
walkFramesLeft = framesPerChar + NO_DIRECTIONS;
walkFramesRight = 2 * framesPerChar + NO_DIRECTIONS;
slowInFrames = 3 * framesPerChar + NO_DIRECTIONS;
slowOutFrames = 3 * framesPerChar + NO_DIRECTIONS + 2 * SLOW_IN;
}
else if (megaId == NICO)
{
turnFramesLeft = framesPerChar + NO_DIRECTIONS;
turnFramesRight = framesPerChar + 2 * NO_DIRECTIONS;
walkFramesLeft = 0;
walkFramesRight = 0;
slowInFrames = 0;
slowOutFrames = 0;
}
// **************************************************************************
// All route data now loaded start finding a route
// **************************************************************************
// **************************************************************************
// Check if we can get a route through the floor changed 12 Oct95 JPS
// **************************************************************************
routeFlag = GetRoute();
if (routeFlag == 2) //special case for zero length route
{
if (targetDir >7)// if target direction specified as any
{
targetDir = startDir;
}
// just a turn on the spot is required set an end module for the route let the animator deal with it
// modularPath is normally set by ExtractRoute
modularPath[0].dir = startDir;
modularPath[0].num = 0;
modularPath[0].x = startX;
modularPath[0].y = startY;
modularPath[1].dir = targetDir;
modularPath[1].num = 0;
modularPath[1].x = startX;
modularPath[1].y = startY;
modularPath[2].dir = 9;
modularPath[2].num = ROUTE_END_FLAG;
SlidyWalkAnimator(megaObject->o_route);
routeFlag = 2;
}
else if (routeFlag == 1) // a normal route
{
SmoothestPath();//Converts the route to an exact path
// The Route had waypoints and direction options
// The Path is an exact set of lines in 8 directions that reach the target.
// The path is in module format, but steps taken in each direction are not accurate
// if target dir = 8 then the walk isn't linked to an anim so
// we can create a route without sliding and miss the exact target
if (targetDir == NO_DIRECTIONS)
{
SolidPath();
solidFlag = SolidWalkAnimator(megaObject->o_route);
}
if (!solidFlag)
{
SlidyPath();
SlidyWalkAnimator(megaObject->o_route);
}
}
else // Route didn't reach target so assume point was off the floor
{
// routeFlag = 0;
}
return routeFlag; // send back null route
}
// ****************************************************************************
// * GET A ROUTE
// ****************************************************************************
int32 Router::GetRoute()
{
/****************************************************************************
* GetRoute.C extract a path from walk grid
* 12 october 94
*
* GetRoute currently works by scanning grid data and coming up with a ROUTE
* as a series of way points(nodes).
* static _routeData route[O_ROUTE_SIZE];
*
* return 0 = failed to find a route
*
* 1 = found a route
*
* 2 = mega already at target
*
* 3 = failed to find a route because target was on a line
*
****************************************************************************/
int32 routeGot = 0;
int32 level;
int32 changed;
if ((startX == targetX) && (startY == targetY))
routeGot = 2;
else // 'else' added by JEL (23jan96) otherwise 'routeGot' affected even when already set to '2' above - causing some 'turns' to walk downwards on the spot
routeGot = CheckTarget(targetX,targetY);// returns 3 if target on a line ( +- 1 pixel )
if (routeGot == 0) //still looking for a route check if target is within a pixel of a line
{
// scan through the nodes linking each node to its nearest neighbour until no more nodes change
// This is the routine that finds a route using Scan()
level = 1;
do
{
changed = Scan(level);
level =level + 1;
}
while (changed == 1);
// Check to see if the route reached the target
if (node[nnodes].dist < 9999)
{
routeGot = 1;
ExtractRoute(); // it did so extract the route as nodes and the directions to go between each node
// route.X,route.Y and route.Dir now hold all the route infomation with the target dir or route continuation
}
}
return routeGot;
}
// ****************************************************************************
// * THE SLIDY PATH ROUTINES
// ****************************************************************************
int32 Router::SmoothestPath()
{
/*
* This is the second big part of the route finder and the the only bit that tries to be clever
* (the other bits are clever).
* This part of the autorouter creates a list of modules from a set of lines running across the screen
* The task is complicated by two things;
* Firstly in chosing a route through the maze of nodes the routine tries to minimise the amount of each
* individual turn avoiding 90 degree and greater turns (where possible) and reduces the total nuber of
* turns (subject to two 45 degree turns being better than one 90 degree turn).
* Secondly when walking in a given direction the number of steps required to reach the end of that run
* is not calculated accurately. This is because I was unable to derive a function to relate number of
* steps taken between two points to the shrunken step size
*
*/
int32 p;
int32 dirS;
int32 dirD;
int32 dS;
int32 dD;
int32 dSS;
int32 dSD;
int32 dDS;
int32 dDD;
int32 i;
int32 steps;
int32 option;
int32 options;
int32 lastDir;
int32 nextDirS;
int32 nextDirD;
int32 tempturns[4];
int32 turns[4];
int32 turntable[NO_DIRECTIONS] = { 0, 1, 3, 5, 7, 5, 3, 1 };
// targetDir;// no warnings
// route.X route.Y and route.Dir start at far end
smoothPath[0].x = startX;
smoothPath[0].y = startY;
smoothPath[0].dir = startDir;
smoothPath[0].num = 0;
p = 0;
lastDir = startDir;
// for each section of the route
do
{
dirS = route[p].dirS;
dirD = route[p].dirD;
nextDirS = route[p+1].dirS;
nextDirD = route[p+1].dirD;
// Check directions into and out of a pair of nodes
// going in
dS = dirS - lastDir;
if ( dS < 0)
dS = dS + NO_DIRECTIONS;
dD = dirD - lastDir;
if ( dD < 0)
dD = dD + NO_DIRECTIONS;
// coming out
dSS = dirS - nextDirS;
if ( dSS < 0)
dSS = dSS + NO_DIRECTIONS;
dDD = dirD - nextDirD;
if ( dDD < 0)
dDD = dDD + NO_DIRECTIONS;
dSD = dirS - nextDirD;
if ( dSD < 0)
dSD = dSD + NO_DIRECTIONS;
dDS = dirD - nextDirS;
if ( dDS < 0)
dDS = dDS + NO_DIRECTIONS;
// Determine the amount of turning involved in each possible path
dS = turntable[dS];
dD = turntable[dD];
dSS = turntable[dSS];
dDD = turntable[dDD];
dSD = turntable[dSD];
dDS = turntable[dDS];
// get the best path out ie assume next section uses best direction
if (dSD < dSS)
dSS = dSD;
if (dDS < dDD)
dDD = dDS;
// Rate each option. Split routes look crap so weight against
// them
tempturns[0] = dS + dSS + 3;
turns[0] = 0;
tempturns[1] = dS + dDD;
turns[1] = 1;
tempturns[2] = dD + dSS;
turns[2] = 2;
tempturns[3] = dD + dDD + 3;
turns[3] = 3;
// set up turns as a sorted array of the turn values
for (i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (tempturns[j] > tempturns[j + 1]) {
SWAP(turns[j], turns[j + 1]);
SWAP(tempturns[j], tempturns[j + 1]);
}
}
}
// best option matched in order of the priority we would like to see on the screen
// but each option must be checked to see if it can be walked
options = NewCheck(1, route[p].x, route[p].y, route[p + 1].x, route[p + 1].y);
if (options == 0)
{
/*Tdebug("BestTurns fail %d %d %d %d",route[p].x, route[p].y, route[p + 1].x, route[p + 1].y);
Tdebug("BestTurns fail %d %d %d %d",turns[0],turns[1],turns[2],options);
Go_dos("BestTurns failed");*/
error("BestTurns failed");
}
i = 0;
steps = 0;
do
{
option = 1 << turns[i];
if (option & options)
steps = SmoothCheck(turns[i],p,dirS,dirD);
i = i + 1;
}
while ((steps == 0) && (i < 4));
if (steps == 0)
{
/*Tdebug("BestTurns failed %d %d %d %d",route[p].x, route[p].y, route[p + 1].x, route[p + 1].y);
Tdebug("BestTurns failed %d %d %d %d",turns[0],turns[1],turns[2],options);
Go_dos("BestTurns failed");*/
error("BestTurns failed");
}
// route.X route.Y route.dir and bestTurns start at far end
p = p + 1;
}
while (p < (routeLength));
// best turns will end heading as near as possible to target dir rest is down to anim for now
smoothPath[steps].dir = 9;
smoothPath[steps].num = ROUTE_END_FLAG;
return 1;
}
int32 Router::SmoothCheck(int32 best, int32 p, int32 dirS, int32 dirD)
/****************************************************************************
* Slip sliding away
* This path checker checks to see if a walk that exactly follows the path
* would be valid. This should be inherently true for atleast one of the turn
* options.
* No longer checks the data it only creates the smoothPath array JPS
****************************************************************************/
{
static int32 k;
int32 tempK;
int32 x;
int32 y;
int32 x2;
int32 y2;
int32 dx;
int32 dy;
int32 dsx;
int32 dsy;
int32 ddx;
int32 ddy;
int32 dirX;
int32 dirY;
int32 ss0;
int32 ss1;
int32 ss2;
int32 sd0;
int32 sd1;
int32 sd2;
if (p == 0)
{
k = 1;
}
tempK = 0;
x = route[p].x;
y = route[p].y;
x2 = route[p + 1].x;
y2 = route[p + 1].y;
dx = x2 - x;
dy = y2 - y;
dirX = 1;
dirY = 1;
if (dx < 0)
{
dx = -dx;
dirX = -1;
}
if (dy < 0)
{
dy = -dy;
dirY = -1;
}
// set up sd0-ss2 to reflect possible movement in each direction
if ((dirS == 0) || (dirS == 4))// vert and diag
{
ddx = dx;
ddy = (dx*diagonaly)/diagonalx;
dsy = dy - ddy;
ddx = ddx * dirX;
ddy = ddy * dirY;
dsy = dsy * dirY;
dsx = 0;
sd0 = (ddx + modX[dirD]/2)/ modX[dirD];
ss0 = (dsy + modY[dirS]/2) / modY[dirS];
sd1 = sd0/2;
ss1 = ss0/2;
sd2 = sd0 - sd1;
ss2 = ss0 - ss1;
}
else
{
ddy = dy;
ddx = (dy*diagonalx)/diagonaly;
dsx = dx - ddx;
ddy = ddy * dirY;
ddx = ddx * dirX;
dsx = dsx * dirX;
dsy = 0;
sd0 = (ddy + modY[dirD]/2)/ modY[dirD];
ss0 = (dsx + modX[dirS]/2)/ modX[dirS];
sd1 = sd0/2;
ss1 = ss0/2;
sd2 = sd0 - sd1;
ss2 = ss0 - ss1;
}
if (best == 0) //halfsquare, diagonal, halfsquare
{
smoothPath[k].x = x+dsx/2;
smoothPath[k].y = y+dsy/2;
smoothPath[k].dir = dirS;
smoothPath[k].num = ss1;
k = k + 1;
smoothPath[k].x = x+dsx/2+ddx;
smoothPath[k].y = y+dsy/2+ddy;
smoothPath[k].dir = dirD;
smoothPath[k].num = sd0;
k = k + 1;
smoothPath[k].x = x+dsx+ddx;
smoothPath[k].y = y+dsy+ddy;
smoothPath[k].dir = dirS;
smoothPath[k].num = ss2;
k = k + 1;
tempK = k;
}
else if (best == 1) //square, diagonal
{
smoothPath[k].x = x+dsx;
smoothPath[k].y = y+dsy;
smoothPath[k].dir = dirS;
smoothPath[k].num = ss0;
k = k + 1;
smoothPath[k].x = x2;
smoothPath[k].y = y2;
smoothPath[k].dir = dirD;
smoothPath[k].num = sd0;
k = k + 1;
tempK = k;
}
else if (best == 2) //diagonal square
{
smoothPath[k].x = x+ddx;
smoothPath[k].y = y+ddy;
smoothPath[k].dir = dirD;
smoothPath[k].num = sd0;
k = k + 1;
smoothPath[k].x = x2;
smoothPath[k].y = y2;
smoothPath[k].dir = dirS;
smoothPath[k].num = ss0;
k = k + 1;
tempK = k;
}
else //halfdiagonal, square, halfdiagonal
{
smoothPath[k].x = x+ddx/2;
smoothPath[k].y = y+ddy/2;
smoothPath[k].dir = dirD;
smoothPath[k].num = sd1;
k = k + 1;
smoothPath[k].x = x+dsx+ddx/2;
smoothPath[k].y = y+dsy+ddy/2;
smoothPath[k].dir = dirS;
smoothPath[k].num = ss0;
k = k + 1;
smoothPath[k].x = x2;
smoothPath[k].y = y2;
smoothPath[k].dir = dirD;
smoothPath[k].num = sd2;
k = k + 1;
tempK = k;
}
return tempK;
}
int32 Router::SlidyPath()
{
/****************************************************************************
* SlidyPath creates a path based on part steps with no sliding to get
* as near as possible to the target without any sliding this routine is
* currently unused, but is intended for use when just clicking about.
*
* produce a module list from the line data
*
****************************************************************************/
int32 smooth;
int32 slidy;
int32 scale;
int32 stepX;
int32 stepY;
int32 deltaX;
int32 deltaY;
// strip out the short sections
slidy = 1;
smooth = 1;
modularPath[0].x = smoothPath[0].x;
modularPath[0].y = smoothPath[0].y;
modularPath[0].dir = smoothPath[0].dir;
modularPath[0].num = 0;
while (smoothPath[smooth].num < ROUTE_END_FLAG)
{
scale = scaleA * smoothPath[smooth].y + scaleB;
deltaX = smoothPath[smooth].x - modularPath[slidy-1].x;
deltaY = smoothPath[smooth].y - modularPath[slidy-1].y;
stepX = modX[smoothPath[smooth].dir];
stepY = modY[smoothPath[smooth].dir];
stepX = stepX * scale;
stepY = stepY * scale;
stepX = stepX >> 19;// quarter a step minimum
stepY = stepY >> 19;
if ((ABS(deltaX)>=ABS(stepX)) && (ABS(deltaY)>=ABS(stepY)))
{
modularPath[slidy].x = smoothPath[smooth].x;
modularPath[slidy].y = smoothPath[smooth].y;
modularPath[slidy].dir = smoothPath[smooth].dir;
modularPath[slidy].num = 1;
slidy += 1;
}
smooth += 1;
}
// in case the last bit had no steps
if (slidy > 1)
{
modularPath[slidy-1].x = smoothPath[smooth-1].x;
modularPath[slidy-1].y = smoothPath[smooth-1].y;
}
// set up the end of the walk
modularPath[slidy].x = smoothPath[smooth-1].x;
modularPath[slidy].y = smoothPath[smooth-1].y;
modularPath[slidy].dir = targetDir;
modularPath[slidy].num = 0;
slidy += 1;
modularPath[slidy].x = smoothPath[smooth-1].x;
modularPath[slidy].y = smoothPath[smooth-1].y;
modularPath[slidy].dir = 9;
modularPath[slidy].num = ROUTE_END_FLAG;
return 1;
}
void Router::SlidyWalkAnimator(WalkData *walkAnim)
/****************************************************************************
* Skidding every where HardWalk creates an animation that exactly fits the
* smoothPath and uses foot slipping to fit whole steps into the route
* Parameters: georgeg,mouseg
* Returns: rout
*
* produce a module list from the line data
*
****************************************************************************/
{
static int32 left = 0;
int32 p;
int32 lastDir;
int32 lastRealDir;
int32 currentDir;
int32 turnDir;
int32 scale;
int32 step;
int32 module;
int32 moduleEnd;
int32 moduleX;
int32 moduleY;
int32 module16X = 0;
int32 module16Y = 0;
int32 stepX;
int32 stepY;
int32 errorX;
int32 errorY;
int32 lastErrorX;
int32 lastErrorY;
int32 lastCount;
int32 stepCount;
int32 frameCount;
int32 frames;
int32 frame;
// start at the begining for a change
p = 0;
lastDir = modularPath[0].dir;
currentDir = modularPath[1].dir;
if (currentDir == NO_DIRECTIONS)
{
currentDir = lastDir;
}
moduleX = startX;
moduleY = startY;
module16X = moduleX << 16;
module16Y = moduleY << 16;
stepCount = 0;
//****************************************************************************
// SLIDY
// START THE WALK WITH THE FIRST STANDFRAME THIS MAY CAUSE A DELAY
// BUT IT STOPS THE PLAYER MOVING FOR COLLISIONS ARE DETECTED
//****************************************************************************
module = framesPerChar + lastDir;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
//****************************************************************************
// SLIDY
// TURN TO START THE WALK
//****************************************************************************
// rotate if we need to
if (lastDir != currentDir)
{
// get the direction to turn
turnDir = currentDir - lastDir;
if ( turnDir < 0)
turnDir += NO_DIRECTIONS;
if (turnDir > 4)
turnDir = -1;
else if (turnDir > 0)
turnDir = 1;
// rotate to new walk direction
// for george and nico put in a head turn at the start
if ((megaId == GEORGE) || (megaId == NICO))
{
if ( turnDir < 0) // new frames for turn frames 29oct95jps
{
module = turnFramesLeft + lastDir;
}
else
{
module = turnFramesRight + lastDir;
}
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
// rotate till were facing new dir then go back 45 degrees
while (lastDir != currentDir)
{
lastDir += turnDir;
if ( turnDir < 0) // new frames for turn frames 29oct95jps
{
if ( lastDir < 0)
lastDir += NO_DIRECTIONS;
module = turnFramesLeft + lastDir;
}
else
{
if ( lastDir > 7)
lastDir -= NO_DIRECTIONS;
module = turnFramesRight + lastDir;
}
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
// the back 45 degrees bit
stepCount -= 1;// step back one because new head turn for george takes us past the new dir
}
// his head is in the right direction
lastRealDir = currentDir;
//****************************************************************************
// SLIDY
// THE WALK
//****************************************************************************
if (left == 0)
left = framesPerStep;
else
left = 0;
lastCount = stepCount;
lastDir = 99;// this ensures that we don't put in turn frames for the start
currentDir = 99;// this ensures that we don't put in turn frames for the start
do
{
while (modularPath[p].num == 0)
{
p = p + 1;
if (currentDir != 99)
lastRealDir = currentDir;
lastDir = currentDir;
lastCount = stepCount;
}
//calculate average amount to lose in each step on the way to the next node
currentDir = modularPath[p].dir;
if (currentDir < NO_DIRECTIONS)
{
module = currentDir * framesPerStep * 2 + left;
if (left == 0)
left = framesPerStep;
else
left = 0;
moduleEnd = module + framesPerStep;
step = 0;
scale = (scaleA * moduleY + scaleB);
do
{
module16X += _dx[module]*scale;
module16Y += _dy[module]*scale;
moduleX = module16X >> 16;
moduleY = module16Y >> 16;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = step;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
step += 1;
module += 1;
}
while ( module < moduleEnd) ;
stepX = modX[modularPath[p].dir];
stepY = modY[modularPath[p].dir];
errorX = modularPath[p].x - moduleX;
errorX = errorX * stepX;
errorY = modularPath[p].y - moduleY;
errorY = errorY * stepY;
if ((errorX < 0) || (errorY < 0))
{
modularPath[p].num = 0; // the end of the path
// okay those last steps took us past our target but do we want to scoot or moonwalk
frames = stepCount - lastCount;
errorX = modularPath[p].x - walkAnim[stepCount-1].x;
errorY = modularPath[p].y - walkAnim[stepCount-1].y;
if (frames > framesPerStep)
{
lastErrorX = modularPath[p].x - walkAnim[stepCount-7].x;
lastErrorY = modularPath[p].y - walkAnim[stepCount-7].y;
if (stepX==0)
{
if (3*ABS(lastErrorY) < ABS(errorY)) //the last stop was closest
{
stepCount -= framesPerStep;
if (left == 0)
left = framesPerStep;
else
left = 0;
}
}
else
{
if (3*ABS(lastErrorX) < ABS(errorX)) //the last stop was closest
{
stepCount -= framesPerStep;
if (left == 0)
left = framesPerStep;
else
left = 0;
}
}
}
errorX = modularPath[p].x - walkAnim[stepCount-1].x;
errorY = modularPath[p].y - walkAnim[stepCount-1].y;
// okay we've reached the end but we still have an error
if (errorX != 0)
{
frameCount = 0;
frames = stepCount - lastCount;
do
{
frameCount += 1;
walkAnim[lastCount + frameCount - 1].x += errorX*frameCount/frames;
}
while (frameCount<frames);
}
if (errorY != 0)
{
frameCount = 0;
frames = stepCount - lastCount;
do
{
frameCount += 1;
walkAnim[lastCount + frameCount-1].y += errorY*frameCount/frames;
}
while (frameCount<frames);
}
// Now is the time to put in the turn frames for the last turn
if (frames < framesPerStep)
currentDir = 99;// this ensures that we don't put in turn frames for this walk or the next
if (currentDir != 99)
lastRealDir = currentDir;
// check each turn condition in turn
if (((lastDir != 99) && (currentDir != 99)) && (megaId == GEORGE)) // only for george
{
lastDir = currentDir - lastDir;//1 and -7 going right -1 and 7 going left
if (((lastDir == -1) || (lastDir == 7)) || ((lastDir == -2) || (lastDir == 6)))
{
// turn at the end of the last walk
frame = lastCount - framesPerStep;
do
{
walkAnim[frame].frame += 104;//turning left
frame += 1;
}
while (frame < lastCount );
}
if (((lastDir == 1) || (lastDir == -7)) || ((lastDir == 2) || (lastDir == -6)))
{
// turn at the end of the current walk
frame = lastCount - framesPerStep;
do
{
walkAnim[frame].frame += 200; //was 60 now 116
frame += 1;
}
while (frame < lastCount );
}
lastDir = currentDir;
}
// all turns checked
lastCount = stepCount;
moduleX = walkAnim[stepCount-1].x;
moduleY = walkAnim[stepCount-1].y;
module16X = moduleX << 16;
module16Y = moduleY << 16;
}
}
}
while (modularPath[p].dir < NO_DIRECTIONS);
if (lastRealDir == 99)
{
error("SlidyWalkAnimatorlast direction error\n");
}
//****************************************************************************
// SLIDY
// TURNS TO END THE WALK ?
//****************************************************************************
// We've done the walk now put in any turns at the end
if (targetDir == NO_DIRECTIONS) // stand in the last direction
{
module = standFrames + lastRealDir;
targetDir = lastRealDir;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastRealDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
if (targetDir == 9)
{
if (stepCount == 0)
{
module = framesPerChar + lastRealDir;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastRealDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
}
else if (targetDir != lastRealDir) // rotate to targetDir
{
// rotate to target direction
turnDir = targetDir - lastRealDir;
if ( turnDir < 0)
turnDir += NO_DIRECTIONS;
if (turnDir > 4)
turnDir = -1;
else if (turnDir > 0)
turnDir = 1;
// rotate to target direction
// for george and nico put in a head turn at the start
if ((megaId == GEORGE) || (megaId == NICO))
{
if ( turnDir < 0) // new frames for turn frames 29oct95jps
{
module = turnFramesLeft + lastDir;
}
else
{
module = turnFramesRight + lastDir;
}
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastRealDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
// rotate if we need to
while (lastRealDir != targetDir)
{
lastRealDir += turnDir;
if ( turnDir < 0) // new frames for turn frames 29oct95jps
{
if ( lastRealDir < 0)
lastRealDir += NO_DIRECTIONS;
module = turnFramesLeft + lastRealDir;
}
else
{
if ( lastRealDir > 7)
lastRealDir -= NO_DIRECTIONS;
module = turnFramesRight + lastRealDir;
}
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastRealDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
module = standFrames + lastRealDir;
walkAnim[stepCount-1].frame = module;
}
else // just stand at the end
{
module = standFrames + lastRealDir;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastRealDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
walkAnim[stepCount].frame = 512;
stepCount += 1;
walkAnim[stepCount].frame = 512;
stepCount += 1;
walkAnim[stepCount].frame = 512;
// Tdebug("RouteFinder RouteSize is %d", stepCount);
return;
}
// ****************************************************************************
// * THE SOLID PATH ROUTINES
// ****************************************************************************
int32 Router::SolidPath()
{
/****************************************************************************
* SolidPath creates a path based on whole steps with no sliding to get
* as near as possible to the target without any sliding this routine is
* currently unused, but is intended for use when just clicking about.
*
* produce a module list from the line data
*
****************************************************************************/
int32 smooth;
int32 solid;
int32 scale;
int32 stepX;
int32 stepY;
int32 deltaX;
int32 deltaY;
// strip out the short sections
solid = 1;
smooth = 1;
modularPath[0].x = smoothPath[0].x;
modularPath[0].y = smoothPath[0].y;
modularPath[0].dir = smoothPath[0].dir;
modularPath[0].num = 0;
do
{
scale = scaleA * smoothPath[smooth].y + scaleB;
deltaX = smoothPath[smooth].x - modularPath[solid-1].x;
deltaY = smoothPath[smooth].y - modularPath[solid-1].y;
stepX = modX[smoothPath[smooth].dir];
stepY = modY[smoothPath[smooth].dir];
stepX = stepX * scale;
stepY = stepY * scale;
stepX = stepX >> 16;
stepY = stepY >> 16;
if ((ABS(deltaX)>=ABS(stepX)) && (ABS(deltaY)>=ABS(stepY)))
{
modularPath[solid].x = smoothPath[smooth].x;
modularPath[solid].y = smoothPath[smooth].y;
modularPath[solid].dir = smoothPath[smooth].dir;
modularPath[solid].num = 1;
solid += 1;
}
smooth += 1;
}
while (smoothPath[smooth].num < ROUTE_END_FLAG);
// in case the last bit had no steps
if (solid == 1) //there were no paths so put in a dummy end
{
solid = 2;
modularPath[1].dir = smoothPath[0].dir;
modularPath[1].num = 0;
}
modularPath[solid-1].x = smoothPath[smooth-1].x;
modularPath[solid-1].y = smoothPath[smooth-1].y;
// set up the end of the walk
modularPath[solid].x = smoothPath[smooth-1].x;
modularPath[solid].y = smoothPath[smooth-1].y;
modularPath[solid].dir = 9;
modularPath[solid].num = ROUTE_END_FLAG;
return 1;
}
int32 Router::SolidWalkAnimator(WalkData *walkAnim)
{
/****************************************************************************
* SolidWalk creates an animation based on whole steps with no sliding to get
* as near as possible to the target without any sliding this routine is
* is intended for use when just clicking about.
*
* produce a module list from the line data
*
* returns 0 if solid route not found
****************************************************************************/
int32 p;
int32 i;
int32 left;
int32 lastDir;
int32 currentDir;
int32 turnDir;
int32 scale;
int32 step;
int32 module;
int32 moduleX;
int32 moduleY;
int32 module16X;
int32 module16Y;
int32 errorX;
int32 errorY;
int32 moduleEnd;
int32 slowStart;
int32 stepCount;
int32 lastCount;
int32 frame;
// start at the begining for a change
lastDir = modularPath[0].dir;
p = 1;
currentDir = modularPath[1].dir;
module = framesPerChar + lastDir;
moduleX = startX;
moduleY = startY;
module16X = moduleX << 16;
module16Y = moduleY << 16;
slowStart = 0;
stepCount = 0;
//****************************************************************************
// SOLID
// START THE WALK WITH THE FIRST STANDFRAME THIS MAY CAUSE A DELAY
// BUT IT STOPS THE PLAYER MOVING FOR COLLISIONS ARE DETECTED
//****************************************************************************
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
//****************************************************************************
// SOLID
// TURN TO START THE WALK
//****************************************************************************
// rotate if we need to
if (lastDir != currentDir)
{
// get the direction to turn
turnDir = currentDir - lastDir;
if ( turnDir < 0)
turnDir += NO_DIRECTIONS;
if (turnDir > 4)
turnDir = -1;
else if (turnDir > 0)
turnDir = 1;
// rotate to new walk direction
// for george and nico put in a head turn at the start
if ((megaId == GEORGE) || (megaId == NICO))
{
if ( turnDir < 0) // new frames for turn frames 29oct95jps
{
module = turnFramesLeft + lastDir;
}
else
{
module = turnFramesRight + lastDir;
}
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
// rotate till were facing new dir then go back 45 degrees
while (lastDir != currentDir)
{
lastDir += turnDir;
if ( turnDir < 0) // new frames for turn frames 29oct95jps
{
if ( lastDir < 0)
lastDir += NO_DIRECTIONS;
module = turnFramesLeft + lastDir;
}
else
{
if ( lastDir > 7)
lastDir -= NO_DIRECTIONS;
module = turnFramesRight + lastDir;
}
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
// the back 45 degrees bit
stepCount -= 1;// step back one because new head turn for george takes us past the new dir
}
//****************************************************************************
// SOLID
// THE SLOW IN
//****************************************************************************
// do start frames if its george and left or right
if (megaId == GEORGE)
{
if (modularPath[1].num > 0)
{
if (currentDir == 2) // only for george
{
slowStart = 1;
walkAnim[stepCount].frame = 296;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
walkAnim[stepCount].frame = 297;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
walkAnim[stepCount].frame = 298;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
else if (currentDir == 6) // only for george
{
slowStart = 1;
walkAnim[stepCount].frame = 299;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
walkAnim[stepCount].frame = 300;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
walkAnim[stepCount].frame = 301;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
}
}
//****************************************************************************
// SOLID
// THE WALK
//****************************************************************************
if (currentDir > 4)
left = framesPerStep;
else
left = 0;
lastCount = stepCount;
lastDir = 99;// this ensures that we don't put in turn frames for the start
currentDir = 99;// this ensures that we don't put in turn frames for the start
do
{
while (modularPath[p].num > 0)
{
currentDir = modularPath[p].dir;
if (currentDir< NO_DIRECTIONS)
{
module = currentDir * framesPerStep * 2 + left;
if (left == 0)
left = framesPerStep;
else
left = 0;
moduleEnd = module + framesPerStep;
step = 0;
scale = (scaleA * moduleY + scaleB);
do
{
module16X += _dx[module]*scale;
module16Y += _dy[module]*scale;
moduleX = module16X >> 16;
moduleY = module16Y >> 16;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = step;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
module += 1;
step += 1;
}
while ( module < moduleEnd) ;
errorX = modularPath[p].x - moduleX;
errorX = errorX * modX[modularPath[p].dir];
errorY = modularPath[p].y - moduleY;
errorY = errorY * modY[modularPath[p].dir];
if ((errorX < 0) || (errorY < 0))
{
modularPath[p].num = 0;
stepCount -= framesPerStep;
if (left == 0)
left = framesPerStep;
else
left = 0;
// Okay this is the end of a section
moduleX = walkAnim[stepCount-1].x;
moduleY = walkAnim[stepCount-1].y;
module16X = moduleX << 16;
module16Y = moduleY << 16;
modularPath[p].x =moduleX;
modularPath[p].y =moduleY;
// Now is the time to put in the turn frames for the last turn
if ((stepCount - lastCount) < framesPerStep)// no step taken
{
currentDir = 99;// this ensures that we don't put in turn frames for this walk or the next
if (slowStart == 1)// clean up if a slow in but no walk
{
stepCount -= 3;
lastCount -= 3;
slowStart = 0;
}
}
// check each turn condition in turn
if (((lastDir != 99) && (currentDir != 99)) && (megaId == GEORGE)) // only for george
{
lastDir = currentDir - lastDir;//1 and -7 going right -1 and 7 going left
if (((lastDir == -1) || (lastDir == 7)) || ((lastDir == -2) || (lastDir == 6)))
{
// turn at the end of the last walk
frame = lastCount - framesPerStep;
do
{
walkAnim[frame].frame += 104;//turning left
frame += 1;
}
while (frame < lastCount );
}
if (((lastDir == 1) || (lastDir == -7)) || ((lastDir == 2) || (lastDir == -6)))
{
// turn at the end of the current walk
frame = lastCount - framesPerStep;
do
{
walkAnim[frame].frame += 200; //was 60 now 116
frame += 1;
}
while (frame < lastCount );
}
}
// all turns checked
lastCount = stepCount;
}
}
}
p = p + 1;
lastDir = currentDir;
slowStart = 0; //can only be valid first time round
}
while (modularPath[p].dir < NO_DIRECTIONS);
//****************************************************************************
// SOLID
// THE SLOW OUT
//****************************************************************************
if ((currentDir == 2) && (megaId == GEORGE)) // only for george
{
// place stop frames here
// slowdown at the end of the last walk
frame = lastCount - framesPerStep;
if (walkAnim[frame].frame == 24)
{
do
{
walkAnim[frame].frame += 278;//stopping right
frame += 1;
}
while (frame < lastCount );
walkAnim[stepCount].frame = 308;
walkAnim[stepCount].step = 7;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
else if (walkAnim[frame].frame == 30)
{
do
{
walkAnim[frame].frame += 279;//stopping right
frame += 1;
}
while (frame < lastCount );
walkAnim[stepCount].frame = 315;
walkAnim[stepCount].step = 7;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
}
else if ((currentDir == 6) && (megaId == GEORGE)) // only for george
{
// place stop frames here
// slowdown at the end of the last walk
frame = lastCount - framesPerStep;
if (walkAnim[frame].frame == 72)
{
do
{
walkAnim[frame].frame += 244;//stopping left
frame += 1;
}
while (frame < lastCount );
walkAnim[stepCount].frame = 322;
walkAnim[stepCount].step = 7;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
else if (walkAnim[frame].frame == 78)
{
do
{
walkAnim[frame].frame += 245;//stopping left
frame += 1;
}
while (frame < lastCount );
walkAnim[stepCount].frame = 329;
walkAnim[stepCount].step = 7;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
}
module = framesPerChar + modularPath[p-1].dir;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = modularPath[p-1].dir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
walkAnim[stepCount].frame = 512;
stepCount += 1;
walkAnim[stepCount].frame = 512;
stepCount += 1;
walkAnim[stepCount].frame = 512;
//****************************************************************************
// SOLID
// NO END TURNS
//****************************************************************************
// Tdebug("RouteFinder RouteSize is %d", stepCount);
// now check the route
i = 0;
do
{
if (!Check(modularPath[i].x, modularPath[i].y, modularPath[i+1].x, modularPath[i+1].y))
p=0;
i += 1;
}
while (i<p-1);
if (p != 0)
{
targetDir = modularPath[p-1].dir;
}
if (p != 0)
{
if (CheckTarget(moduleX,moduleY) == 3)// new target on a line
{
p = 0;
//Tdebug("Solid walk target was on a line %d %d", moduleX, moduleY);
}
}
return p;
}
// ****************************************************************************
// * THE SCAN ROUTINES
// ****************************************************************************
int32 Router::Scan(int32 level)
/******************************************************************************
* Called successively from RouteFinder until no more changes take place in the
* grid array ie he best path has been found
*
* Scans through every point in the node array and checks if there is a route
* between each point and if this route gives a new route.
*
* This routine could probably halve its processing time if it doubled up on
* the checks after each route check
*****************************************************************************/
{
int32 i;
int32 k;
int32 x1;
int32 y1;
int32 x2;
int32 y2;
int32 distance;
int32 changed = 0;
// For all the nodes that have new values and a distance less than enddist
// ie dont check for new routes from a point we checked before or from a point
// that is already further away than the best route so far.
i = 0;
do
{
if ((node[i].dist < node[nnodes].dist) && (node[i].level == level))
{
x1 = node[i].x;
y1 = node[i].y;
k=nnodes;
do
{
if (node[k].dist > node[i].dist)
{
x2 = node[k].x;
y2 = node[k].y;
if (ABS(x2-x1)>(4.5*ABS(y2-y1)))
{
distance = (8*ABS(x2-x1)+18*ABS(y2-y1))/(54*8)+1;
}
else
{
distance = (6*ABS(x2-x1)+36*ABS(y2-y1))/(36*14)+1;
}
if ((distance + node[i].dist < node[nnodes].dist) && (distance + node[i].dist < node[k].dist))
{
if (NewCheck(0, x1,y1,x2,y2))
{
node[k].level = level + 1;
node[k].dist = distance + node[i].dist;
node[k].prev = i;
changed = 1;
}
}
}
k-=1;
}
while (k > 0);
}
i=i+1;
}
while (i < nnodes);
return changed;
}
int32 Router::NewCheck(int32 status, int32 x1 , int32 y1 , int32 x2 ,int32 y2)
/******************************************************************************
* NewCheck routine checks if the route between two points can be achieved
* without crossing any of the bars in the Bars array.
*
* NewCheck differs from check in that that 4 route options are considered
* corresponding to actual walked routes.
*
* Note distance doesnt take account of shrinking ???
*
* Note Bars array must be properly calculated ie min max dx dy co
*****************************************************************************/
{
int32 dx;
int32 dy;
int32 dlx;
int32 dly;
int32 dirX;
int32 dirY;
int32 step1;
int32 step2;
int32 step3;
int32 steps;
int32 options;
steps = 0;
options = 0;
dx = x2 - x1;
dy = y2 - y1;
dirX = 1;
dirY = 1;
if (dx < 0)
{
dx = -dx;
dirX = -1;
}
if (dy < 0)
{
dy = -dy;
dirY = -1;
}
//make the route options
if ((diagonaly * dx) > (diagonalx * dy)) // dir = 1,2 or 2,3 or 5,6 or 6,7
{
dly = dy;
dlx = (dy*diagonalx)/diagonaly;
dx = dx - dlx;
dlx = dlx * dirX;
dly = dly * dirY;
dx = dx * dirX;
dy = 0;
//options are
//square, diagonal a code 1 route
step1 = Check(x1, y1, x1+dx, y1);
if (step1 != 0)
{
step2 = Check(x1+dx, y1, x2, y2);
if (step2 != 0)
{
steps = step1 + step2; // yes
options = options + 2;
}
}
//diagonal, square a code 2 route
if ((steps == 0) || (status == 1))
{
step1 = Check(x1, y1, x1+dlx,y1+dly);
if (step1 != 0)
{
step2 = Check(x1+dlx, y2, x2, y2);
if (step2 != 0)
{
steps = step1 + step2; // yes
options = options + 4;
}
}
}
//halfsquare, diagonal, halfsquare a code 0 route
if ((steps == 0) || (status == 1))
{
step1 = Check(x1, y1, x1+dx/2, y1);
if (step1 != 0)
{
step2 = Check(x1+dx/2, y1, x1+dx/2+dlx, y2);
if (step2 != 0)
{
step3 = Check(x1+dx/2+dlx, y2, x2, y2);
if (step3 != 0)
{
steps = step1 + step2 + step3; // yes
options = options + 1;
}
}
}
}
//halfdiagonal, square, halfdiagonal a code 3 route
if ((steps == 0) || (status == 1))
{
step1 = Check(x1, y1, x1+dlx/2, y1+dly/2);
if (step1 != 0)
{
step2 = Check(x1+dlx/2, y1+dly/2, x1+dx+dlx/2, y1+dly/2);
if (step2 != 0)
{
step3 = Check(x1+dx+dlx/2, y1+dly/2, x2, y2);
if (step3 != 0)
{
steps = step1 + step2 + step3; // yes
options = options + 8;
}
}
}
}
}
else // dir = 7,0 or 0,1 or 3,4 or 4,5
{
dlx = dx;
dly = (dx*diagonaly)/diagonalx;
dy = dy - dly;
dlx = dlx * dirX;
dly = dly * dirY;
dy = dy * dirY;
dx = 0;
//options are
//square, diagonal a code 1 route
step1 = Check(x1 ,y1 ,x1 ,y1+dy );
if (step1 != 0)
{
step2 = Check(x1 ,y1+dy ,x2,y2);
if (step2 != 0)
{
steps = step1 + step2; // yes
options = options + 2;
}
}
//diagonal, square a code 2 route
if ((steps == 0) || (status == 1))
{
step1 = Check(x1, y1, x2, y1+dly);
if (step1 != 0)
{
step2 = Check(x2, y1+dly, x2, y2);
if (step2 != 0)
{
steps = step1 + step2; // yes
options = options + 4;
}
}
}
//halfsquare, diagonal, halfsquare a code 0 route
if ((steps == 0) || (status == 1))
{
step1 = Check(x1, y1, x1, y1+dy/2);
if (step1 != 0)
{
step2 = Check(x1, y1+dy/2, x2, y1+dy/2+dly);
if (step2 != 0)
{
step3 = Check(x2, y1+dy/2+dly, x2, y2);
if (step3 != 0)
{
steps = step1 + step2 + step3; // yes
options = options + 1;
}
}
}
}
//halfdiagonal, square, halfdiagonal a code 3 route
if ((steps == 0) || (status == 1))
{
step1 = Check(x1, y1, x1+dlx/2, y1+dly/2);
if (step1 != 0)
{
step2 = Check(x1+dlx/2, y1+dly/2, x1+dlx/2, y1+dy+dly/2);
if (step2 != 0)
{
step3 = Check(x1+dlx/2, y1+dy+dly/2, x2, y2);
if (step3 != 0)
{
steps = step1 + step2 + step3; // yes
options = options + 8;
}
}
}
}
}
if (status == 0)
{
status = steps;
}
else
{
status = options;
}
return status;
}
// ****************************************************************************
// * CHECK ROUTINES
// ****************************************************************************
int32 Router::Check(int32 x1 , int32 y1 , int32 x2 ,int32 y2)
{
//call the fastest line check for the given line
//returns 1 if line didn't cross any bars
int32 steps;
if ((x1 == x2) && (y1 == y2))
{
steps = 1;
}
else if (x1 == x2)
{
steps = VertCheck(x1, y1, y2);
}
else if (y1 == y2)
{
steps = HorizCheck(x1, y1, x2);
}
else
{
steps = LineCheck(x1, y1, x2, y2);
}
return steps;
}
int32 Router::LineCheck(int32 x1 , int32 y1 , int32 x2 ,int32 y2)
{
int32 dirx;
int32 diry;
int32 co;
int32 slope;
int32 i;
int32 xc;
int32 yc;
int32 xmin;
int32 ymin;
int32 xmax;
int32 ymax;
int32 linesCrossed = 1;
if (x1 > x2)
{
xmin = x2;
xmax = x1;
}
else
{
xmin = x1;
xmax = x2;
}
if (y1 > y2)
{
ymin = y2;
ymax = y1;
}
else
{
ymin = y1;
ymax = y2;
}
//line set to go one step in chosen direction
//so ignore if it hits anything
dirx = x2 - x1;
diry = y2 - y1;
co = (y1 *dirx)- (x1*diry); //new line equation
i = 0;
do
{
// this is the inner inner loop
if ((xmax >= bars[i].xmin) && ( xmin <= bars[i].xmax)) //skip if not on module
{
if ((ymax >= bars[i].ymin) && ( ymin <= bars[i].ymax)) //skip if not on module
{
// okay its a valid line calculate an intersept
// wow but all this arithmatic we must have loads of time
slope = (bars[i].dx * diry) - (bars[i].dy *dirx);// slope it he slope between the two lines
if (slope != 0)//assuming parallel lines don't cross
{
//calculate x intercept and check its on both lines
xc = ((bars[i].co * dirx) - (co * bars[i].dx)) / slope;
if ((xc >= xmin-1) && (xc <= xmax+1)) //skip if not on module
{
if ((xc >= bars[i].xmin-1) && (xc <= bars[i].xmax+1)) //skip if not on line
{
yc = ((bars[i].co * diry) - (co * bars[i].dy)) / slope;
if ((yc >= ymin-1) && (yc <= ymax+1)) //skip if not on module
{
if ((yc >= bars[i].ymin-1) && (yc <= bars[i].ymax+1)) //skip if not on line
{
linesCrossed = 0;
}
}
}
}
}
}
}
i = i + 1;
}
while ((i < nbars) && linesCrossed);
return linesCrossed;
}
int32 Router::HorizCheck(int32 x1 , int32 y , int32 x2)
{
int32 dy;
int32 i;
int32 xc;
int32 xmin;
int32 xmax;
int32 linesCrossed = 1;
if (x1 > x2)
{
xmin = x2;
xmax = x1;
}
else
{
xmin = x1;
xmax = x2;
}
//line set to go one step in chosen direction
//so ignore if it hits anything
i = 0;
do
{
// this is the inner inner loop
if ((xmax >= bars[i].xmin) && ( xmin <= bars[i].xmax)) //skip if not on module
{
if ((y >= bars[i].ymin) && ( y <= bars[i].ymax)) //skip if not on module
{
// okay its a valid line calculate an intersept
// wow but all this arithmatic we must have loads of time
if (bars[i].dy == 0)
{
linesCrossed = 0;
}
else
{
dy = y-bars[i].y1;
xc = bars[i].x1 + (bars[i].dx * dy)/bars[i].dy;
if ((xc >= xmin-1) && (xc <= xmax+1)) //skip if not on module
{
linesCrossed = 0;
}
}
}
}
i = i + 1;
}
while ((i < nbars) && linesCrossed);
return linesCrossed;
}
int32 Router::VertCheck(int32 x, int32 y1, int32 y2)
{
int32 dx;
int32 i;
int32 yc;
int32 ymin;
int32 ymax;
int32 linesCrossed = 1;
if (y1 > y2)
{
ymin = y2;
ymax = y1;
}
else
{
ymin = y1;
ymax = y2;
}
//line set to go one step in chosen direction
//so ignore if it hits anything
i = 0;
do // this is the inner inner loop
{
if ((x >= bars[i].xmin) && ( x <= bars[i].xmax)) //overlapping
{
if ((ymax >= bars[i].ymin) && ( ymin <= bars[i].ymax)) //skip if not on module
{
// okay its a valid line calculate an intersept
// wow but all this arithmatic we must have loads of time
if (bars[i].dx == 0)//both lines vertical and overlap in x and y so they cross
{
linesCrossed = 0;
}
else
{
dx = x-bars[i].x1;
yc = bars[i].y1 + (bars[i].dy * dx)/bars[i].dx;
if ((yc >= ymin-1) && (yc <= ymax+1)) //the intersept overlaps
{
linesCrossed = 0;
}
}
}
}
i = i + 1;
}
while ((i < nbars) && linesCrossed);
return linesCrossed;
}
int32 Router::CheckTarget(int32 x , int32 y)
{
int32 dx;
int32 dy;
int32 i;
int32 xc;
int32 yc;
int32 xmin;
int32 xmax;
int32 ymin;
int32 ymax;
int32 onLine = 0;
xmin = x - 1;
xmax = x + 1;
ymin = y - 1;
ymax = y + 1;
// check if point +- 1 is on the line
//so ignore if it hits anything
i = 0;
do
{
// this is the inner inner loop
if ((xmax >= bars[i].xmin) && ( xmin <= bars[i].xmax)) //overlapping line
{
if ((ymax >= bars[i].ymin) && ( ymin <= bars[i].ymax)) //overlapping line
{
// okay this line overlaps the target calculate an y intersept for x
if (bars[i].dx == 0)// vertical line so we know it overlaps y
{
yc = 0;
}
else
{
dx = x-bars[i].x1;
yc = bars[i].y1 + (bars[i].dy * dx)/bars[i].dx;
}
if ((yc >= ymin) && (yc <= ymax)) //overlapping point for y
{
onLine = 3;// target on a line so drop out
//Tdebug("RouteFail due to target on a line %d %d",x,y);
}
else
{
if (bars[i].dy == 0)// vertical line so we know it overlaps y
{
xc = 0;
}
else
{
dy = y-bars[i].y1;
xc = bars[i].x1 + (bars[i].dx * dy)/bars[i].dy;
}
if ((xc >= xmin) && (xc <= xmax)) //skip if not on module
{
onLine = 3;// target on a line so drop out
//Tdebug("RouteFail due to target on a line %d %d",x,y);
}
}
}
}
i = i + 1;
}
while ((i < nbars) && (onLine == 0));
return onLine;
}
// ****************************************************************************
// * THE SETUP ROUTINES
// ****************************************************************************
int32 Router::LoadWalkResources(Object *megaObject, int32 x, int32 y, int32 dir)
{
WalkGridHeader floorHeader;
int32 i;
uint8 *fPolygrid;
uint8 *fMegaWalkData;
int32 floorId;
int32 walkGridResourceId;
Object *floorObject;
int32 cnt;
uint32 cntu;
// load in floor grid for current mega
floorId = megaObject->o_place;
//floorObject = (object *) Lock_object(floorId);
floorObject = _objMan->fetchObject(floorId);
walkGridResourceId = floorObject->o_resource;
//Unlock_object(floorId);
//ResOpen(walkGridResourceId); // mouse wiggle
//fPolygrid = ResLock(walkGridResourceId); // mouse wiggle
fPolygrid = (uint8*)_resMan->openFetchRes(walkGridResourceId);
fPolygrid += sizeof(Header);
memcpy(&floorHeader,fPolygrid,sizeof(WalkGridHeader));
fPolygrid += sizeof(WalkGridHeader);
nbars = FROM_LE_32(floorHeader.numBars);
if (nbars >= O_GRID_SIZE)
{
#ifdef DEBUG //check for id > number in file,
error("RouteFinder Error too many bars %d", nbars);
#endif
nbars = 0;
}
nnodes = FROM_LE_32(floorHeader.numNodes)+1; //array starts at 0 begins at a start node has nnodes nodes and a target node
if (nnodes >= O_GRID_SIZE)
{
#ifdef DEBUG //check for id > number in file,
error("RouteFinder Error too many nodes %d", nnodes);
#endif
nnodes = 0;
}
/*memmove(&bars[0],fPolygrid,nbars*sizeof(BarData));
fPolygrid += nbars*sizeof(BarData);//move pointer to start of node data*/
for (cnt = 0; cnt < nbars; cnt++) {
bars[cnt].x1 = READ_LE_UINT16(fPolygrid); fPolygrid += 2;
bars[cnt].y1 = READ_LE_UINT16(fPolygrid); fPolygrid += 2;
bars[cnt].x2 = READ_LE_UINT16(fPolygrid); fPolygrid += 2;
bars[cnt].y2 = READ_LE_UINT16(fPolygrid); fPolygrid += 2;
bars[cnt].xmin = READ_LE_UINT16(fPolygrid); fPolygrid += 2;
bars[cnt].ymin = READ_LE_UINT16(fPolygrid); fPolygrid += 2;
bars[cnt].xmax = READ_LE_UINT16(fPolygrid); fPolygrid += 2;
bars[cnt].ymax = READ_LE_UINT16(fPolygrid); fPolygrid += 2;
bars[cnt].dx = READ_LE_UINT16(fPolygrid); fPolygrid += 2;
bars[cnt].dy = READ_LE_UINT16(fPolygrid); fPolygrid += 2;
bars[cnt].co = READ_LE_UINT32(fPolygrid); fPolygrid += 4;
}
/*j = 1;// leave node 0 for start node
do
{
memmove(&node[j].x,fPolygrid,2*sizeof(int16));
fPolygrid += 2*sizeof(int16);
j ++;
}
while (j < nnodes);//array starts at 0*/
for (cnt = 1; cnt < nnodes; cnt++) {
node[cnt].x = READ_LE_UINT16(fPolygrid); fPolygrid += 2;
node[cnt].y = READ_LE_UINT16(fPolygrid); fPolygrid += 2;
}
//ResUnlock(walkGridResourceId); // mouse wiggle
//ResClose(walkGridResourceId); // mouse wiggle
_resMan->resClose(walkGridResourceId);
// floor grid loaded
// copy the mega structure into the local variables for use in all subroutines
startX = megaObject->o_xcoord;
startY = megaObject->o_ycoord;
startDir = megaObject->o_dir;
targetX = x;
targetY= y;
targetDir = dir;
scaleA = megaObject->o_scale_a;
scaleB = megaObject->o_scale_b;
//ResOpen(megaObject->o_mega_resource); // mouse wiggle
//fMegaWalkData = ResLock(megaObject->o_mega_resource); // mouse wiggle
fMegaWalkData = (uint8*)_resMan->openFetchRes(megaObject->o_mega_resource);
nWalkFrames = fMegaWalkData[0];
nTurnFrames = fMegaWalkData[1];
fMegaWalkData += 2;
for (cnt = 0; cnt < NO_DIRECTIONS * (nWalkFrames + 1 + nTurnFrames); cnt++) {
_dx[cnt] = (int32)READ_LE_UINT32(fMegaWalkData);
fMegaWalkData += 4;
}
for (cnt = 0; cnt < NO_DIRECTIONS * (nWalkFrames + 1 + nTurnFrames); cnt++) {
_dy[cnt] = (int32)READ_LE_UINT32(fMegaWalkData);
fMegaWalkData += 4;
}
/*memmove(&_dx[0],fMegaWalkData,NO_DIRECTIONS*(nWalkFrames+1+nTurnFrames)*sizeof(int32));
fMegaWalkData += NO_DIRECTIONS*(nWalkFrames+1+nTurnFrames)*sizeof(int32);
memmove(&_dy[0],fMegaWalkData,NO_DIRECTIONS*(nWalkFrames+1+nTurnFrames)*sizeof(int32));
fMegaWalkData += NO_DIRECTIONS*(nWalkFrames+1+nTurnFrames)*sizeof(int32);*/
for (cntu = 0; cntu < NO_DIRECTIONS; cntu++) {
modX[cntu] = (int32)READ_LE_UINT32(fMegaWalkData);
fMegaWalkData += 4;
}
for (cntu = 0; cntu < NO_DIRECTIONS; cntu++) {
modY[cntu] = (int32)READ_LE_UINT32(fMegaWalkData);
fMegaWalkData += 4;
}
/*memmove(&modX[0],fMegaWalkData,NO_DIRECTIONS*sizeof(int32));
fMegaWalkData += NO_DIRECTIONS*sizeof(int32);
memmove(&modY[0],fMegaWalkData,NO_DIRECTIONS*sizeof(int32));
fMegaWalkData += NO_DIRECTIONS*sizeof(int32);*/
//ResUnlock(megaObject->o_mega_resource); // mouse wiggle
//ResClose(megaObject->o_mega_resource); // mouse wiggle
_resMan->resClose(megaObject->o_mega_resource);
diagonalx = modX[3] ;//36
diagonaly = modY[3] ;//8
// mega data ready
// finish setting grid by putting mega node at begining
// and target node at end and reset current values
node[0].x = startX;
node[0].y = startY;
node[0].level = 1;
node[0].prev = 0;
node[0].dist = 0;
i=1;
do
{
node[i].level = 0;
node[i].prev = 0;
node[i].dist = 9999;
i=i+1;
}
while (i < nnodes);
node[nnodes].x = targetX;
node[nnodes].y = targetY;
node[nnodes].level = 0;
node[nnodes].prev = 0;
node[nnodes].dist = 9999;
return 1;
}
// ****************************************************************************
// * THE ROUTE EXTRACTOR
// ****************************************************************************
void Router::ExtractRoute()
/****************************************************************************
* ExtractRoute gets route from the node data after a full scan, route is
* written with just the basic way points and direction options for heading
* to the next point.
****************************************************************************/
{
int32 prev;
int32 prevx;
int32 prevy;
int32 last;
int32 point;
int32 p;
int32 dirx;
int32 diry;
int32 dir;
int32 dx;
int32 dy;
// extract the route from the node data
prev = nnodes;
last = prev;
point = O_ROUTE_SIZE - 1;
route[point].x = node[last].x;
route[point].y = node[last].y;
do
{
point = point - 1;
prev = node[last].prev;
prevx = node[prev].x;
prevy = node[prev].y;
route[point].x = prevx;
route[point].y = prevy;
last = prev;
}
while (prev > 0);
// now shuffle route down in the buffer
routeLength = 0;
do
{
route[routeLength].x = route[point].x;
route[routeLength].y = route[point].y;
point = point + 1;
routeLength = routeLength + 1;
}
while (point < O_ROUTE_SIZE);
routeLength = routeLength - 1;
// okay the route exists as a series point now put in some directions
p = 0;
do
{
dx = route[p+1].x - route[p].x;
dy = route[p+1].y - route[p].y;
dirx = 1;
diry = 1;
if (dx < 0)
{
dx = -dx;
dirx = -1;
}
if (dy < 0)
{
dy = -dy;
diry = -1;
}
if ((diagonaly * dx) > (diagonalx * dy)) // dir = 1,2 or 2,3 or 5,6 or 6,7
{
dir = 4 - 2 * dirx; // 2 or 6
route[p].dirS = dir;
dir = dir + diry * dirx; // 1,3,5 or 7
route[p].dirD = dir;
}
else // dir = 7,0 or 0,1 or 3,4 or 4,5
{
dir = 2 + 2 * diry; // 0 or 4
route[p].dirS = dir;
dir = 4 - 2 * dirx; // 2 or 6
dir = dir + diry * dirx; // 1,3,5 or 7
route[p].dirD = dir;
}
p = p + 1;
}
while (p < (routeLength));
// set the last dir to continue previous route unless specified
if (targetDir == NO_DIRECTIONS)
{
route[p].dirS = route[p-1].dirS;
route[p].dirD = route[p-1].dirD;
}
else
{
route[p].dirS = targetDir;
route[p].dirD = targetDir;
}
return;
}
#define DIAGONALX 36
#define DIAGONALY 8
int whatTarget(int32 startX, int32 startY, int32 destX, int32 destY) {
int tar_dir;
//setting up
int deltaX = destX-startX;
int deltaY = destY-startY;
int signX = (deltaX > 0);
int signY = (deltaY > 0);
int slope;
if ( (ABS(deltaY) * DIAGONALX ) < (ABS(deltaX) * DIAGONALY / 2))
slope = 0;// its flat
else if ( (ABS(deltaY) * DIAGONALX / 2) > (ABS(deltaX) * DIAGONALY ) )
slope = 2;// its vertical
else
slope = 1;// its diagonal
if (slope == 0) { //flat
if (signX == 1) // going right
tar_dir = 2;
else
tar_dir = 6;
} else if (slope == 2) { //vertical
if (signY == 1) // going down
tar_dir = 4;
else
tar_dir = 0;
} else if (signX == 1) { //right diagonal
if (signY == 1) // going down
tar_dir = 3;
else
tar_dir = 1;
} else { //left diagonal
if (signY == 1) // going down
tar_dir = 5;
else
tar_dir = 7;
}
return tar_dir;
}
void Router::setPlayerTarget(int32 x, int32 y, int32 dir, int32 stance) {
_playerTargetX = x;
_playerTargetY = y;
_playerTargetDir = dir;
_playerTargetStance = stance;
}
} // End of namespace Sword1