scummvm/common/func.h
2010-01-21 19:25:03 +00:00

545 lines
15 KiB
C++

/* Residual - A 3D game interpreter
*
* Residual is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the AUTHORS
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*/
#ifndef COMMON_FUNC_H
#define COMMON_FUNC_H
#include "common/sys.h"
namespace Common {
/**
* Generic unary function.
*/
template<class Arg, class Result>
struct UnaryFunction {
typedef Arg ArgumenType;
typedef Result ResultType;
};
/**
* Generic binary function.
*/
template<class Arg1, class Arg2, class Result>
struct BinaryFunction {
typedef Arg1 FirstArgumentType;
typedef Arg2 SecondArgumentType;
typedef Result ResultType;
};
/**
* Predicate to check for equallity of two data elements.
*/
template<class T>
struct EqualTo : public BinaryFunction<T, T, bool> {
bool operator()(const T &x, const T &y) const { return x == y; }
};
/**
* Predicate to check for x being less than y.
*/
template<class T>
struct Less : public BinaryFunction<T, T, bool> {
bool operator()(const T &x, const T &y) const { return x < y; }
};
/**
* Predicate to check for x being greater than y.
*/
template<class T>
struct Greater : public BinaryFunction<T, T, bool> {
bool operator()(const T &x, const T &y) const { return x > y; }
};
template<class Op>
class Binder1st : public UnaryFunction<typename Op::SecondArgumentType, typename Op::ResultType> {
private:
Op _op;
typename Op::FirstArgumentType _arg1;
public:
Binder1st(const Op &op, typename Op::FirstArgumentType arg1) : _op(op), _arg1(arg1) {}
typename Op::ResultType operator()(typename Op::SecondArgumentType v) const {
return _op(_arg1, v);
}
};
/**
* Transforms a binary function object into an unary function object.
* To achieve that the first parameter is bound to the passed value t.
*/
template<class Op>
inline Binder1st<Op> bind1st(const Op &op, typename Op::FirstArgumentType t) {
return Binder1st<Op>(op, t);
}
template<class Op>
class Binder2nd : public UnaryFunction<typename Op::FirstArgumentType, typename Op::ResultType> {
private:
Op _op;
typename Op::SecondArgumentType _arg2;
public:
Binder2nd(const Op &op, typename Op::SecondArgumentType arg2) : _op(op), _arg2(arg2) {}
typename Op::ResultType operator()(typename Op::FirstArgumentType v) const {
return _op(v, _arg2);
}
};
/**
* Transforms a binary function object into an unary function object.
* To achieve that the first parameter is bound to the passed value t.
*/
template<class Op>
inline Binder2nd<Op> bind2nd(const Op &op, typename Op::SecondArgumentType t) {
return Binder2nd<Op>(op, t);
}
template<class Arg, class Result>
class PointerToUnaryFunc : public UnaryFunction<Arg, Result> {
private:
Result (*_func)(Arg);
public:
typedef Result (*FuncType)(Arg);
PointerToUnaryFunc(const FuncType &func) : _func(func) {}
Result operator()(Arg v) const {
return _func(v);
}
};
template<class Arg1, class Arg2, class Result>
class PointerToBinaryFunc : public BinaryFunction<Arg1, Arg2, Result> {
private:
Result (*_func)(Arg1, Arg2);
public:
typedef Result (*FuncType)(Arg1, Arg2);
PointerToBinaryFunc(const FuncType &func) : _func(func) {}
Result operator()(Arg1 v1, Arg2 v2) const {
return _func(v1, v2);
}
};
/**
* Creates an unary function object from a function pointer.
*/
template<class Arg, class Result>
inline PointerToUnaryFunc<Arg, Result> ptr_fun(Result (*func)(Arg)) {
return PointerToUnaryFunc<Arg, Result>(func);
}
/**
* Creates an binary function object from a function pointer.
*/
template<class Arg1, class Arg2, class Result>
inline PointerToBinaryFunc<Arg1, Arg2, Result> ptr_fun(Result (*func)(Arg1, Arg2)) {
return PointerToBinaryFunc<Arg1, Arg2, Result>(func);
}
template<class Result, class T>
class MemFunc0 : public UnaryFunction<T *, Result> {
private:
Result (T::*_func)();
public:
typedef Result (T::*FuncType)();
MemFunc0(const FuncType &func) : _func(func) {}
Result operator()(T *v) const {
return (v->*_func)();
}
};
template<class Result, class T>
class ConstMemFunc0 : public UnaryFunction<T *, Result> {
private:
Result (T::*_func)() const;
public:
typedef Result (T::*FuncType)() const;
ConstMemFunc0(const FuncType &func) : _func(func) {}
Result operator()(const T *v) const {
return (v->*_func)();
}
};
template<class Result, class Arg, class T>
class MemFunc1 : public BinaryFunction<T *, Arg, Result> {
private:
Result (T::*_func)(Arg);
public:
typedef Result (T::*FuncType)(Arg);
MemFunc1(const FuncType &func) : _func(func) {}
Result operator()(T *v1, Arg v2) const {
return (v1->*_func)(v2);
}
};
template<class Result, class Arg, class T>
class ConstMemFunc1 : public BinaryFunction<T *, Arg, Result> {
private:
Result (T::*_func)(Arg) const;
public:
typedef Result (T::*FuncType)(Arg) const;
ConstMemFunc1(const FuncType &func) : _func(func) {}
Result operator()(const T *v1, Arg v2) const {
return (v1->*_func)(v2);
}
};
/**
* Creates a unary function object from a class member function pointer.
* The parameter passed to the function object is the 'this' pointer to
* be used for the function call.
*/
template<class Result, class T>
inline MemFunc0<Result, T> mem_fun(Result (T::*f)()) {
return MemFunc0<Result, T>(f);
}
/**
* Creates a unary function object from a class member function pointer.
* The parameter passed to the function object is the 'this' pointer to
* be used for the function call.
*/
template<class Result, class T>
inline ConstMemFunc0<Result, T> mem_fun(Result (T::*f)() const) {
return ConstMemFunc0<Result, T>(f);
}
/**
* Creates a binary function object from a class member function pointer.
* The first parameter passed to the function object is the 'this' pointer to
* be used for the function call.
* The second one is the parameter passed to the member function.
*/
template<class Result, class Arg, class T>
inline MemFunc1<Result, Arg, T> mem_fun(Result (T::*f)(Arg)) {
return MemFunc1<Result, Arg, T>(f);
}
/**
* Creates a binary function object from a class member function pointer.
* The first parameter passed to the function object is the 'this' pointer to
* be used for the function call.
* The second one is the parameter passed to the member function.
*/
template<class Result, class Arg, class T>
inline ConstMemFunc1<Result, Arg, T> mem_fun(Result (T::*f)(Arg) const) {
return ConstMemFunc1<Result, Arg, T>(f);
}
template<class Result, class T>
class MemFuncRef0 : public UnaryFunction<T &, Result> {
private:
Result (T::*_func)();
public:
typedef Result (T::*FuncType)();
MemFuncRef0(const FuncType &func) : _func(func) {}
Result operator()(T &v) const {
return (v.*_func)();
}
};
template<class Result, class T>
class ConstMemFuncRef0 : public UnaryFunction<T &, Result> {
private:
Result (T::*_func)() const;
public:
typedef Result (T::*FuncType)() const;
ConstMemFuncRef0(const FuncType &func) : _func(func) {}
Result operator()(const T &v) const {
return (v.*_func)();
}
};
template<class Result, class Arg, class T>
class MemFuncRef1 : public BinaryFunction<T &, Arg, Result> {
private:
Result (T::*_func)(Arg);
public:
typedef Result (T::*FuncType)(Arg);
MemFuncRef1(const FuncType &func) : _func(func) {}
Result operator()(T &v1, Arg v2) const {
return (v1.*_func)(v2);
}
};
template<class Result, class Arg, class T>
class ConstMemFuncRef1 : public BinaryFunction<T &, Arg, Result> {
private:
Result (T::*_func)(Arg) const;
public:
typedef Result (T::*FuncType)(Arg) const;
ConstMemFuncRef1(const FuncType &func) : _func(func) {}
Result operator()(const T &v1, Arg v2) const {
return (v1.*_func)(v2);
}
};
/**
* Creates a unary function object from a class member function pointer.
* The parameter passed to the function object is the object instance to
* be used for the function call. Note unlike mem_fun, it takes a reference
* as parameter. Note unlike mem_fun, it takes a reference
* as parameter.
*/
template<class Result, class T>
inline MemFuncRef0<Result, T> mem_fun_ref(Result (T::*f)()) {
return MemFuncRef0<Result, T>(f);
}
/**
* Creates a unary function object from a class member function pointer.
* The parameter passed to the function object is the object instance to
* be used for the function call. Note unlike mem_fun, it takes a reference
* as parameter.
*/
template<class Result, class T>
inline ConstMemFuncRef0<Result, T> mem_fun_Ref(Result (T::*f)() const) {
return ConstMemFuncRef0<Result, T>(f);
}
/**
* Creates a binary function object from a class member function pointer.
* The first parameter passed to the function object is the object instance to
* be used for the function call. Note unlike mem_fun, it takes a reference
* as parameter.
* The second one is the parameter passed to the member function.
*/
template<class Result, class Arg, class T>
inline MemFuncRef1<Result, Arg, T> mem_fun_ref(Result (T::*f)(Arg)) {
return MemFuncRef1<Result, Arg, T>(f);
}
/**
* Creates a binary function object from a class member function pointer.
* The first parameter passed to the function object is the object instance to
* be used for the function call. Note unlike mem_fun, it takes a reference
* as parameter.
* The second one is the parameter passed to the member function.
*/
template<class Result, class Arg, class T>
inline ConstMemFuncRef1<Result, Arg, T> mem_fun_ref(Result (T::*f)(Arg) const) {
return ConstMemFuncRef1<Result, Arg, T>(f);
}
// functor code
/**
* Generic functor object for function objects without parameters.
*
* @see Functor1
*/
template<class Res>
struct Functor0 {
virtual ~Functor0() {}
virtual bool isValid() const = 0;
virtual Res operator()() const = 0;
};
/**
* Functor object for a class member function without parameter.
*
* Example creation:
*
* Foo bar;
* Functor0Mem<void, Foo> myFunctor(&bar, &Foo::myFunc);
*
* Example usage:
*
* myFunctor();
*/
template<class Res, class T>
class Functor0Mem : public Functor0<Res> {
public:
typedef Res (T::*FuncType)();
Functor0Mem(T *t, const FuncType &func) : _t(t), _func(func) {}
bool isValid() const { return _func != 0 && _t != 0; }
Res operator()() const {
return (_t->*_func)();
}
private:
mutable T *_t;
const FuncType _func;
};
/**
* Generic functor object for unary function objects.
*
* A typical usage for an unary function object is for executing opcodes
* in a script interpreter. To achieve that one can create an Common::Array
* object with 'Functor1<Arg, Res> *' as type. Now after the right engine version
* has been determined and the opcode table to use is found one could easily
* add the opcode implementations like this:
*
* Common::Array<Functor1<ScriptState, void> *> opcodeTable;
* opcodeTable[0] = new Functor1Mem<ScriptState, void, MyEngine_v1>(&myEngine, &MyEngine_v1::o1_foo);
* opcodeTable[1] = new Functor1Mem<ScriptState, void, MyEngine_v2>(&myEngine, &MyEngine_v2::o2_foo);
* // unimplemented/unused opcode
* opcodeTable[2] = 0;
* etc.
*
* This makes it easy to add member functions of different classes as
* opcode functions to the function table. Since with the generic
* Functor1<ScriptState, void> object the only requirement for an
* function to be used is 'ScriptState' as argument and 'void' as return
* value.
*
* Now for calling the opcodes one has simple to do:
* if (opcodeTable[opcodeNum] && opcodeTable[opcodeNum]->isValid())
* (*opcodeTable[opcodeNum])(scriptState);
* else
* warning("Unimplemented opcode %d", opcodeNum);
*
* If you want to see an real world example check the kyra engine.
* Files: engines/kyra/script.cpp and .h and engines/kyra/script_*.cpp
* are interesting for that matter.
*/
template<class Arg, class Res>
struct Functor1 : public Common::UnaryFunction<Arg, Res> {
virtual ~Functor1() {}
virtual bool isValid() const = 0;
virtual Res operator()(Arg) const = 0;
};
/**
* Functor object for an unary class member function.
* Usage is like with Functor0Mem. The resulting functor object
* will take one parameter though.
*
* @see Functor0Mem
*/
template<class Arg, class Res, class T>
class Functor1Mem : public Functor1<Arg, Res> {
public:
typedef Res (T::*FuncType)(Arg);
Functor1Mem(T *t, const FuncType &func) : _t(t), _func(func) {}
bool isValid() const { return _func != 0 && _t != 0; }
Res operator()(Arg v1) const {
return (_t->*_func)(v1);
}
private:
mutable T *_t;
const FuncType _func;
};
/**
* Generic functor object for binary function objects.
*
* @see Functor1
*/
template<class Arg1, class Arg2, class Res>
struct Functor2 : public Common::BinaryFunction<Arg1, Arg2, Res> {
virtual ~Functor2() {}
virtual bool isValid() const = 0;
virtual Res operator()(Arg1, Arg2) const = 0;
};
/**
* Functor object for a binary function.
*
* @see Functor2Mem
*/
template<class Arg1, class Arg2, class Res>
class Functor2Fun : public Functor2<Arg1, Arg2, Res> {
public:
typedef Res (*FuncType)(Arg1, Arg2);
Functor2Fun(const FuncType func) : _func(func) {}
bool isValid() const { return _func != 0; }
Res operator()(Arg1 v1, Arg2 v2) const {
return (*_func)(v1, v2);
}
private:
const FuncType _func;
};
/**
* Functor object for a binary class member function.
* Usage is like with Functor0Mem. The resulting functor object
* will take two parameter though.
*
* @see Functor0Mem
*/
template<class Arg1, class Arg2, class Res, class T>
class Functor2Mem : public Functor2<Arg1, Arg2, Res> {
public:
typedef Res (T::*FuncType)(Arg1, Arg2);
Functor2Mem(T *t, const FuncType &func) : _t(t), _func(func) {}
bool isValid() const { return _func != 0 && _t != 0; }
Res operator()(Arg1 v1, Arg2 v2) const {
return (_t->*_func)(v1, v2);
}
private:
mutable T *_t;
const FuncType _func;
};
/**
* Base template for hash functor objects, used by HashMap.
* This needs to be specialized for every type that you need to hash.
*/
template<typename T> struct Hash;
#define GENERATE_TRIVIAL_HASH_FUNCTOR(T) \
template<> struct Hash<T> : public UnaryFunction<T, uint> { \
uint operator()(T val) const { return (uint)val; } \
}
GENERATE_TRIVIAL_HASH_FUNCTOR(bool);
GENERATE_TRIVIAL_HASH_FUNCTOR(char);
GENERATE_TRIVIAL_HASH_FUNCTOR(signed char);
GENERATE_TRIVIAL_HASH_FUNCTOR(unsigned char);
GENERATE_TRIVIAL_HASH_FUNCTOR(short);
GENERATE_TRIVIAL_HASH_FUNCTOR(int);
GENERATE_TRIVIAL_HASH_FUNCTOR(long);
GENERATE_TRIVIAL_HASH_FUNCTOR(unsigned short);
GENERATE_TRIVIAL_HASH_FUNCTOR(unsigned int);
GENERATE_TRIVIAL_HASH_FUNCTOR(unsigned long);
#undef GENERATE_TRIVIAL_HASH_FUNCTOR
} // End of namespace Common
#endif