scummvm/audio/mixer.cpp
Vladimir Serbinenko 27532df2c7 AUDIO: Use DisposablePtr-move constructor for looping in mixer
It's much cleaner than disowning the pointer from DisposablePtr
2022-11-28 18:41:30 +01:00

663 lines
16 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "gui/EventRecorder.h"
#include "common/util.h"
#include "common/textconsole.h"
#include "audio/mixer_intern.h"
#include "audio/rate.h"
#include "audio/audiostream.h"
#include "audio/timestamp.h"
namespace Audio {
#pragma mark -
#pragma mark --- Channel classes ---
#pragma mark -
/**
* Channel used by the default Mixer implementation.
*/
class Channel {
public:
Channel(Mixer *mixer, Mixer::SoundType type, AudioStream *stream, DisposeAfterUse::Flag autofreeStream, bool reverseStereo, int id, bool permanent);
~Channel();
/**
* Mixes the channel's samples into the given buffer.
*
* @param data buffer where to mix the data
* @param len number of sample *pairs*. So a value of
* 10 means that the buffer contains twice 10 sample, each
* 16 bits, for a total of 40 bytes.
* @return number of sample pairs processed (which can still be silence!)
*/
int mix(int16 *data, uint len);
/**
* Queries whether the channel is still playing or not.
*/
bool isFinished() const { return _stream->endOfStream(); }
/**
* Queries whether the channel is a permanent channel.
* A permanent channel is not affected by a Mixer::stopAll
* call.
*/
bool isPermanent() const { return _permanent; }
/**
* Returns the id of the channel.
*/
int getId() const { return _id; }
/**
* Pauses or unpaused the channel in a recursive fashion.
*
* @param paused true, when the channel should be paused.
* false when it should be unpaused.
*/
void pause(bool paused);
/**
* Queries whether the channel is currently paused.
*/
bool isPaused() const { return (_pauseLevel != 0); }
/**
* Sets the channel's own volume.
*
* @param volume new volume
*/
void setVolume(const byte volume);
/**
* Gets the channel's own volume.
*
* @return volume
*/
byte getVolume();
/**
* Sets the channel's balance setting.
*
* @param balance new balance
*/
void setBalance(const int8 balance);
/**
* Gets the channel's balance setting.
*
* @return balance
*/
int8 getBalance();
/**
* Notifies the channel that the global sound type
* volume settings changed.
*/
void notifyGlobalVolChange() { updateChannelVolumes(); }
/**
* Queries how long the channel has been playing.
*/
Timestamp getElapsedTime();
/**
* Replaces the channel's stream with a version that loops indefinitely.
*/
void loop();
/**
* Queries the channel's sound type.
*/
Mixer::SoundType getType() const { return _type; }
/**
* Sets the channel's sound handle.
*
* @param handle new handle
*/
void setHandle(const SoundHandle handle) { _handle = handle; }
/**
* Queries the channel's sound handle.
*/
SoundHandle getHandle() const { return _handle; }
private:
const Mixer::SoundType _type;
SoundHandle _handle;
bool _permanent;
int _pauseLevel;
int _id;
byte _volume;
int8 _balance;
void updateChannelVolumes();
st_volume_t _volL, _volR;
Mixer *_mixer;
uint32 _samplesConsumed;
uint32 _samplesDecoded;
uint32 _mixerTimeStamp;
uint32 _pauseStartTime;
uint32 _pauseTime;
RateConverter *_converter;
Common::DisposablePtr<AudioStream> _stream;
};
#pragma mark -
#pragma mark --- Mixer ---
#pragma mark -
MixerImpl::MixerImpl(uint sampleRate, bool stereo, uint outBufSize)
: _mutex(), _sampleRate(sampleRate), _stereo(stereo), _outBufSize(outBufSize), _mixerReady(false), _handleSeed(0), _soundTypeSettings() {
assert(sampleRate > 0);
for (int i = 0; i != NUM_CHANNELS; i++)
_channels[i] = nullptr;
}
MixerImpl::~MixerImpl() {
for (int i = 0; i != NUM_CHANNELS; i++)
delete _channels[i];
}
void MixerImpl::setReady(bool ready) {
Common::StackLock lock(_mutex);
_mixerReady = ready;
}
uint MixerImpl::getOutputRate() const {
return _sampleRate;
}
bool MixerImpl::getOutputStereo() const {
return _stereo;
}
uint MixerImpl::getOutputBufSize() const {
return _outBufSize;
}
void MixerImpl::insertChannel(SoundHandle *handle, Channel *chan) {
int index = -1;
for (int i = 0; i != NUM_CHANNELS; i++) {
if (_channels[i] == nullptr) {
index = i;
break;
}
}
if (index == -1) {
warning("MixerImpl::out of mixer slots");
delete chan;
return;
}
_channels[index] = chan;
SoundHandle chanHandle;
chanHandle._val = index + (_handleSeed * NUM_CHANNELS);
chan->setHandle(chanHandle);
_handleSeed++;
if (handle)
*handle = chanHandle;
}
void MixerImpl::playStream(
SoundType type,
SoundHandle *handle,
AudioStream *stream,
int id, byte volume, int8 balance,
DisposeAfterUse::Flag autofreeStream,
bool permanent,
bool reverseStereo) {
Common::StackLock lock(_mutex);
if (stream == nullptr) {
warning("stream is 0");
return;
}
assert(_mixerReady);
// Prevent duplicate sounds
if (id != -1) {
for (int i = 0; i != NUM_CHANNELS; i++)
if (_channels[i] != nullptr && _channels[i]->getId() == id) {
// Delete the stream if were asked to auto-dispose it.
// Note: This could cause trouble if the client code does not
// yet expect the stream to be gone. The primary example to
// keep in mind here is QueuingAudioStream.
// Thus, as a quick rule of thumb, you should never, ever,
// try to play QueuingAudioStreams with a sound id.
if (autofreeStream == DisposeAfterUse::YES)
delete stream;
return;
}
}
#ifdef AUDIO_REVERSE_STEREO
reverseStereo = !reverseStereo;
#endif
// Create the channel
Channel *chan = new Channel(this, type, stream, autofreeStream, reverseStereo, id, permanent);
chan->setVolume(volume);
chan->setBalance(balance);
insertChannel(handle, chan);
}
int MixerImpl::mixCallback(byte *samples, uint len) {
assert(samples);
Common::StackLock lock(_mutex);
int16 *buf = (int16 *)samples;
// Since the mixer callback has been called, the mixer must be ready...
_mixerReady = true;
// zero the buf
memset(buf, 0, len);
// we store 16-bit samples
if (_stereo) {
assert(len % 4 == 0);
len >>= 2;
} else {
assert(len % 2 == 0);
len >>= 1;
}
// mix all channels
int res = 0, tmp;
for (int i = 0; i != NUM_CHANNELS; i++)
if (_channels[i]) {
if (_channels[i]->isFinished()) {
delete _channels[i];
_channels[i] = nullptr;
} else if (!_channels[i]->isPaused()) {
tmp = _channels[i]->mix(buf, len);
if (tmp > res)
res = tmp;
}
}
return res;
}
void MixerImpl::stopAll() {
Common::StackLock lock(_mutex);
for (int i = 0; i != NUM_CHANNELS; i++) {
if (_channels[i] != nullptr && !_channels[i]->isPermanent()) {
delete _channels[i];
_channels[i] = nullptr;
}
}
}
void MixerImpl::stopID(int id) {
Common::StackLock lock(_mutex);
for (int i = 0; i != NUM_CHANNELS; i++) {
if (_channels[i] != nullptr && _channels[i]->getId() == id) {
delete _channels[i];
_channels[i] = nullptr;
}
}
}
void MixerImpl::stopHandle(SoundHandle handle) {
Common::StackLock lock(_mutex);
// Simply ignore stop requests for handles of sounds that already terminated
const int index = handle._val % NUM_CHANNELS;
if (!_channels[index] || _channels[index]->getHandle()._val != handle._val)
return;
delete _channels[index];
_channels[index] = nullptr;
}
void MixerImpl::muteSoundType(SoundType type, bool mute) {
assert(0 <= (int)type && (int)type < ARRAYSIZE(_soundTypeSettings));
_soundTypeSettings[type].mute = mute;
for (int i = 0; i != NUM_CHANNELS; ++i) {
if (_channels[i] && _channels[i]->getType() == type)
_channels[i]->notifyGlobalVolChange();
}
}
bool MixerImpl::isSoundTypeMuted(SoundType type) const {
assert(0 <= (int)type && (int)type < ARRAYSIZE(_soundTypeSettings));
return _soundTypeSettings[type].mute;
}
void MixerImpl::setChannelVolume(SoundHandle handle, byte volume) {
Common::StackLock lock(_mutex);
const int index = handle._val % NUM_CHANNELS;
if (!_channels[index] || _channels[index]->getHandle()._val != handle._val)
return;
_channels[index]->setVolume(volume);
}
byte MixerImpl::getChannelVolume(SoundHandle handle) {
const int index = handle._val % NUM_CHANNELS;
if (!_channels[index] || _channels[index]->getHandle()._val != handle._val)
return 0;
return _channels[index]->getVolume();
}
void MixerImpl::setChannelBalance(SoundHandle handle, int8 balance) {
Common::StackLock lock(_mutex);
const int index = handle._val % NUM_CHANNELS;
if (!_channels[index] || _channels[index]->getHandle()._val != handle._val)
return;
_channels[index]->setBalance(balance);
}
int8 MixerImpl::getChannelBalance(SoundHandle handle) {
const int index = handle._val % NUM_CHANNELS;
if (!_channels[index] || _channels[index]->getHandle()._val != handle._val)
return 0;
return _channels[index]->getBalance();
}
uint32 MixerImpl::getSoundElapsedTime(SoundHandle handle) {
return getElapsedTime(handle).msecs();
}
Timestamp MixerImpl::getElapsedTime(SoundHandle handle) {
Common::StackLock lock(_mutex);
const int index = handle._val % NUM_CHANNELS;
if (!_channels[index] || _channels[index]->getHandle()._val != handle._val)
return Timestamp(0, _sampleRate);
return _channels[index]->getElapsedTime();
}
void MixerImpl::loopChannel(SoundHandle handle) {
Common::StackLock lock(_mutex);
const int index = handle._val % NUM_CHANNELS;
if (!_channels[index] || _channels[index]->getHandle()._val != handle._val)
return;
_channels[index]->loop();
}
void MixerImpl::pauseAll(bool paused) {
Common::StackLock lock(_mutex);
for (int i = 0; i != NUM_CHANNELS; i++) {
if (_channels[i] != nullptr) {
_channels[i]->pause(paused);
}
}
}
void MixerImpl::pauseID(int id, bool paused) {
Common::StackLock lock(_mutex);
for (int i = 0; i != NUM_CHANNELS; i++) {
if (_channels[i] != nullptr && _channels[i]->getId() == id) {
_channels[i]->pause(paused);
return;
}
}
}
void MixerImpl::pauseHandle(SoundHandle handle, bool paused) {
Common::StackLock lock(_mutex);
// Simply ignore (un)pause requests for sounds that already terminated
const int index = handle._val % NUM_CHANNELS;
if (!_channels[index] || _channels[index]->getHandle()._val != handle._val)
return;
_channels[index]->pause(paused);
}
bool MixerImpl::isSoundIDActive(int id) {
Common::StackLock lock(_mutex);
#ifdef ENABLE_EVENTRECORDER
g_eventRec.updateSubsystems();
#endif
for (int i = 0; i != NUM_CHANNELS; i++)
if (_channels[i] && _channels[i]->getId() == id)
return true;
return false;
}
int MixerImpl::getSoundID(SoundHandle handle) {
Common::StackLock lock(_mutex);
const int index = handle._val % NUM_CHANNELS;
if (_channels[index] && _channels[index]->getHandle()._val == handle._val)
return _channels[index]->getId();
return 0;
}
bool MixerImpl::isSoundHandleActive(SoundHandle handle) {
Common::StackLock lock(_mutex);
#ifdef ENABLE_EVENTRECORDER
g_eventRec.updateSubsystems();
#endif
const int index = handle._val % NUM_CHANNELS;
return _channels[index] && _channels[index]->getHandle()._val == handle._val;
}
bool MixerImpl::hasActiveChannelOfType(SoundType type) {
Common::StackLock lock(_mutex);
for (int i = 0; i != NUM_CHANNELS; i++)
if (_channels[i] && _channels[i]->getType() == type)
return true;
return false;
}
void MixerImpl::setVolumeForSoundType(SoundType type, int volume) {
assert(0 <= (int)type && (int)type < ARRAYSIZE(_soundTypeSettings));
// Check range
volume = CLIP<int>(volume, 0, kMaxMixerVolume);
// TODO: Maybe we should do logarithmic (not linear) volume
// scaling? See also Player_V2::setMasterVolume
Common::StackLock lock(_mutex);
_soundTypeSettings[type].volume = volume;
for (int i = 0; i != NUM_CHANNELS; ++i) {
if (_channels[i] && _channels[i]->getType() == type)
_channels[i]->notifyGlobalVolChange();
}
}
int MixerImpl::getVolumeForSoundType(SoundType type) const {
assert(0 <= (int)type && (int)type < ARRAYSIZE(_soundTypeSettings));
return _soundTypeSettings[type].volume;
}
#pragma mark -
#pragma mark --- Channel implementations ---
#pragma mark -
Channel::Channel(Mixer *mixer, Mixer::SoundType type, AudioStream *stream,
DisposeAfterUse::Flag autofreeStream, bool reverseStereo, int id, bool permanent)
: _type(type), _mixer(mixer), _id(id), _permanent(permanent), _volume(Mixer::kMaxChannelVolume),
_balance(0), _pauseLevel(0), _samplesConsumed(0), _samplesDecoded(0), _mixerTimeStamp(0),
_pauseStartTime(0), _pauseTime(0), _converter(nullptr), _volL(0), _volR(0),
_stream(stream, autofreeStream) {
assert(mixer);
assert(stream);
// Get a rate converter instance
_converter = makeRateConverter(_stream->getRate(), mixer->getOutputRate(), _stream->isStereo(), mixer->getOutputStereo(), reverseStereo);
}
Channel::~Channel() {
delete _converter;
}
void Channel::setVolume(const byte volume) {
_volume = volume;
updateChannelVolumes();
}
byte Channel::getVolume() {
return _volume;
}
void Channel::setBalance(const int8 balance) {
_balance = balance;
updateChannelVolumes();
}
int8 Channel::getBalance() {
return _balance;
}
void Channel::updateChannelVolumes() {
// From the channel balance/volume and the global volume, we compute
// the effective volume for the left and right channel. Note the
// slightly odd divisor: the 255 reflects the fact that the maximal
// value for _volume is 255, while the 127 is there because the
// balance value ranges from -127 to 127. The mixer (music/sound)
// volume is in the range 0 - kMaxMixerVolume.
// Hence, the vol_l/vol_r values will be in that range, too
if (!_mixer->isSoundTypeMuted(_type)) {
int vol = _mixer->getVolumeForSoundType(_type) * _volume;
if (_balance == 0) {
_volL = vol / Mixer::kMaxChannelVolume;
_volR = vol / Mixer::kMaxChannelVolume;
} else if (_balance < 0) {
_volL = vol / Mixer::kMaxChannelVolume;
_volR = ((127 + _balance) * vol) / (Mixer::kMaxChannelVolume * 127);
} else {
_volL = ((127 - _balance) * vol) / (Mixer::kMaxChannelVolume * 127);
_volR = vol / Mixer::kMaxChannelVolume;
}
} else {
_volL = _volR = 0;
}
}
void Channel::pause(bool paused) {
//assert((paused && _pauseLevel >= 0) || (!paused && _pauseLevel));
if (paused) {
_pauseLevel++;
if (_pauseLevel == 1)
_pauseStartTime = g_system->getMillis(true);
} else if (_pauseLevel > 0) {
_pauseLevel--;
if (!_pauseLevel) {
_pauseTime = (g_system->getMillis(true) - _pauseStartTime);
_pauseStartTime = 0;
}
}
}
Timestamp Channel::getElapsedTime() {
const uint32 rate = _mixer->getOutputRate();
uint32 delta = 0;
Audio::Timestamp ts(0, rate);
if (_mixerTimeStamp == 0)
return ts;
if (isPaused())
delta = _pauseStartTime - _mixerTimeStamp;
else
delta = g_system->getMillis(true) - _mixerTimeStamp - _pauseTime;
// Convert the number of samples into a time duration.
ts = ts.addFrames(_samplesConsumed);
ts = ts.addMsecs(delta);
// In theory it would seem like a good idea to limit the approximation
// so that it never exceeds the theoretical upper bound set by
// _samplesDecoded. Meanwhile, back in the real world, doing so makes
// the Broken Sword cutscenes noticeably jerkier. I guess the mixer
// isn't invoked at the regular intervals that I first imagined.
return ts;
}
void Channel::loop() {
assert(_stream);
if (_stream.isDynamicallyCastable<RewindableAudioStream>()) {
Audio::LoopingAudioStream *loopingStream = new Audio::LoopingAudioStream(Common::move(_stream.moveAndDynamicCast<RewindableAudioStream>()), 0, false);
_stream.reset(loopingStream, DisposeAfterUse::YES);
}
}
int Channel::mix(int16 *data, uint len) {
assert(_stream);
int res = 0;
if (_stream->endOfData()) {
// TODO: call drain method
} else {
assert(_converter);
_samplesConsumed = _samplesDecoded;
_mixerTimeStamp = g_system->getMillis(true);
_pauseTime = 0;
res = _converter->flow(*_stream, data, len, _volL, _volR);
_samplesDecoded += res;
}
return res;
}
} // End of namespace Audio