scummvm/engines/parallaction/walk.cpp

636 lines
16 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "parallaction/parallaction.h"
namespace Parallaction {
#define IS_PATH_CLEAR(x,y) _vm->_pathBuffer->getValue((x), (y))
inline byte PathBuffer::getValue(uint16 x, uint16 y) {
byte m = data[(x >> 3) + y * internalWidth];
uint bit = 0;
switch (_vm->getGameType()) {
case GType_Nippon:
bit = (_vm->getPlatform() == Common::kPlatformPC) ? (x & 7) : (7 - (x & 7));
break;
case GType_BRA:
// Amiga and PC versions pack the path bits the same way in BRA
bit = 7 - (x & 7);
break;
default:
error("path mask not yet implemented for this game type");
}
return ((1 << bit) & m) >> bit;
}
// adjusts position towards nearest walkable point
//
void PathBuilder_NS::correctPathPoint(Common::Point &to) {
if (IS_PATH_CLEAR(to.x, to.y)) return;
int16 right = to.x;
int16 left = to.x;
do {
right++;
} while (!IS_PATH_CLEAR(right, to.y) && (right < _vm->_pathBuffer->w));
do {
left--;
} while (!IS_PATH_CLEAR(left, to.y) && (left > 0));
right = (right == _vm->_pathBuffer->w) ? 1000 : right - to.x;
left = (left == 0) ? 1000 : to.x - left;
int16 top = to.y;
int16 bottom = to.y;
do {
top--;
} while (!IS_PATH_CLEAR(to.x, top) && (top > 0));
do {
bottom++;
} while (!IS_PATH_CLEAR(to.x, bottom) && (bottom < _vm->_pathBuffer->h));
top = (top == 0) ? 1000 : to.y - top;
bottom = (bottom == _vm->_pathBuffer->h) ? 1000 : bottom - to.y;
int16 closeX = (right >= left) ? left : right;
int16 closeY = (top >= bottom) ? bottom : top;
int16 close = (closeX >= closeY) ? closeY : closeX;
if (close == right) {
to.x += right;
} else
if (close == left) {
to.x -= left;
} else
if (close == top) {
to.y -= top;
} else
if (close == bottom) {
to.y += bottom;
}
return;
}
uint32 PathBuilder_NS::buildSubPath(const Common::Point& pos, const Common::Point& stop) {
uint32 v28 = 0;
uint32 v2C = 0;
uint32 v34 = pos.sqrDist(stop); // square distance from current position and target
uint32 v30 = v34;
_subPath.clear();
Common::Point v20(pos);
while (true) {
PointList::iterator nearest = _vm->_location._walkPoints.end();
PointList::iterator locNode = _vm->_location._walkPoints.begin();
// scans location path nodes searching for the nearest Node
// which can't be farther than the target position
// otherwise no _closest_node is selected
while (locNode != _vm->_location._walkPoints.end()) {
Common::Point v8 = *locNode;
v2C = v8.sqrDist(stop);
v28 = v8.sqrDist(v20);
if (v2C < v34 && v28 < v30) {
v30 = v28;
nearest = locNode;
}
locNode++;
}
if (nearest == _vm->_location._walkPoints.end()) break;
v20 = *nearest;
v34 = v30 = v20.sqrDist(stop);
_subPath.push_back(*nearest);
}
return v34;
}
//
// x, y: mouse click (foot) coordinates
//
void PathBuilder_NS::buildPath(uint16 x, uint16 y) {
debugC(1, kDebugWalk, "PathBuilder::buildPath to (%i, %i)", x, y);
_ch->_walkPath.clear();
Common::Point to(x, y);
correctPathPoint(to);
debugC(1, kDebugWalk, "found closest path point at (%i, %i)", to.x, to.y);
Common::Point v48(to);
Common::Point v44(to);
uint16 v38 = walkFunc1(to, v44);
if (v38 == 1) {
// destination directly reachable
debugC(1, kDebugWalk, "direct move to (%i, %i)", to.x, to.y);
_ch->_walkPath.push_back(v48);
return;
}
// path is obstructed: look for alternative
_ch->_walkPath.push_back(v48);
Common::Point pos;
_ch->getFoot(pos);
uint32 v34 = buildSubPath(pos, v48);
if (v38 != 0 && v34 > v38) {
// no alternative path (gap?)
_ch->_walkPath.clear();
_ch->_walkPath.push_back(v44);
return;
}
_ch->_walkPath.insert(_ch->_walkPath.begin(), _subPath.begin(), _subPath.end());
buildSubPath(pos, *_ch->_walkPath.begin());
_ch->_walkPath.insert(_ch->_walkPath.begin(), _subPath.begin(), _subPath.end());
return;
}
//
// x,y : top left coordinates
//
// 0 : Point not reachable
// 1 : Point reachable in a straight line
// other values: square distance to target (point not reachable in a straight line)
//
uint16 PathBuilder_NS::walkFunc1(const Common::Point &to, Common::Point& node) {
Common::Point arg(to);
Common::Point v4;
Common::Point foot;
_ch->getFoot(foot);
Common::Point v8(foot);
while (foot != arg) {
if (foot.x < to.x && IS_PATH_CLEAR(foot.x + 1, foot.y)) foot.x++;
if (foot.x > to.x && IS_PATH_CLEAR(foot.x - 1, foot.y)) foot.x--;
if (foot.y < to.y && IS_PATH_CLEAR(foot.x, foot.y + 1)) foot.y++;
if (foot.y > to.y && IS_PATH_CLEAR(foot.x, foot.y - 1)) foot.y--;
if (foot == v8 && foot != arg) {
// foot couldn't move and still away from target
v4 = foot;
while (foot != arg) {
if (foot.x < to.x && !IS_PATH_CLEAR(foot.x + 1, foot.y)) foot.x++;
if (foot.x > to.x && !IS_PATH_CLEAR(foot.x - 1, foot.y)) foot.x--;
if (foot.y < to.y && !IS_PATH_CLEAR(foot.x, foot.y + 1)) foot.y++;
if (foot.y > to.y && !IS_PATH_CLEAR(foot.x, foot.y - 1)) foot.y--;
if (foot == v8 && foot != arg)
return 0;
v8 = foot;
}
node = v4;
return v4.sqrDist(to);
}
v8 = foot;
}
// there exists an unobstructed path
return 1;
}
void PathWalker_NS::clipMove(Common::Point& pos, const Common::Point& to) {
if ((pos.x < to.x) && (pos.x < _vm->_pathBuffer->w) && IS_PATH_CLEAR(pos.x + 2, pos.y)) {
pos.x = (pos.x + 2 < to.x) ? pos.x + 2 : to.x;
}
if ((pos.x > to.x) && (pos.x > 0) && IS_PATH_CLEAR(pos.x - 2, pos.y)) {
pos.x = (pos.x - 2 > to.x) ? pos.x - 2 : to.x;
}
if ((pos.y < to.y) && (pos.y < _vm->_pathBuffer->h) && IS_PATH_CLEAR(pos.x, pos.y + 2)) {
pos.y = (pos.y + 2 <= to.y) ? pos.y + 2 : to.y;
}
if ((pos.y > to.y) && (pos.y > 0) && IS_PATH_CLEAR(pos.x, pos.y - 2)) {
pos.y = (pos.y - 2 >= to.y) ? pos.y - 2 : to.y;
}
return;
}
void PathWalker_NS::checkDoor(const Common::Point &foot) {
ZonePtr z = _vm->hitZone(kZoneDoor, foot.x, foot.y);
if (z) {
if ((z->_flags & kFlagsClosed) == 0) {
_vm->_location._startPosition = z->u.door->_startPos;
_vm->_location._startFrame = z->u.door->_startFrame;
_vm->scheduleLocationSwitch(z->u.door->_location);
_vm->_zoneTrap = nullZonePtr;
} else {
_vm->_cmdExec->run(z->_commands, z);
}
}
z = _vm->hitZone(kZoneTrap, foot.x, foot.y);
if (z) {
_vm->setLocationFlags(kFlagsEnter);
_vm->_cmdExec->run(z->_commands, z);
_vm->clearLocationFlags(kFlagsEnter);
_vm->_zoneTrap = z;
} else
if (_vm->_zoneTrap) {
_vm->setLocationFlags(kFlagsExit);
_vm->_cmdExec->run(_vm->_zoneTrap->_commands, _vm->_zoneTrap);
_vm->clearLocationFlags(kFlagsExit);
_vm->_zoneTrap = nullZonePtr;
}
}
void PathWalker_NS::finalizeWalk() {
_engineFlags &= ~kEngineWalking;
Common::Point foot;
_ch->getFoot(foot);
checkDoor(foot);
_ch->_walkPath.clear();
}
void PathWalker_NS::walk() {
if ((_engineFlags & kEngineWalking) == 0) {
return;
}
Common::Point curPos;
_ch->getFoot(curPos);
// update target, if previous was reached
PointList::iterator it = _ch->_walkPath.begin();
if (it != _ch->_walkPath.end()) {
if (*it == curPos) {
debugC(1, kDebugWalk, "walk reached node (%i, %i)", (*it).x, (*it).y);
it = _ch->_walkPath.erase(it);
}
}
// advance character towards the target
Common::Point targetPos;
if (it == _ch->_walkPath.end()) {
debugC(1, kDebugWalk, "walk reached last node");
finalizeWalk();
targetPos = curPos;
} else {
// targetPos is saved to help setting character direction
targetPos = *it;
Common::Point newPos(curPos);
clipMove(newPos, targetPos);
_ch->setFoot(newPos);
if (newPos == curPos) {
debugC(1, kDebugWalk, "walk was blocked by an unforeseen obstacle");
finalizeWalk();
targetPos = newPos; // when walking is interrupted, targetPos must be hacked so that a still frame can be selected
}
}
// targetPos is used to select the direction (and the walkFrame) of a character,
// since it doesn't cause the sudden changes in orientation that newPos would.
// Since newPos is 'adjusted' according to walkable areas, an imaginary line drawn
// from curPos to newPos is prone to abrutply change in direction, thus making the
// code select 'too different' frames when walking diagonally against obstacles,
// and yielding an annoying shaking effect in the character.
_ch->updateDirection(curPos, targetPos);
}
PathBuilder_NS::PathBuilder_NS(Character *ch) : PathBuilder(ch), _list(0) {
}
bool PathBuilder_BR::directPathExists(const Common::Point &from, const Common::Point &to) {
Common::Point copy(from);
Common::Point p(copy);
while (p != to) {
if (p.x < to.x && IS_PATH_CLEAR(p.x + 1, p.y)) p.x++;
if (p.x > to.x && IS_PATH_CLEAR(p.x - 1, p.y)) p.x--;
if (p.y < to.y && IS_PATH_CLEAR(p.x, p.y + 1)) p.y++;
if (p.y > to.y && IS_PATH_CLEAR(p.x, p.y - 1)) p.y--;
if (p == copy && p != to) {
return false;
}
copy = p;
}
return true;
}
void PathBuilder_BR::buildPath(uint16 x, uint16 y) {
Common::Point foot;
_ch->getFoot(foot);
debugC(1, kDebugWalk, "buildPath: from (%i, %i) to (%i, %i)", foot.x, foot.y, x, y);
_ch->_walkPath.clear();
// look for easy path first
Common::Point dest(x, y);
if (directPathExists(foot, dest)) {
_ch->_walkPath.push_back(dest);
debugC(3, kDebugWalk, "buildPath: direct path found");
return;
}
// look for short circuit cases
ZonePtr z0 = _vm->hitZone(kZonePath, x, y);
if (!z0) {
_ch->_walkPath.push_back(dest);
debugC(3, kDebugWalk, "buildPath: corner case 0");
return;
}
ZonePtr z1 = _vm->hitZone(kZonePath, foot.x, foot.y);
if (!z1 || z1 == z0) {
_ch->_walkPath.push_back(dest);
debugC(3, kDebugWalk, "buildPath: corner case 1");
return;
}
// build complex path
int id = atoi(z0->_name);
if (z1->u.path->_lists[id].empty()) {
_ch->_walkPath.clear();
debugC(3, kDebugWalk, "buildPath: no path");
return;
}
PointList::iterator b = z1->u.path->_lists[id].begin();
PointList::iterator e = z1->u.path->_lists[id].end();
for ( ; b != e; b++) {
_ch->_walkPath.push_front(*b);
}
_ch->_walkPath.push_back(dest);
debugC(3, kDebugWalk, "buildPath: complex path");
return;
}
PathBuilder_BR::PathBuilder_BR(Character *ch) : PathBuilder(ch) {
}
void PathWalker_BR::finalizeWalk() {
_engineFlags &= ~kEngineWalking;
_first = true;
_fieldC = 1;
Common::Point foot;
_ch->getFoot(foot);
ZonePtr z = _vm->hitZone(kZoneDoor, foot.x, foot.y);
if (z && ((z->_flags & kFlagsClosed) == 0)) {
_vm->_location._startPosition = z->u.door->_startPos; // foot pos
_vm->_location._startFrame = z->u.door->_startFrame;
#if 0
// TODO: implement working follower. Must find out a location in which the code is
// used and which is stable enough.
_followerFootInit.x = -1;
if (_follower && z->u.door->startPos2.x != -1) {
_followerFootInit.x = z->u.door->startPos2.x; // foot pos
_followerFootInit.y = z->u.door->startPos2.y; // foot pos
}
_followerFootInit.z = -1;
if (_follower && z->u.door->startPos2.z != -1) {
_followerFootInit.z = z->u.door->startPos2.z; // foot pos
}
#endif
_vm->scheduleLocationSwitch(z->u.door->_location);
_vm->_cmdExec->run(z->_commands, z);
}
#if 0
// TODO: Input::walkTo must be extended to support destination frame in addition to coordinates
// TODO: the frame argument must be passed to PathWalker through PathBuilder, so probably
// a merge between the two Path managers is the right solution
if (_engineFlags & FINAL_WALK_FRAME) { // this flag is set in readInput()
_engineFlags &= ~FINAL_WALK_FRAME;
_char.ani->_frame = _moveToF; // from readInput()...
} else {
_char.ani->_frame = _dirFrame; // from walk()
}
_char.setFoot(foot);
#endif
_ch->_ani->setF(_dirFrame); // temporary solution
#if 0
// TODO: support scrolling ;)
if (foot.x > _gfx->hscroll + 600) _gfx->scrollRight(78);
if (foot.x < _gfx->hscroll + 40) _gfx->scrollLeft(78);
if (foot.y > 350) _gfx->scrollDown(100);
if (foot.y < 80) _gfx->scrollUp(100);
#endif
return;
}
void PathWalker_BR::walk() {
if ((_engineFlags & kEngineWalking) == 0) {
return;
}
#if 0
// TODO: support delays in walking. This requires extending Input::walkIo().
if (ch._walkDelay > 0) {
ch._walkDelay--;
if (ch._walkDelay == 0 && _ch._ani->_scriptName) {
// stop script and reset
_ch._ani->_flags &= ~kFlagsActing;
Script *script = findScript(_ch._ani->_scriptName);
script->_nextCommand = script->firstCommand;
}
return;
}
#endif
GfxObj *obj = _ch->_ani->gfxobj;
Common::Rect rect;
obj->getRect(_ch->_ani->getF(), rect);
uint scale;
if (rect.bottom > _vm->_location._zeta0) {
scale = 100;
} else
if (rect.bottom < _vm->_location._zeta1) {
scale = _vm->_location._zeta2;
} else {
scale = _vm->_location._zeta2 + ((rect.bottom - _vm->_location._zeta1) * (100 - _vm->_location._zeta2)) / (_vm->_location._zeta0 - _vm->_location._zeta1);
}
int xStep = (scale * 16) / 100 + 1;
int yStep = (scale * 10) / 100 + 1;
debugC(9, kDebugWalk, "calculated step: (%i, %i)\n", xStep, yStep);
if (_fieldC == 0) {
_ch->_walkPath.erase(_ch->_walkPath.begin());
if (_ch->_walkPath.empty()) {
finalizeWalk();
debugC(3, kDebugWalk, "PathWalker_BR::walk, case 0\n");
return;
} else {
debugC(3, kDebugWalk, "PathWalker_BR::walk, moving to next node\n");
}
}
_ch->getFoot(_startFoot);
_fieldC = 0;
_step++;
_step %= 8;
int walkFrame = _step;
_dirFrame = 0;
Common::Point newpos(_startFoot), delta;
Common::Point p(*_ch->_walkPath.begin());
if (_startFoot.y < p.y && _startFoot.y < 400 && IS_PATH_CLEAR(_startFoot.x, yStep + _startFoot.y)) {
if (yStep + _startFoot.y <= p.y) {
_fieldC = 1;
delta.y = yStep;
newpos.y = yStep + _startFoot.y;
} else {
delta.y = p.y - _startFoot.y;
newpos.y = p.y;
}
_dirFrame = 9;
} else
if (_startFoot.y > p.y && _startFoot.y > 0 && IS_PATH_CLEAR(_startFoot.x, _startFoot.y - yStep)) {
if (_startFoot.y - yStep >= p.y) {
_fieldC = 1;
delta.y = yStep;
newpos.y = _startFoot.y - yStep;
} else {
delta.y = _startFoot.y - p.y;
newpos.y = p.y;
}
_dirFrame = 0;
}
if (_startFoot.x < p.x && _startFoot.x < 640 && IS_PATH_CLEAR(_startFoot.x + xStep, _startFoot.y)) {
if (_startFoot.x + xStep <= p.x) {
_fieldC = 1;
delta.x = xStep;
newpos.x = xStep + _startFoot.x;
} else {
delta.x = p.x - _startFoot.x;
newpos.x = p.x;
}
if (delta.y < delta.x) {
_dirFrame = 18; // right
}
} else
if (_startFoot.x > p.x && _startFoot.x > 0 && IS_PATH_CLEAR(_startFoot.x - xStep, _startFoot.y)) {
if (_startFoot.x - xStep >= p.x) {
_fieldC = 1;
delta.x = xStep;
newpos.x = _startFoot.x - xStep;
} else {
delta.x = _startFoot.x - p.x;
newpos.x = p.x;
}
if (delta.y < delta.x) {
_dirFrame = 27; // left
}
}
debugC(9, kDebugWalk, "foot (%i, %i) dest (%i, %i) deltas = %i/%i \n", _startFoot.x, _startFoot.y, p.x, p.y, delta.x, delta.y);
if (_fieldC) {
debugC(9, kDebugWalk, "PathWalker_BR::walk, foot moved from (%i, %i) to (%i, %i)\n", _startFoot.x, _startFoot.y, newpos.x, newpos.y);
_ch->_ani->setF(walkFrame + _dirFrame + 1);
_startFoot.x = newpos.x;
_startFoot.y = newpos.y;
_ch->setFoot(_startFoot);
_ch->_ani->setZ(newpos.y);
}
if (_fieldC || !_ch->_walkPath.empty()) {
// checkTrap();
debugC(3, kDebugWalk, "PathWalker_BR::walk, case 1\n");
return;
}
debugC(3, kDebugWalk, "PathWalker_BR::walk, case 2\n");
finalizeWalk();
return;
}
PathWalker_BR::PathWalker_BR(Character *ch) : PathWalker(ch), _fieldC(1), _first(true) {
}
} // namespace Parallaction