scummvm/common/ustr.cpp
Peter Kohaut 377cf606dd COMMON: Fix U32String initialization issues
Bug 1:
If the original C string contained chars > 127 they would be stored
as huge u32 numbers due to the underflow as char is signed.
It still might end-up with invalid UTF32 characters, but now the caller
can control it.

Bug 2:
The inline storage was not properly initialized when U32String was
initalized from shorter non-UTF32 strings.
2019-07-18 01:00:01 +02:00

722 lines
22 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "common/ustr.h"
#include "common/memorypool.h"
#include "common/util.h"
namespace Common {
extern MemoryPool *g_refCountPool;
static uint32 computeCapacity(uint32 len) {
// By default, for the capacity we use the next multiple of 32
return ((len + 32 - 1) & ~0x1F);
}
U32String::U32String(const value_type *str) : _size(0), _str(_storage) {
if (str == nullptr) {
_storage[0] = 0;
_size = 0;
} else {
uint32 len = 0;
const value_type *s = str;
while (*s++) {
++len;
}
initWithCStr(str, len);
}
}
U32String::U32String(const value_type *str, uint32 len) : _size(0), _str(_storage) {
initWithCStr(str, len);
}
U32String::U32String(const value_type *beginP, const value_type *endP) : _size(0), _str(_storage) {
assert(endP >= beginP);
initWithCStr(beginP, endP - beginP);
}
U32String::U32String(const U32String &str)
: _size(str._size) {
if (str.isStorageIntern()) {
// String in internal storage: just copy it
memcpy(_storage, str._storage, _builtinCapacity * sizeof(value_type));
_str = _storage;
} else {
// String in external storage: use refcount mechanism
str.incRefCount();
_extern._refCount = str._extern._refCount;
_extern._capacity = str._extern._capacity;
_str = str._str;
}
assert(_str != nullptr);
}
U32String::U32String(const char *str) : _size(0), _str(_storage) {
if (str == nullptr) {
_storage[0] = 0;
_size = 0;
} else {
initWithCStr(str, strlen(str));
}
}
U32String::U32String(const char *str, uint32 len) : _size(0), _str(_storage) {
initWithCStr(str, len);
}
U32String::U32String(const char *beginP, const char *endP) : _size(0), _str(_storage) {
assert(endP >= beginP);
initWithCStr(beginP, endP - beginP);
}
U32String::U32String(const String &str) : _size(0), _str(_storage) {
initWithCStr(str.c_str(), str.size());
}
U32String::~U32String() {
decRefCount(_extern._refCount);
}
U32String &U32String::operator=(const U32String &str) {
if (&str == this)
return *this;
if (str.isStorageIntern()) {
decRefCount(_extern._refCount);
_size = str._size;
_str = _storage;
memcpy(_str, str._str, (_size + 1) * sizeof(value_type));
} else {
str.incRefCount();
decRefCount(_extern._refCount);
_extern._refCount = str._extern._refCount;
_extern._capacity = str._extern._capacity;
_size = str._size;
_str = str._str;
}
return *this;
}
U32String &U32String::operator=(const String &str) {
initWithCStr(str.c_str(), str.size());
return *this;
}
U32String &U32String::operator=(const value_type *str) {
return U32String::operator=(U32String(str));
}
U32String &U32String::operator=(const char *str) {
initWithCStr(str, strlen(str));
return *this;
}
U32String &U32String::operator+=(const U32String &str) {
if (&str == this) {
return operator+=(U32String(str));
}
int len = str._size;
if (len > 0) {
ensureCapacity(_size + len, true);
memcpy(_str + _size, str._str, (len + 1) * sizeof(value_type));
_size += len;
}
return *this;
}
U32String &U32String::operator+=(value_type c) {
ensureCapacity(_size + 1, true);
_str[_size++] = c;
_str[_size] = 0;
return *this;
}
bool U32String::operator==(const U32String &x) const {
return equals(x);
}
bool U32String::operator==(const String &x) const {
return equals(x);
}
bool U32String::operator==(const value_type *x) const {
return equals(U32String(x));
}
bool U32String::operator==(const char *x) const {
return equals(x);
}
bool U32String::operator!=(const U32String &x) const {
return !equals(x);
}
bool U32String::operator!=(const String &x) const {
return !equals(x);
}
bool U32String::operator!=(const value_type *x) const {
return !equals(U32String(x));
}
bool U32String::operator!=(const char *x) const {
return !equals(x);
}
bool U32String::equals(const U32String &x) const {
if (this == &x || _str == x._str) {
return true;
}
if (x.size() != _size) {
return false;
}
return !memcmp(_str, x._str, _size * sizeof(value_type));
}
bool U32String::equals(const String &x) const {
if (x.size() != _size)
return false;
for (size_t idx = 0; idx < _size; ++idx)
if (_str[idx] != (value_type)x[idx])
return false;
return true;
}
bool U32String::contains(value_type x) const {
for (uint32 i = 0; i < _size; ++i) {
if (_str[i] == x) {
return true;
}
}
return false;
}
void U32String::deleteChar(uint32 p) {
assert(p < _size);
makeUnique();
while (p++ < _size)
_str[p - 1] = _str[p];
_size--;
}
void U32String::clear() {
decRefCount(_extern._refCount);
_size = 0;
_str = _storage;
_storage[0] = 0;
}
void U32String::toLowercase() {
makeUnique();
for (uint32 i = 0; i < _size; ++i) {
if (_str[i] < 128) {
_str[i] = tolower(_str[i]);
}
}
}
void U32String::toUppercase() {
makeUnique();
for (uint32 i = 0; i < _size; ++i) {
if (_str[i] < 128) {
_str[i] = toupper(_str[i]);
}
}
}
uint32 U32String::find(const U32String &str, uint32 pos) const {
if (pos >= _size) {
return npos;
}
const value_type *strP = str.c_str();
for (const_iterator cur = begin() + pos; *cur; ++cur) {
uint i = 0;
while (true) {
if (!strP[i]) {
return cur - begin();
}
if (cur[i] != strP[i]) {
break;
}
++i;
}
}
return npos;
}
void U32String::makeUnique() {
ensureCapacity(_size, true);
}
void U32String::ensureCapacity(uint32 new_size, bool keep_old) {
bool isShared;
uint32 curCapacity, newCapacity;
value_type *newStorage;
int *oldRefCount = _extern._refCount;
if (isStorageIntern()) {
isShared = false;
curCapacity = _builtinCapacity;
} else {
isShared = (oldRefCount && *oldRefCount > 1);
curCapacity = _extern._capacity;
}
// Special case: If there is enough space, and we do not share
// the storage, then there is nothing to do.
if (!isShared && new_size < curCapacity)
return;
if (isShared && new_size < _builtinCapacity) {
// We share the storage, but there is enough internal storage: Use that.
newStorage = _storage;
newCapacity = _builtinCapacity;
} else {
// We need to allocate storage on the heap!
// Compute a suitable new capacity limit
// If the current capacity is sufficient we use the same capacity
if (new_size < curCapacity)
newCapacity = curCapacity;
else
newCapacity = MAX(curCapacity * 2, computeCapacity(new_size + 1));
// Allocate new storage
newStorage = new value_type[newCapacity];
assert(newStorage);
}
// Copy old data if needed, elsewise reset the new storage.
if (keep_old) {
assert(_size < newCapacity);
memcpy(newStorage, _str, (_size + 1) * sizeof(value_type));
} else {
_size = 0;
newStorage[0] = 0;
}
// Release hold on the old storage ...
decRefCount(oldRefCount);
// ... in favor of the new storage
_str = newStorage;
if (!isStorageIntern()) {
// Set the ref count & capacity if we use an external storage.
// It is important to do this *after* copying any old content,
// else we would override data that has not yet been copied!
_extern._refCount = nullptr;
_extern._capacity = newCapacity;
}
}
void U32String::incRefCount() const {
assert(!isStorageIntern());
if (_extern._refCount == nullptr) {
if (g_refCountPool == nullptr) {
g_refCountPool = new MemoryPool(sizeof(int));
assert(g_refCountPool);
}
_extern._refCount = (int *)g_refCountPool->allocChunk();
*_extern._refCount = 2;
} else {
++(*_extern._refCount);
}
}
void U32String::decRefCount(int *oldRefCount) {
if (isStorageIntern())
return;
if (oldRefCount) {
--(*oldRefCount);
}
if (!oldRefCount || *oldRefCount <= 0) {
// The ref count reached zero, so we free the string storage
// and the ref count storage.
if (oldRefCount) {
assert(g_refCountPool);
g_refCountPool->freeChunk(oldRefCount);
}
delete[] _str;
// Even though _str points to a freed memory block now,
// we do not change its value, because any code that calls
// decRefCount will have to do this afterwards anyway.
}
}
void U32String::initWithCStr(const value_type *str, uint32 len) {
assert(str);
_storage[0] = 0;
_size = len;
if (len >= _builtinCapacity) {
// Not enough internal storage, so allocate more
_extern._capacity = computeCapacity(len + 1);
_extern._refCount = nullptr;
_str = new value_type[_extern._capacity];
assert(_str != nullptr);
}
// Copy the string into the storage area
memmove(_str, str, len * sizeof(value_type));
_str[len] = 0;
}
void U32String::initWithCStr(const char *str, uint32 len) {
assert(str);
_storage[0] = 0;
_size = len;
if (len >= _builtinCapacity) {
// Not enough internal storage, so allocate more
_extern._capacity = computeCapacity(len + 1);
_extern._refCount = nullptr;
_str = new value_type[_extern._capacity];
assert(_str != nullptr);
}
// Copy the string into the storage area
for (size_t idx = 0; idx < len; ++idx, ++str)
_str[idx] = (byte)(*str);
_str[len] = 0;
}
// //TODO: This is a quick and dirty converter. Refactoring needed:
// 1. This version is unsafe! There are no checks for end of buffer
// near i++ operations.
// 2. Original version has an option for performing strict / nonstrict
// conversion for the 0xD800...0xDFFF interval
// 3. Original version returns a result code. This version does NOT
// insert 'FFFD' on errors & does not inform caller on any errors
//
// More comprehensive one lives in wintermute/utils/convert_utf.cpp
U32String convertUtf8ToUtf32(const String &str) {
// The String class, and therefore the Font class as well, assume one
// character is one byte, but in this case it's actually an UTF-8
// string with up to 4 bytes per character. To work around this,
// convert it to an U32String before drawing it, because our Font class
// can handle that.
Common::U32String u32str;
uint i = 0;
while (i < str.size()) {
uint32 chr = 0;
if ((str[i] & 0xF8) == 0xF0) {
chr |= (str[i++] & 0x07) << 18;
chr |= (str[i++] & 0x3F) << 12;
chr |= (str[i++] & 0x3F) << 6;
chr |= (str[i++] & 0x3F);
} else if ((str[i] & 0xF0) == 0xE0) {
chr |= (str[i++] & 0x0F) << 12;
chr |= (str[i++] & 0x3F) << 6;
chr |= (str[i++] & 0x3F);
} else if ((str[i] & 0xE0) == 0xC0) {
chr |= (str[i++] & 0x1F) << 6;
chr |= (str[i++] & 0x3F);
} else {
chr = (str[i++] & 0x7F);
}
u32str += chr;
}
return u32str;
}
// //TODO: This is a quick and dirty converter. Refactoring needed:
// 1. Original version is more effective.
// This version features buffer = (char)(...) + buffer; pattern that causes
// unnecessary copying and reallocations, original code works with raw bytes
// 2. Original version has an option for performing strict / nonstrict
// conversion for the 0xD800...0xDFFF interval
// 3. Original version returns a result code. This version inserts '0xFFFD' if
// character does not fit in 4 bytes & does not inform caller on any errors
//
// More comprehensive one lives in wintermute/utils/convert_utf.cpp
String convertUtf32ToUtf8(const U32String &u32str) {
static const uint8 firstByteMark[5] = { 0x00, 0x00, 0xC0, 0xE0, 0xF0 };
Common::String str;
uint i = 0;
while (i < u32str.size()) {
unsigned short bytesToWrite = 0;
const uint32 byteMask = 0xBF;
const uint32 byteMark = 0x80;
uint32 ch = u32str[i++];
if (ch < (uint32)0x80) {
bytesToWrite = 1;
} else if (ch < (uint32)0x800) {
bytesToWrite = 2;
} else if (ch < (uint32)0x10000) {
bytesToWrite = 3;
} else if (ch <= 0x0010FFFF) {
bytesToWrite = 4;
} else {
bytesToWrite = 3;
ch = 0x0000FFFD;
}
Common::String buffer;
switch (bytesToWrite) {
case 4:
buffer = (char)((ch | byteMark) & byteMask);
ch >>= 6;
// fallthrough
case 3:
buffer = (char)((ch | byteMark) & byteMask) + buffer;
ch >>= 6;
// fallthrough
case 2:
buffer = (char)((ch | byteMark) & byteMask) + buffer;
ch >>= 6;
// fallthrough
case 1:
buffer = (char)(ch | firstByteMark[bytesToWrite]) + buffer;
}
str += buffer;
}
return str;
}
static const uint32 g_windows1250ConversionTable[] = {0x20AC, 0x0081, 0x201A, 0x0083, 0x201E, 0x2026, 0x2020, 0x2021,
0x0088, 0x2030, 0x0160, 0x2039, 0x015A, 0x0164, 0x017D, 0x0179,
0x0090, 0x2018, 0x2019, 0x201C, 0x201D, 0x2022, 0x2013, 0x2014,
0x0098, 0x2122, 0x0161, 0x203A, 0x015B, 0x0165, 0x017E, 0x017A,
0x00A0, 0x02C7, 0x02D8, 0x0141, 0x00A4, 0x0104, 0x00A6, 0x00A7,
0x00A8, 0x00A9, 0x015E, 0x00AB, 0x00AC, 0x00AD, 0x00AE, 0x017B,
0x00B0, 0x00B1, 0x02DB, 0x0142, 0x00B4, 0x00B5, 0x00B6, 0x00B7,
0x00B8, 0x0105, 0x015F, 0x00BB, 0x013D, 0x02DD, 0x013E, 0x017C,
0x0154, 0x00C1, 0x00C2, 0x0102, 0x00C4, 0x0139, 0x0106, 0x00C7,
0x010C, 0x00C9, 0x0118, 0x00CB, 0x011A, 0x00CD, 0x00CE, 0x010E,
0x0110, 0x0143, 0x0147, 0x00D3, 0x00D4, 0x0150, 0x00D6, 0x00D7,
0x0158, 0x016E, 0x00DA, 0x0170, 0x00DC, 0x00DD, 0x0162, 0x00DF,
0x0155, 0x00E1, 0x00E2, 0x0103, 0x00E4, 0x013A, 0x0107, 0x00E7,
0x010D, 0x00E9, 0x0119, 0x00EB, 0x011B, 0x00ED, 0x00EE, 0x010F,
0x0111, 0x0144, 0x0148, 0x00F3, 0x00F4, 0x0151, 0x00F6, 0x00F7,
0x0159, 0x016F, 0x00FA, 0x0171, 0x00FC, 0x00FD, 0x0163, 0x02D9};
static const uint32 g_windows1251ConversionTable[] = {0x0402, 0x0403, 0x201A, 0x0453, 0x201E, 0x2026, 0x2020, 0x2021,
0x20AC, 0x2030, 0x0409, 0x2039, 0x040A, 0x040C, 0x040B, 0x040F,
0x0452, 0x2018, 0x2019, 0x201C, 0x201D, 0x2022, 0x2013, 0x2014,
0x0098, 0x2122, 0x0459, 0x203A, 0x045A, 0x045C, 0x045B, 0x045F,
0x00A0, 0x040E, 0x045E, 0x0408, 0x00A4, 0x0490, 0x00A6, 0x00A7,
0x0401, 0x00A9, 0x0404, 0x00AB, 0x00AC, 0x00AD, 0x00AE, 0x0407,
0x00B0, 0x00B1, 0x0406, 0x0456, 0x0491, 0x00B5, 0x00B6, 0x00B7,
0x0451, 0x2116, 0x0454, 0x00BB, 0x0458, 0x0405, 0x0455, 0x0457,
0x0410, 0x0411, 0x0412, 0x0413, 0x0414, 0x0415, 0x0416, 0x0417,
0x0418, 0x0419, 0x041A, 0x041B, 0x041C, 0x041D, 0x041E, 0x041F,
0x0420, 0x0421, 0x0422, 0x0423, 0x0424, 0x0425, 0x0426, 0x0427,
0x0428, 0x0429, 0x042A, 0x042B, 0x042C, 0x042D, 0x042E, 0x042F,
0x0430, 0x0431, 0x0432, 0x0433, 0x0434, 0x0435, 0x0436, 0x0437,
0x0438, 0x0439, 0x043A, 0x043B, 0x043C, 0x043D, 0x043E, 0x043F,
0x0440, 0x0441, 0x0442, 0x0443, 0x0444, 0x0445, 0x0446, 0x0447,
0x0448, 0x0449, 0x044A, 0x044B, 0x044C, 0x044D, 0x044E, 0x044F};
static const uint32 g_windows1252ConversionTable[] = {0x20AC, 0x0081, 0x201A, 0x0192, 0x201E, 0x2026, 0x2020, 0x2021,
0x02C6, 0x2030, 0x0160, 0x2039, 0x0152, 0x008D, 0x017D, 0x008F,
0x0090, 0x2018, 0x2019, 0x201C, 0x201D, 0x2022, 0x2013, 0x2014,
0x02DC, 0x2122, 0x0161, 0x203A, 0x0153, 0x009D, 0x017E, 0x0178,
0x00A0, 0x00A1, 0x00A2, 0x00A3, 0x00A4, 0x00A5, 0x00A6, 0x00A7,
0x00A8, 0x00A9, 0x00AA, 0x00AB, 0x00AC, 0x00AD, 0x00AE, 0x00AF,
0x00B0, 0x00B1, 0x00B2, 0x00B3, 0x00B4, 0x00B5, 0x00B6, 0x00B7,
0x00B8, 0x00B9, 0x00BA, 0x00BB, 0x00BC, 0x00BD, 0x00BE, 0x00BF,
0x00C0, 0x00C1, 0x00C2, 0x00C3, 0x00C4, 0x00C5, 0x00C6, 0x00C7,
0x00C8, 0x00C9, 0x00CA, 0x00CB, 0x00CC, 0x00CD, 0x00CE, 0x00CF,
0x00D0, 0x00D1, 0x00D2, 0x00D3, 0x00D4, 0x00D5, 0x00D6, 0x00D7,
0x00D8, 0x00D9, 0x00DA, 0x00DB, 0x00DC, 0x00DD, 0x00DE, 0x00DF,
0x00E0, 0x00E1, 0x00E2, 0x00E3, 0x00E4, 0x00E5, 0x00E6, 0x00E7,
0x00E8, 0x00E9, 0x00EA, 0x00EB, 0x00EC, 0x00ED, 0x00EE, 0x00EF,
0x00F0, 0x00F1, 0x00F2, 0x00F3, 0x00F4, 0x00F5, 0x00F6, 0x00F7,
0x00F8, 0x00F9, 0x00FA, 0x00FB, 0x00FC, 0x00FD, 0x00FE, 0x00FF};
static const uint32 g_windows1253ConversionTable[] = {0x20AC, 0x0081, 0x201A, 0x0192, 0x201E, 0x2026, 0x2020, 0x2021,
0x0088, 0x2030, 0x008A, 0x2039, 0x008C, 0x008D, 0x008E, 0x008F,
0x0090, 0x2018, 0x2019, 0x201C, 0x201D, 0x2022, 0x2013, 0x2014,
0x0098, 0x2122, 0x009A, 0x203A, 0x009C, 0x009D, 0x009E, 0x009F,
0x00A0, 0x0385, 0x0386, 0x00A3, 0x00A4, 0x00A5, 0x00A6, 0x00A7,
0x00A8, 0x00A9, 0x00AA, 0x00AB, 0x00AC, 0x00AD, 0x00AE, 0x2015,
0x00B0, 0x00B1, 0x00B2, 0x00B3, 0x0384, 0x00B5, 0x00B6, 0x00B7,
0x0388, 0x0389, 0x038A, 0x00BB, 0x038C, 0x00BD, 0x038E, 0x038F,
0x0390, 0x0391, 0x0392, 0x0393, 0x0394, 0x0395, 0x0396, 0x0397,
0x0398, 0x0399, 0x039A, 0x039B, 0x039C, 0x039D, 0x039E, 0x039F,
0x03A0, 0x03A1, 0x00D2, 0x03A3, 0x03A4, 0x03A5, 0x03A6, 0x03A7,
0x03A8, 0x03A9, 0x03AA, 0x03AB, 0x03AC, 0x03AD, 0x03AE, 0x03AF,
0x03B0, 0x03B1, 0x03B2, 0x03B3, 0x03B4, 0x03B5, 0x03B6, 0x03B7,
0x03B8, 0x03B9, 0x03BA, 0x03BB, 0x03BC, 0x03BD, 0x03BE, 0x03BF,
0x03C0, 0x03C1, 0x03C2, 0x03C3, 0x03C4, 0x03C5, 0x03C6, 0x03C7,
0x03C8, 0x03C9, 0x03CA, 0x03CB, 0x03CC, 0x03CD, 0x03CE, 0x00FF};
static const uint32 g_windows1255ConversionTable[] = {0x20AC, 0x0081, 0x201A, 0x0192, 0x201E, 0x2026, 0x2020, 0x2021,
0x02C6, 0x2030, 0x008A, 0x2039, 0x008C, 0x008D, 0x008E, 0x008F,
0x0090, 0x2018, 0x2019, 0x201C, 0x201D, 0x2022, 0x2013, 0x2014,
0x02DC, 0x2122, 0x009A, 0x203A, 0x009C, 0x009D, 0x009E, 0x009F,
0x00A0, 0x00A1, 0x00A2, 0x00A3, 0x20AA, 0x00A5, 0x00A6, 0x00A7,
0x00A8, 0x00A9, 0x00D7, 0x00AB, 0x00AC, 0x00AD, 0x00AE, 0x00AF,
0x00B0, 0x00B1, 0x00B2, 0x00B3, 0x00B4, 0x00B5, 0x00B6, 0x00B7,
0x00B8, 0x00B9, 0x00F7, 0x00BB, 0x00BC, 0x00BD, 0x00BE, 0x00BF,
0x05B0, 0x05B1, 0x05B2, 0x05B3, 0x05B4, 0x05B5, 0x05B6, 0x05B7,
0x05B8, 0x05B9, 0x05BA, 0x05BB, 0x05BC, 0x05BD, 0x05BE, 0x05BF,
0x05C0, 0x05C1, 0x05C2, 0x05C3, 0x05F0, 0x05F1, 0x05F2, 0x05F3,
0x05F4, 0x00D9, 0x00DA, 0x00DB, 0x00DC, 0x00DD, 0x00DE, 0x00DF,
0x05D0, 0x05D1, 0x05D2, 0x05D3, 0x05D4, 0x05D5, 0x05D6, 0x05D7,
0x05D8, 0x05D9, 0x05DA, 0x05DB, 0x05DC, 0x05DD, 0x05DE, 0x05DF,
0x05E0, 0x05E1, 0x05E2, 0x05E3, 0x05E4, 0x05E5, 0x05E6, 0x05E7,
0x05E8, 0x05E9, 0x05EA, 0x00FB, 0x00FC, 0x200E, 0x200F, 0x00FF};
static const uint32 g_windows1257ConversionTable[] = {0x20AC, 0x0081, 0x201A, 0x0083, 0x201E, 0x2026, 0x2020, 0x2021,
0x0088, 0x2030, 0x008A, 0x2039, 0x008C, 0x00A8, 0x02C7, 0x00B8,
0x0090, 0x2018, 0x2019, 0x201C, 0x201D, 0x2022, 0x2013, 0x2014,
0x0098, 0x2122, 0x009A, 0x203A, 0x009C, 0x00AF, 0x02DB, 0x009F,
0x00A0, 0x00A1, 0x00A2, 0x00A3, 0x00A4, 0x00A5, 0x00A6, 0x00A7,
0x00D8, 0x00A9, 0x0156, 0x00AB, 0x00AC, 0x00AD, 0x00AE, 0x00C6,
0x00B0, 0x00B1, 0x00B2, 0x00B3, 0x00B4, 0x00B5, 0x00B6, 0x00B7,
0x00F8, 0x00B9, 0x0157, 0x00BB, 0x00BC, 0x00BD, 0x00BE, 0x00E6,
0x0104, 0x012E, 0x0100, 0x0106, 0x00C4, 0x00C5, 0x0118, 0x0112,
0x010C, 0x00C9, 0x0179, 0x0116, 0x0122, 0x0136, 0x012A, 0x013B,
0x0160, 0x0143, 0x0145, 0x00D3, 0x014C, 0x00D5, 0x00D6, 0x00D7,
0x0172, 0x0141, 0x015A, 0x016A, 0x00DC, 0x017B, 0x017D, 0x00DF,
0x0105, 0x012F, 0x0101, 0x0107, 0x00E4, 0x00E5, 0x0119, 0x0113,
0x010D, 0x00E9, 0x017A, 0x0117, 0x0123, 0x0137, 0x012B, 0x013C,
0x0161, 0x0144, 0x0146, 0x00F3, 0x014D, 0x00F5, 0x00F6, 0x00F7,
0x0173, 0x0142, 0x015B, 0x016B, 0x00FC, 0x017C, 0x017E, 0x02D9};
U32String convertToU32String(const char *str, CodePage page) {
const String string(str);
if (page == kUtf8) {
return convertUtf8ToUtf32(string);
}
U32String unicodeString;
for (uint i = 0; i < string.size(); ++i) {
if ((byte)string[i] <= 0x7F) {
unicodeString += string[i];
continue;
}
byte index = string[i] - 0x80;
switch (page) {
case kWindows1250:
unicodeString += g_windows1250ConversionTable[index];
break;
case kWindows1251:
unicodeString += g_windows1251ConversionTable[index];
break;
case kWindows1252:
unicodeString += g_windows1252ConversionTable[index];
break;
case kWindows1253:
unicodeString += g_windows1253ConversionTable[index];
break;
case kWindows1255:
unicodeString += g_windows1255ConversionTable[index];
break;
case kWindows1257:
unicodeString += g_windows1257ConversionTable[index];
break;
default:
break;
}
}
return unicodeString;
}
String convertFromU32String(const U32String &string, CodePage page) {
if (page == kUtf8) {
return convertUtf32ToUtf8(string);
}
const uint32 *conversionTable = NULL;
switch (page) {
case kWindows1250:
conversionTable = g_windows1250ConversionTable;
break;
case kWindows1251:
conversionTable = g_windows1251ConversionTable;
break;
case kWindows1252:
conversionTable = g_windows1252ConversionTable;
break;
case kWindows1253:
conversionTable = g_windows1253ConversionTable;
break;
case kWindows1255:
conversionTable = g_windows1255ConversionTable;
break;
case kWindows1257:
conversionTable = g_windows1257ConversionTable;
break;
default:
break;
}
String charsetString;
for (uint i = 0; i < string.size(); ++i) {
if (string[i] <= 0x7F) {
charsetString += string[i];
continue;
}
if (!conversionTable) {
continue;
}
for (uint j = 0; j < 128; ++j) {
if (conversionTable[j] == string[i]) {
charsetString += (char)(j + 0x80);
break;
}
}
}
return charsetString;
}
} // End of namespace Common