scummvm/image/codecs/smc.cpp

390 lines
10 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
// Based off ffmpeg's SMC decoder
#include "image/codecs/smc.h"
#include "common/stream.h"
#include "common/textconsole.h"
namespace Image {
#define GET_BLOCK_COUNT() \
(opcode & 0x10) ? (1 + stream.readByte()) : 1 + (opcode & 0x0F);
#define ADVANCE_BLOCK() \
{ \
pixelPtr += 4; \
if (pixelPtr >= _surface->w) { \
pixelPtr = 0; \
rowPtr += _surface->w * 4; \
} \
totalBlocks--; \
if (totalBlocks < 0) { \
warning("block counter just went negative (this should not happen)"); \
return _surface; \
} \
}
SMCDecoder::SMCDecoder(uint16 width, uint16 height) {
_surface = new Graphics::Surface();
_surface->create(width, height, Graphics::PixelFormat::createFormatCLUT8());
}
SMCDecoder::~SMCDecoder() {
_surface->free();
delete _surface;
}
const Graphics::Surface *SMCDecoder::decodeFrame(Common::SeekableReadStream &stream) {
byte *pixels = (byte *)_surface->getPixels();
uint32 numBlocks = 0;
uint32 colorFlags = 0;
uint32 colorFlagsA = 0;
uint32 colorFlagsB = 0;
const uint16 rowInc = _surface->w - 4;
int32 rowPtr = 0;
int32 pixelPtr = 0;
uint32 blockPtr = 0;
uint32 prevBlockPtr = 0;
uint32 prevBlockPtr1 = 0, prevBlockPtr2 = 0;
byte prevBlockFlag = false;
uint32 pixel = 0;
uint32 colorPairIndex = 0;
uint32 colorQuadIndex = 0;
uint32 colorOctetIndex = 0;
uint32 colorTableIndex = 0; // indices to color pair, quad, or octet tables
int32 chunkSize = stream.readUint32BE() & 0x00FFFFFF;
if (chunkSize != stream.size())
warning("MOV chunk size != SMC chunk size (%d != %d); ignoring SMC chunk size", chunkSize, stream.size());
int32 totalBlocks = ((_surface->w + 3) / 4) * ((_surface->h + 3) / 4);
// traverse through the blocks
while (totalBlocks != 0) {
// sanity checks
// make sure stream ptr hasn't gone out of bounds
if (stream.pos() > stream.size()) {
warning("SMC decoder just went out of bounds (stream ptr = %d, chunk size = %d)", stream.pos(), stream.size());
return _surface;
}
// make sure the row pointer hasn't gone wild
if (rowPtr >= _surface->w * _surface->h) {
warning("SMC decoder just went out of bounds (row ptr = %d, size = %d)", rowPtr, _surface->w * _surface->h);
return _surface;
}
byte opcode = stream.readByte();
switch (opcode & 0xF0) {
// skip n blocks
case 0x00:
case 0x10:
numBlocks = GET_BLOCK_COUNT();
while (numBlocks--) {
ADVANCE_BLOCK();
}
break;
// repeat last block n times
case 0x20:
case 0x30:
numBlocks = GET_BLOCK_COUNT();
// sanity check
if (rowPtr == 0 && pixelPtr == 0) {
warning("encountered repeat block opcode (%02X) but no blocks rendered yet", opcode & 0xF0);
break;
}
// figure out where the previous block started
if (pixelPtr == 0)
prevBlockPtr1 = (rowPtr - _surface->w * 4) + _surface->w - 4;
else
prevBlockPtr1 = rowPtr + pixelPtr - 4;
while (numBlocks--) {
blockPtr = rowPtr + pixelPtr;
prevBlockPtr = prevBlockPtr1;
for (byte y = 0; y < 4; y++) {
for (byte x = 0; x < 4; x++)
pixels[blockPtr++] = pixels[prevBlockPtr++];
blockPtr += rowInc;
prevBlockPtr += rowInc;
}
ADVANCE_BLOCK();
}
break;
// repeat previous pair of blocks n times
case 0x40:
case 0x50:
numBlocks = GET_BLOCK_COUNT();
numBlocks *= 2;
// sanity check
if (rowPtr == 0 && pixelPtr < 2 * 4) {
warning("encountered repeat block opcode (%02X) but not enough blocks rendered yet", opcode & 0xF0);
break;
}
// figure out where the previous 2 blocks started
if (pixelPtr == 0)
prevBlockPtr1 = (rowPtr - _surface->w * 4) + _surface->w - 4 * 2;
else if (pixelPtr == 4)
prevBlockPtr1 = (rowPtr - _surface->w * 4) + rowInc;
else
prevBlockPtr1 = rowPtr + pixelPtr - 4 * 2;
if (pixelPtr == 0)
prevBlockPtr2 = (rowPtr - _surface->w * 4) + rowInc;
else
prevBlockPtr2 = rowPtr + pixelPtr - 4;
prevBlockFlag = 0;
while (numBlocks--) {
blockPtr = rowPtr + pixelPtr;
if (prevBlockFlag)
prevBlockPtr = prevBlockPtr2;
else
prevBlockPtr = prevBlockPtr1;
prevBlockFlag = !prevBlockFlag;
for (byte y = 0; y < 4; y++) {
for (byte x = 0; x < 4; x++)
pixels[blockPtr++] = pixels[prevBlockPtr++];
blockPtr += rowInc;
prevBlockPtr += rowInc;
}
ADVANCE_BLOCK();
}
break;
// 1-color block encoding
case 0x60:
case 0x70:
numBlocks = GET_BLOCK_COUNT();
pixel = stream.readByte();
while (numBlocks--) {
blockPtr = rowPtr + pixelPtr;
for (byte y = 0; y < 4; y++) {
for (byte x = 0; x < 4; x++)
pixels[blockPtr++] = pixel;
blockPtr += rowInc;
}
ADVANCE_BLOCK();
}
break;
// 2-color block encoding
case 0x80:
case 0x90:
numBlocks = (opcode & 0x0F) + 1;
// figure out which color pair to use to paint the 2-color block
if ((opcode & 0xF0) == 0x80) {
// fetch the next 2 colors from bytestream and store in next
// available entry in the color pair table
for (byte i = 0; i < CPAIR; i++) {
pixel = stream.readByte();
colorTableIndex = CPAIR * colorPairIndex + i;
_colorPairs[colorTableIndex] = pixel;
}
// this is the base index to use for this block
colorTableIndex = CPAIR * colorPairIndex;
colorPairIndex++;
// wraparound
if (colorPairIndex == COLORS_PER_TABLE)
colorPairIndex = 0;
} else
colorTableIndex = CPAIR * stream.readByte();
while (numBlocks--) {
colorFlags = stream.readUint16BE();
uint16 flagMask = 0x8000;
blockPtr = rowPtr + pixelPtr;
for (byte y = 0; y < 4; y++) {
for (byte x = 0; x < 4; x++) {
if (colorFlags & flagMask)
pixel = colorTableIndex + 1;
else
pixel = colorTableIndex;
flagMask >>= 1;
pixels[blockPtr++] = _colorPairs[pixel];
}
blockPtr += rowInc;
}
ADVANCE_BLOCK();
}
break;
// 4-color block encoding
case 0xA0:
case 0xB0:
numBlocks = (opcode & 0x0F) + 1;
// figure out which color quad to use to paint the 4-color block
if ((opcode & 0xF0) == 0xA0) {
// fetch the next 4 colors from bytestream and store in next
// available entry in the color quad table
for (byte i = 0; i < CQUAD; i++) {
pixel = stream.readByte();
colorTableIndex = CQUAD * colorQuadIndex + i;
_colorQuads[colorTableIndex] = pixel;
}
// this is the base index to use for this block
colorTableIndex = CQUAD * colorQuadIndex;
colorQuadIndex++;
// wraparound
if (colorQuadIndex == COLORS_PER_TABLE)
colorQuadIndex = 0;
} else
colorTableIndex = CQUAD * stream.readByte();
while (numBlocks--) {
colorFlags = stream.readUint32BE();
// flag mask actually acts as a bit shift count here
byte flagMask = 30;
blockPtr = rowPtr + pixelPtr;
for (byte y = 0; y < 4; y++) {
for (byte x = 0; x < 4; x++) {
pixel = colorTableIndex + ((colorFlags >> flagMask) & 0x03);
flagMask -= 2;
pixels[blockPtr++] = _colorQuads[pixel];
}
blockPtr += rowInc;
}
ADVANCE_BLOCK();
}
break;
// 8-color block encoding
case 0xC0:
case 0xD0:
numBlocks = (opcode & 0x0F) + 1;
// figure out which color octet to use to paint the 8-color block
if ((opcode & 0xF0) == 0xC0) {
// fetch the next 8 colors from bytestream and store in next
// available entry in the color octet table
for (byte i = 0; i < COCTET; i++) {
pixel = stream.readByte();
colorTableIndex = COCTET * colorOctetIndex + i;
_colorOctets[colorTableIndex] = pixel;
}
// this is the base index to use for this block
colorTableIndex = COCTET * colorOctetIndex;
colorOctetIndex++;
// wraparound
if (colorOctetIndex == COLORS_PER_TABLE)
colorOctetIndex = 0;
} else
colorTableIndex = COCTET * stream.readByte();
while (numBlocks--) {
/*
For this input of 6 hex bytes:
01 23 45 67 89 AB
Mangle it to this output:
flags_a = xx012456, flags_b = xx89A37B
*/
// build the color flags
byte flagData[6];
stream.read(flagData, 6);
colorFlagsA = ((READ_BE_UINT16(flagData) & 0xFFF0) << 8) | (READ_BE_UINT16(flagData + 2) >> 4);
colorFlagsB = ((READ_BE_UINT16(flagData + 4) & 0xFFF0) << 8) | ((flagData[1] & 0xF) << 8) |
((flagData[3] & 0xF) << 4) | (flagData[5] & 0xf);
colorFlags = colorFlagsA;
// flag mask actually acts as a bit shift count here
byte flagMask = 21;
blockPtr = rowPtr + pixelPtr;
for (byte y = 0; y < 4; y++) {
// reload flags at third row (iteration y == 2)
if (y == 2) {
colorFlags = colorFlagsB;
flagMask = 21;
}
for (byte x = 0; x < 4; x++) {
pixel = colorTableIndex + ((colorFlags >> flagMask) & 0x07);
flagMask -= 3;
pixels[blockPtr++] = _colorOctets[pixel];
}
blockPtr += rowInc;
}
ADVANCE_BLOCK();
}
break;
// 16-color block encoding (every pixel is a different color)
case 0xE0:
numBlocks = (opcode & 0x0F) + 1;
while (numBlocks--) {
blockPtr = rowPtr + pixelPtr;
for (byte y = 0; y < 4; y++) {
for (byte x = 0; x < 4; x++)
pixels[blockPtr++] = stream.readByte();
blockPtr += rowInc;
}
ADVANCE_BLOCK();
}
break;
case 0xF0:
warning("0xF0 opcode seen in SMC chunk (contact the developers)");
break;
}
}
return _surface;
}
} // End of namespace Image