scummvm/graphics/dither.cpp
Max Horn 0ce2ca4e00 COMMON: Replace MKID_BE by MKTAG
MKID_BE relied on unspecified behavior of the C++ compiler,
and as such was always a bit unsafe. The new MKTAG macro
is slightly less elegant, but does no longer depend on the
behavior of the compiler.
Inspired by FFmpeg, which has an almost identical macro.
2011-04-12 16:53:15 +02:00

317 lines
7.5 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*/
#include "graphics/dither.h"
#include "common/endian.h"
#include "common/stream.h"
namespace Graphics {
PaletteLUT::PaletteLUT(byte depth, PaletteFormat format) {
assert((depth > 1) && (depth < 9));
// For adjusting depth
_depth1 = depth;
_depth2 = 2 * _depth1;
_shift = 8 - _depth1;
// The table's dimensions
_dim1 = (1 << _depth1);
_dim2 = _dim1 * _dim1;
_dim3 = _dim1 * _dim1 * _dim1;
_format = format;
// What's already built
_got = _dim1;
_gots = new byte[_dim1];
// The lookup table
_lut = new byte[_dim3];
memset(_lutPal, 0, 768);
memset(_realPal, 0, 768);
memset(_gots, 1, _dim1);
}
void PaletteLUT::setPalette(const byte *palette, PaletteFormat format,
byte depth, int transp) {
assert((depth > 1) && (depth < 9));
_transp = transp;
int shift = 8 - depth;
// Checking for the table's and the palette's pixel format
if ((_format == kPaletteRGB) && (format == kPaletteYUV)) {
byte *newPal = _realPal;
const byte *oldPal = palette;
for (int i = 0; i < 256; i++, newPal += 3, oldPal += 3)
YUV2RGB(oldPal[0] << shift, oldPal[1] << shift, oldPal[2] << shift,
newPal[0], newPal[1], newPal[2]);
} else if ((_format == kPaletteYUV) && (format == kPaletteRGB)) {
byte *newPal = _realPal;
const byte *oldPal = palette;
for (int i = 0; i < 256; i++, newPal += 3, oldPal += 3)
RGB2YUV(oldPal[0] << shift, oldPal[1] << shift, oldPal[2] << shift,
newPal[0], newPal[1], newPal[2]);
} else
memcpy(_realPal, palette, 768);
// Using the specified depth for the lookup
byte *newPal = _lutPal, *oldPal = _realPal;
for (int i = 0; i < 768; i++)
*newPal++ = (*oldPal++) >> _shift;
// Everything has to be rebuilt
_got = 0;
memset(_gots, 0, _dim1);
}
PaletteLUT::~PaletteLUT() {
delete[] _lut;
delete[] _gots;
}
void PaletteLUT::buildNext() {
if (_got >= _dim1)
return;
build(_got++);
}
#define SQR(x) ((x) * (x))
// Building one "slice"
void PaletteLUT::build(int d1) {
// First dimension
byte *lut = _lut + d1 * _dim2;
// Second dimension
for (uint32 j = 0; j < _dim1; j++) {
// Third dimension
for (uint32 k = 0; k < _dim1; k++) {
const byte *p = _lutPal;
uint32 d = 0xFFFFFFFF;
byte n = 0;
// Going over every palette entry, searching for the closest
for (int c = 0; c < 256; c++, p += 3) {
// Ignore the transparent color
if (c == _transp)
continue;
uint32 di = SQR(d1 - p[0]) + SQR(j - p[1]) + SQR(k - p[2]);
if (di < d) {
d = di;
n = c;
if (d == 0)
break;
}
}
*lut++ = n;
}
}
// Got this slice now
_gots[d1] = 1;
}
inline int PaletteLUT::getIndex(byte c1, byte c2, byte c3) const {
return ((c1 >> _shift) << _depth2) | ((c2 >> _shift) << _depth1) | (c3 >> _shift);
}
void PaletteLUT::getEntry(byte index, byte &c1, byte &c2, byte &c3) const {
c1 = _realPal[index * 3 + 0];
c2 = _realPal[index * 3 + 1];
c3 = _realPal[index * 3 + 2];
}
byte PaletteLUT::findNearest(byte c1, byte c2, byte c3) {
return _lut[getIndex(c1, c2, c3)];
}
byte PaletteLUT::findNearest(byte c1, byte c2, byte c3, byte &nC1, byte &nC2, byte &nC3) {
// If we don't have the required "slice" yet, build it
if (!_gots[c1 >> _shift])
build(c1 >> _shift);
int palIndex = _lut[getIndex(c1, c2, c3)];
int i = palIndex * 3;
nC1 = _realPal[i + 0];
nC2 = _realPal[i + 1];
nC3 = _realPal[i + 2];
return palIndex;
}
bool PaletteLUT::save(Common::WriteStream &stream) {
// The table has to be completely built before we can save
while (_got < _dim1)
buildNext();
stream.writeUint32BE(MKTAG('P','L','U','T')); // Magic
stream.writeUint32BE(kVersion);
stream.writeByte(_depth1);
if (stream.write(_realPal, 768) != 768)
return false;
if (stream.write(_lutPal, 768) != 768)
return false;
if (stream.write(_lut, _dim3) != _dim3)
return false;
if (!stream.flush())
return false;
if (stream.err())
return false;
return true;
}
bool PaletteLUT::load(Common::SeekableReadStream &stream) {
// _realPal + _lutPal + _lut + _depth1 + magic + version
int32 needSize = 768 + 768 + _dim3 + 1 + 4 + 4;
if ((stream.size() - stream.pos()) < needSize)
return false;
// Magic
if (stream.readUint32BE() != MKTAG('P','L','U','T'))
return false;
if (stream.readUint32BE() != kVersion)
return false;
byte depth1 = stream.readByte();
if (depth1 != _depth1)
return false;
if (stream.read(_realPal, 768) != 768)
return false;
if (stream.read(_lutPal, 768) != 768)
return false;
if (stream.read(_lut, _dim3) != _dim3)
return false;
_got = _dim1;
memset(_gots, 1, _dim1);
return true;
}
SierraLight::SierraLight(int16 width, PaletteLUT *palLUT) {
assert(width > 0);
_width = width;
_palLUT = palLUT;
// Big buffer for the errors of the current and next line
_errorBuf = new int32[3 * (2 * (_width + 2*1))];
memset(_errorBuf, 0, (3 * (2 * (_width + 2*1))) * sizeof(int32));
_curLine = 0;
_errors[0] = _errorBuf + 3;
_errors[1] = _errors[0] + 3 * (_width + 2*1);
}
SierraLight::~SierraLight() {
delete[] _errorBuf;
}
void SierraLight::newFrame() {
_curLine = 0;
memset(_errors[0], 0, 3 * _width * sizeof(int32));
memset(_errors[1], 0, 3 * _width * sizeof(int32));
}
void SierraLight::nextLine() {
// Clear the finished line, it will become the last line in the buffer
memset(_errors[_curLine], 0, 3 * _width * sizeof(int32));
_curLine = (_curLine + 1) % 2;
}
byte SierraLight::dither(byte c1, byte c2, byte c3, uint32 x) {
assert(_palLUT);
assert(x < (uint32)_width);
int32 eC1, eC2, eC3;
getErrors(x, eC1, eC2, eC3);
// Apply error on values
c1 = CLIP<int>(c1 + eC1, 0, 255);
c2 = CLIP<int>(c2 + eC2, 0, 255);
c3 = CLIP<int>(c3 + eC3, 0, 255);
// Find color
byte newC1, newC2, newC3;
byte newPixel = _palLUT->findNearest(c1, c2, c3, newC1, newC2, newC3);
// Calculate new error
eC1 = c1 - newC1;
eC2 = c2 - newC2;
eC3 = c3 - newC3;
// Add them
addErrors(x, eC1, eC2, eC3);
return newPixel;
}
inline void SierraLight::getErrors(uint32 x, int32 &eC1, int32 &eC2, int32 &eC3) {
int32 *errCur = _errors[_curLine];
x *= 3;
eC1 = errCur[x + 0] >> 2;
eC2 = errCur[x + 1] >> 2;
eC3 = errCur[x + 2] >> 2;
}
inline void SierraLight::addErrors(uint32 x, int32 eC1, int32 eC2, int32 eC3) {
int32 *errCur = _errors[_curLine];
int32 *errNext = _errors[(_curLine + 1) % 2];
// Indices for current error
int x0 = 3 * (x + 1);
int x1 = 3 * (x + 0);
int x2 = 3 * (x - 1);
errCur [x0 + 0] += eC1 << 1;
errCur [x0 + 1] += eC2 << 1;
errCur [x0 + 2] += eC3 << 1;
errNext[x1 + 0] += eC1;
errNext[x1 + 1] += eC2;
errNext[x1 + 2] += eC3;
errNext[x2 + 0] += eC1;
errNext[x2 + 1] += eC2;
errNext[x2 + 2] += eC3;
}
} // End of namespace Graphics