mirror of
https://github.com/libretro/scummvm.git
synced 2025-01-24 19:45:07 +00:00
6633c32acb
alot - > a lot of
803 lines
23 KiB
C++
803 lines
23 KiB
C++
/* ScummVM - Graphic Adventure Engine
|
|
*
|
|
* ScummVM is the legal property of its developers, whose names
|
|
* are too numerous to list here. Please refer to the COPYRIGHT
|
|
* file distributed with this source distribution.
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
#ifndef COMMON_ENDIAN_H
|
|
#define COMMON_ENDIAN_H
|
|
|
|
#include "common/scummsys.h"
|
|
|
|
|
|
/**
|
|
* @defgroup common_endian Endian conversions
|
|
* @ingroup common
|
|
*
|
|
* @brief Functions and macros for endian conversions and byteswap conversions.
|
|
*
|
|
* @details
|
|
* - SWAP_BYTES_??(a) - Reverse byte order
|
|
* - SWAP_CONSTANT_??(a) - Reverse byte order, implemented as a macro.
|
|
* Use with compile-time constants only, the result will be a compile-time constant as well.
|
|
* Unlike most other functions, these can be used for e.g. switch-case labels.
|
|
* - READ_UINT??(a) - Read native value from pointer @p a.
|
|
* - READ_??_UINT??(a) - Read LE/BE value from pointer @p a and convert it to native.
|
|
* - WRITE_??_UINT??(a, v) - Write a native value @p v to pointer @p a with LE/BE encoding.
|
|
* - TO_??_??(a) - Convert native value @p v to LE/BE.
|
|
* - FROM_??_??(a) - Convert LE/BE value @p v to native.
|
|
* - CONSTANT_??_??(a) - Convert LE/BE value @p v to native, implemented as a macro.
|
|
* Use with compile-time constants only, the result will be a compile-time constant as well.
|
|
* Unlike most other functions these, can be used for e.g. switch-case labels.
|
|
*
|
|
* @{
|
|
*/
|
|
|
|
// Sanity check
|
|
#if !defined(SCUMM_LITTLE_ENDIAN) && !defined(SCUMM_BIG_ENDIAN)
|
|
# error No endianness defined
|
|
#endif
|
|
|
|
/**
|
|
* Swap the bytes in a 64-bit word in order to convert LE encoded data to BE
|
|
* and vice versa. Use with compile-time constants only.
|
|
*/
|
|
#define SWAP_CONSTANT_64(a) \
|
|
((uint64)((((a) >> 56) & 0x000000FF) | \
|
|
(((a) >> 40) & 0x0000FF00) | \
|
|
(((a) >> 24) & 0x00FF0000) | \
|
|
(((a) >> 8) & 0xFF000000) | \
|
|
(((a) & 0xFF000000) << 8) | \
|
|
(((a) & 0x00FF0000) << 24) | \
|
|
(((a) & 0x0000FF00) << 40) | \
|
|
(((a) & 0x000000FF) << 56) ))
|
|
|
|
/**
|
|
* Swap the bytes in a 32-bit word in order to convert LE encoded data to BE
|
|
* and vice versa. Use with compile-time constants only.
|
|
*/
|
|
#define SWAP_CONSTANT_32(a) \
|
|
((uint32)((((a) >> 24) & 0x00FF) | \
|
|
(((a) >> 8) & 0xFF00) | \
|
|
(((a) & 0xFF00) << 8) | \
|
|
(((a) & 0x00FF) << 24) ))
|
|
|
|
/**
|
|
* Swap the bytes in a 16-bit word in order to convert LE encoded data to BE
|
|
* and vice versa. Use with compile-time constants only.
|
|
*/
|
|
#define SWAP_CONSTANT_16(a) \
|
|
((uint16)((((a) >> 8) & 0x00FF) | \
|
|
(((a) << 8) & 0xFF00) ))
|
|
|
|
|
|
|
|
/**
|
|
* Swap the bytes in a 16-bit word in order to convert LE encoded data to BE
|
|
* and vice versa.
|
|
*/
|
|
|
|
// compiler-specific variants come first, fallback last
|
|
#if GCC_ATLEAST(4, 8) || defined(__clang__)
|
|
|
|
FORCEINLINE uint16 SWAP_BYTES_16(uint16 a) {
|
|
return __builtin_bswap16(a);
|
|
}
|
|
|
|
#elif defined(_MSC_VER)
|
|
|
|
FORCEINLINE uint16 SWAP_BYTES_16(uint16 a) {
|
|
return _byteswap_ushort(a);
|
|
}
|
|
|
|
#else
|
|
|
|
inline uint16 SWAP_BYTES_16(const uint16 a) {
|
|
return (a >> 8) | (a << 8);
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
* Swap the bytes in a 32-bit word in order to convert LE encoded data to BE
|
|
* and vice versa.
|
|
*/
|
|
|
|
// compiler-specific variants come first, fallback last
|
|
#if defined(__GNUC__)
|
|
|
|
FORCEINLINE uint32 SWAP_BYTES_32(uint32 a) {
|
|
return __builtin_bswap32(a);
|
|
}
|
|
|
|
#elif defined(_MSC_VER)
|
|
|
|
FORCEINLINE uint32 SWAP_BYTES_32(uint32 a) {
|
|
return _byteswap_ulong(a);
|
|
}
|
|
|
|
// generic fallback
|
|
#else
|
|
|
|
inline uint32 SWAP_BYTES_32(uint32 a) {
|
|
const uint16 low = (uint16)a, high = (uint16)(a >> 16);
|
|
return ((uint32)(uint16)((low >> 8) | (low << 8)) << 16)
|
|
| (uint16)((high >> 8) | (high << 8));
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Swap the bytes in a 64-bit word in order to convert LE encoded data to BE
|
|
* and vice versa.
|
|
*/
|
|
|
|
// compiler-specific variants come first, fallback last
|
|
#if defined(__GNUC__)
|
|
|
|
FORCEINLINE uint64 SWAP_BYTES_64(uint64 a) {
|
|
return __builtin_bswap64(a);
|
|
}
|
|
|
|
#elif defined(_MSC_VER)
|
|
|
|
FORCEINLINE uint64 SWAP_BYTES_64(uint64 a) {
|
|
return _byteswap_uint64(a);
|
|
}
|
|
|
|
// generic fallback
|
|
#else
|
|
|
|
inline uint64 SWAP_BYTES_64(uint64 a) {
|
|
uint32 low = (uint32)a, high = (uint32)(a >> 32);
|
|
uint16 lowLow = (uint16)low, lowHigh = (uint16)(low >> 16),
|
|
highLow = (uint16)high, highHigh = (uint16)(high >> 16);
|
|
|
|
return ((uint64)(((uint32)(uint16)((lowLow >> 8) | (lowLow << 8)) << 16) |
|
|
(uint16)((lowHigh >> 8) | (lowHigh << 8))) << 32) |
|
|
(((uint32)(uint16)((highLow >> 8) | (highLow << 8)) << 16) |
|
|
(uint16)((highHigh >> 8) | (highHigh << 8)));
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
* A wrapper macro used around four character constants, like 'DATA', to
|
|
* ensure portability. Typical usage: MKTAG('D','A','T','A').
|
|
*
|
|
* This is required because the C/C++ standard does not define the endianess to
|
|
* be used for character constants. Hence, if one uses multi-byte character
|
|
* constants, a potential portability problem opens up.
|
|
*/
|
|
#define MKTAG(a0,a1,a2,a3) ((uint32)((a3) | ((a2) << 8) | ((a1) << 16) | ((a0) << 24)))
|
|
|
|
/**
|
|
* A wrapper macro used around two character constants, like 'wb', to
|
|
* ensure portability. Typical usage: MKTAG16('w','b').
|
|
*/
|
|
#define MKTAG16(a0,a1) ((uint16)((a1) | ((a0) << 8)))
|
|
|
|
/** @name Functions for reading and writing native integers
|
|
* @brief Functions for reading and writing native integer values.
|
|
* They also transparently handle the need for alignment.
|
|
* @{
|
|
*/
|
|
|
|
// Test for GCC and compatible. These implementations will automatically use
|
|
// CPU-specific instructions for unaligned data when they are available (eg.
|
|
// MIPS).
|
|
#if defined(__GNUC__)
|
|
|
|
FORCEINLINE uint16 READ_UINT16(const void *ptr) {
|
|
struct Unaligned16 { uint16 val; } __attribute__ ((__packed__, __may_alias__));
|
|
return ((const Unaligned16 *)ptr)->val;
|
|
}
|
|
|
|
FORCEINLINE uint32 READ_UINT32(const void *ptr) {
|
|
struct Unaligned32 { uint32 val; } __attribute__ ((__packed__, __may_alias__));
|
|
return ((const Unaligned32 *)ptr)->val;
|
|
}
|
|
|
|
FORCEINLINE void WRITE_UINT16(void *ptr, uint16 value) {
|
|
struct Unaligned16 { uint16 val; } __attribute__ ((__packed__, __may_alias__));
|
|
((Unaligned16 *)ptr)->val = value;
|
|
}
|
|
|
|
FORCEINLINE void WRITE_UINT32(void *ptr, uint32 value) {
|
|
struct Unaligned32 { uint32 val; } __attribute__ ((__packed__, __may_alias__));
|
|
((Unaligned32 *)ptr)->val = value;
|
|
}
|
|
|
|
FORCEINLINE uint64 READ_UINT64(const void *ptr) {
|
|
struct Unaligned64 { uint64 val; } __attribute__ ((__packed__, __may_alias__));
|
|
return ((const Unaligned64 *)ptr)->val;
|
|
}
|
|
|
|
FORCEINLINE void WRITE_UINT64(void *ptr, uint64 value) {
|
|
struct Unaligned64 { uint64 val; } __attribute__((__packed__, __may_alias__));
|
|
((Unaligned64 *)ptr)->val = value;
|
|
}
|
|
|
|
#elif !defined(SCUMM_NEED_ALIGNMENT)
|
|
|
|
FORCEINLINE uint16 READ_UINT16(const void *ptr) {
|
|
return *(const uint16 *)(ptr);
|
|
}
|
|
|
|
FORCEINLINE uint32 READ_UINT32(const void *ptr) {
|
|
return *(const uint32 *)(ptr);
|
|
}
|
|
|
|
FORCEINLINE void WRITE_UINT16(void *ptr, uint16 value) {
|
|
*(uint16 *)(ptr) = value;
|
|
}
|
|
|
|
FORCEINLINE void WRITE_UINT32(void *ptr, uint32 value) {
|
|
*(uint32 *)(ptr) = value;
|
|
}
|
|
|
|
FORCEINLINE uint64 READ_UINT64(const void *ptr) {
|
|
return *(const uint64 *)(ptr);
|
|
}
|
|
|
|
FORCEINLINE void WRITE_UINT64(void *ptr, uint64 value) {
|
|
*(uint64 *)(ptr) = value;
|
|
}
|
|
|
|
|
|
// use software fallback by loading each byte explicitely
|
|
#else
|
|
|
|
# if defined(SCUMM_LITTLE_ENDIAN)
|
|
|
|
inline uint16 READ_UINT16(const void *ptr) {
|
|
const uint8 *b = (const uint8 *)ptr;
|
|
return (b[1] << 8) | b[0];
|
|
}
|
|
inline uint32 READ_UINT32(const void *ptr) {
|
|
const uint8 *b = (const uint8 *)ptr;
|
|
return (b[3] << 24) | (b[2] << 16) | (b[1] << 8) | (b[0]);
|
|
}
|
|
inline void WRITE_UINT16(void *ptr, uint16 value) {
|
|
uint8 *b = (uint8 *)ptr;
|
|
b[0] = (uint8)(value >> 0);
|
|
b[1] = (uint8)(value >> 8);
|
|
}
|
|
inline void WRITE_UINT32(void *ptr, uint32 value) {
|
|
uint8 *b = (uint8 *)ptr;
|
|
b[0] = (uint8)(value >> 0);
|
|
b[1] = (uint8)(value >> 8);
|
|
b[2] = (uint8)(value >> 16);
|
|
b[3] = (uint8)(value >> 24);
|
|
}
|
|
inline uint64 READ_UINT64(const void *ptr) {
|
|
const uint8 *b = (const uint8 *)ptr;
|
|
return ((uint64)b[7] << 56) | ((uint64)b[6] << 48) | ((uint64)b[5] << 40) | ((uint64)b[4] << 32) | ((uint64)b[3] << 24) | ((uint64)b[2] << 16) | ((uint64)b[1] << 8) | ((uint64)b[0]);
|
|
}
|
|
inline void WRITE_UINT64(void *ptr, uint64 value) {
|
|
uint8 *b = (uint8 *)ptr;
|
|
b[0] = (uint8)(value >> 0);
|
|
b[1] = (uint8)(value >> 8);
|
|
b[2] = (uint8)(value >> 16);
|
|
b[3] = (uint8)(value >> 24);
|
|
b[4] = (uint8)(value >> 32);
|
|
b[5] = (uint8)(value >> 40);
|
|
b[6] = (uint8)(value >> 48);
|
|
b[7] = (uint8)(value >> 56);
|
|
}
|
|
|
|
# elif defined(SCUMM_BIG_ENDIAN)
|
|
|
|
inline uint16 READ_UINT16(const void *ptr) {
|
|
const uint8 *b = (const uint8 *)ptr;
|
|
return (b[0] << 8) | b[1];
|
|
}
|
|
inline uint32 READ_UINT32(const void *ptr) {
|
|
const uint8 *b = (const uint8 *)ptr;
|
|
return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | (b[3]);
|
|
}
|
|
inline void WRITE_UINT16(void *ptr, uint16 value) {
|
|
uint8 *b = (uint8 *)ptr;
|
|
b[0] = (uint8)(value >> 8);
|
|
b[1] = (uint8)(value >> 0);
|
|
}
|
|
inline void WRITE_UINT32(void *ptr, uint32 value) {
|
|
uint8 *b = (uint8 *)ptr;
|
|
b[0] = (uint8)(value >> 24);
|
|
b[1] = (uint8)(value >> 16);
|
|
b[2] = (uint8)(value >> 8);
|
|
b[3] = (uint8)(value >> 0);
|
|
}
|
|
inline uint64 READ_UINT64(const void *ptr) {
|
|
const uint8 *b = (const uint8 *)ptr;
|
|
return ((uint64)b[0] << 56) | ((uint64)b[1] << 48) | ((uint64)b[2] << 40) | ((uint64)b[3] << 32) | ((uint64)b[4] << 24) | ((uint64)b[5] << 16) | ((uint64)b[6] << 8) | ((uint64)b[7]);
|
|
}
|
|
inline void WRITE_UINT64(void *ptr, uint64 value) {
|
|
uint8 *b = (uint8 *)ptr;
|
|
b[0] = (uint8)(value >> 56);
|
|
b[1] = (uint8)(value >> 48);
|
|
b[2] = (uint8)(value >> 40);
|
|
b[3] = (uint8)(value >> 32);
|
|
b[4] = (uint8)(value >> 24);
|
|
b[5] = (uint8)(value >> 16);
|
|
b[6] = (uint8)(value >> 8);
|
|
b[7] = (uint8)(value >> 0);
|
|
}
|
|
|
|
# endif
|
|
/** @} */
|
|
#endif
|
|
|
|
|
|
/** @name Map functions for reading/writing BE/LE integers depending on native endianess
|
|
* @{
|
|
*/
|
|
|
|
#if defined(SCUMM_LITTLE_ENDIAN)
|
|
|
|
#define READ_LE_UINT16(a) READ_UINT16(a)
|
|
#define READ_LE_UINT32(a) READ_UINT32(a)
|
|
|
|
#define WRITE_LE_UINT16(a, v) WRITE_UINT16(a, v)
|
|
#define WRITE_LE_UINT32(a, v) WRITE_UINT32(a, v)
|
|
|
|
#define FROM_LE_32(a) ((uint32)(a))
|
|
#define FROM_LE_16(a) ((uint16)(a))
|
|
|
|
#define FROM_BE_32(a) SWAP_BYTES_32(a)
|
|
#define FROM_BE_16(a) SWAP_BYTES_16(a)
|
|
|
|
#define TO_LE_32(a) ((uint32)(a))
|
|
#define TO_LE_16(a) ((uint16)(a))
|
|
|
|
#define TO_BE_32(a) SWAP_BYTES_32(a)
|
|
#define TO_BE_16(a) SWAP_BYTES_16(a)
|
|
|
|
#define CONSTANT_LE_32(a) ((uint32)(a))
|
|
#define CONSTANT_LE_16(a) ((uint16)(a))
|
|
|
|
#define CONSTANT_BE_32(a) SWAP_CONSTANT_32(a)
|
|
#define CONSTANT_BE_16(a) SWAP_CONSTANT_16(a)
|
|
|
|
#define READ_LE_UINT64(a) READ_UINT64(a)
|
|
#define WRITE_LE_UINT64(a, v) WRITE_UINT64(a, v)
|
|
#define FROM_LE_64(a) ((uint64)(a))
|
|
#define FROM_BE_64(a) SWAP_BYTES_64(a)
|
|
#define TO_LE_64(a) ((uint64)(a))
|
|
#define TO_BE_64(a) SWAP_BYTES_64(a)
|
|
#define CONSTANT_LE_64(a) ((uint64)(a))
|
|
#define CONSTANT_BE_64(a) SWAP_CONSTANT_64(a)
|
|
/** @} */
|
|
|
|
/** @name Functions for directly reading/writing and inverting
|
|
* @brief Use these in case the unaligned load and byteswap take
|
|
* a lot of instructions.
|
|
* @{
|
|
*/
|
|
# if defined(SCUMM_NEED_ALIGNMENT) && !defined(__mips__)
|
|
|
|
inline uint16 READ_BE_UINT16(const void *ptr) {
|
|
const uint8 *b = (const uint8 *)ptr;
|
|
return (b[0] << 8) | b[1];
|
|
}
|
|
inline uint32 READ_BE_UINT32(const void *ptr) {
|
|
const uint8 *b = (const uint8 *)ptr;
|
|
return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | (b[3]);
|
|
}
|
|
inline void WRITE_BE_UINT16(void *ptr, uint16 value) {
|
|
uint8 *b = (uint8 *)ptr;
|
|
b[0] = (uint8)(value >> 8);
|
|
b[1] = (uint8)(value >> 0);
|
|
}
|
|
inline void WRITE_BE_UINT32(void *ptr, uint32 value) {
|
|
uint8 *b = (uint8 *)ptr;
|
|
b[0] = (uint8)(value >> 24);
|
|
b[1] = (uint8)(value >> 16);
|
|
b[2] = (uint8)(value >> 8);
|
|
b[3] = (uint8)(value >> 0);
|
|
}
|
|
inline uint64 READ_BE_UINT64(const void *ptr) {
|
|
const uint8 *b = (const uint8 *)ptr;
|
|
return ((uint64)b[0] << 56) | ((uint64)b[1] << 48) | ((uint64)b[2] << 40) | ((uint64)b[3] << 32) | ((uint64)b[4] << 24) | ((uint64)b[5] << 16) | ((uint64)b[6] << 8) | ((uint64)b[7]);
|
|
}
|
|
inline void WRITE_BE_UINT64(void *ptr, uint64 value) {
|
|
uint8 *b = (uint8 *)ptr;
|
|
b[0] = (uint8)(value >> 56);
|
|
b[1] = (uint8)(value >> 48);
|
|
b[2] = (uint8)(value >> 40);
|
|
b[3] = (uint8)(value >> 32);
|
|
b[4] = (uint8)(value >> 24);
|
|
b[5] = (uint8)(value >> 16);
|
|
b[6] = (uint8)(value >> 8);
|
|
b[7] = (uint8)(value >> 0);
|
|
}
|
|
|
|
# else
|
|
|
|
inline uint16 READ_BE_UINT16(const void *ptr) {
|
|
return SWAP_BYTES_16(READ_UINT16(ptr));
|
|
}
|
|
inline uint32 READ_BE_UINT32(const void *ptr) {
|
|
return SWAP_BYTES_32(READ_UINT32(ptr));
|
|
}
|
|
inline void WRITE_BE_UINT16(void *ptr, uint16 value) {
|
|
WRITE_UINT16(ptr, SWAP_BYTES_16(value));
|
|
}
|
|
inline void WRITE_BE_UINT32(void *ptr, uint32 value) {
|
|
WRITE_UINT32(ptr, SWAP_BYTES_32(value));
|
|
}
|
|
inline uint64 READ_BE_UINT64(const void *ptr) {
|
|
return SWAP_BYTES_64(READ_UINT64(ptr));
|
|
}
|
|
inline void WRITE_BE_UINT64(void *ptr, uint64 value) {
|
|
WRITE_UINT64(ptr, SWAP_BYTES_64(value));
|
|
}
|
|
|
|
# endif // if defined(SCUMM_NEED_ALIGNMENT)
|
|
|
|
#elif defined(SCUMM_BIG_ENDIAN)
|
|
|
|
#define READ_BE_UINT16(a) READ_UINT16(a)
|
|
#define READ_BE_UINT32(a) READ_UINT32(a)
|
|
|
|
#define WRITE_BE_UINT16(a, v) WRITE_UINT16(a, v)
|
|
#define WRITE_BE_UINT32(a, v) WRITE_UINT32(a, v)
|
|
|
|
#define FROM_LE_32(a) SWAP_BYTES_32(a)
|
|
#define FROM_LE_16(a) SWAP_BYTES_16(a)
|
|
|
|
#define FROM_BE_32(a) ((uint32)(a))
|
|
#define FROM_BE_16(a) ((uint16)(a))
|
|
|
|
#define TO_LE_32(a) SWAP_BYTES_32(a)
|
|
#define TO_LE_16(a) SWAP_BYTES_16(a)
|
|
|
|
#define TO_BE_32(a) ((uint32)(a))
|
|
#define TO_BE_16(a) ((uint16)(a))
|
|
|
|
#define CONSTANT_LE_32(a) SWAP_CONSTANT_32(a)
|
|
#define CONSTANT_LE_16(a) SWAP_CONSTANT_16(a)
|
|
|
|
#define CONSTANT_BE_32(a) ((uint32)(a))
|
|
#define CONSTANT_BE_16(a) ((uint16)(a))
|
|
|
|
#define READ_BE_UINT64(a) READ_UINT64(a)
|
|
#define WRITE_BE_UINT64(a, v) WRITE_UINT64(a, v)
|
|
#define FROM_LE_64(a) SWAP_BYTES_64(a)
|
|
#define FROM_BE_64(a) ((uint64)(a))
|
|
#define TO_LE_64(a) SWAP_BYTES_64(a)
|
|
#define TO_BE_64(a) ((uint64)(a))
|
|
#define CONSTANT_LE_64(a) SWAP_CONSTANT_64(a)
|
|
#define CONSTANT_BE_64(a) ((uint64)(a))
|
|
|
|
// if the unaligned load and the byteswap take a lot of instructions its better to directly read and invert
|
|
# if defined(SCUMM_NEED_ALIGNMENT) && !defined(__mips__)
|
|
|
|
inline uint16 READ_LE_UINT16(const void *ptr) {
|
|
const uint8 *b = (const uint8 *)ptr;
|
|
return (b[1] << 8) | b[0];
|
|
}
|
|
inline uint32 READ_LE_UINT32(const void *ptr) {
|
|
const uint8 *b = (const uint8 *)ptr;
|
|
return (b[3] << 24) | (b[2] << 16) | (b[1] << 8) | (b[0]);
|
|
}
|
|
inline void WRITE_LE_UINT16(void *ptr, uint16 value) {
|
|
uint8 *b = (uint8 *)ptr;
|
|
b[0] = (uint8)(value >> 0);
|
|
b[1] = (uint8)(value >> 8);
|
|
}
|
|
inline void WRITE_LE_UINT32(void *ptr, uint32 value) {
|
|
uint8 *b = (uint8 *)ptr;
|
|
b[0] = (uint8)(value >> 0);
|
|
b[1] = (uint8)(value >> 8);
|
|
b[2] = (uint8)(value >> 16);
|
|
b[3] = (uint8)(value >> 24);
|
|
}
|
|
|
|
inline uint64 READ_LE_UINT64(const void *ptr) {
|
|
const uint8 *b = (const uint8 *)ptr;
|
|
return ((uint64)b[7] << 56) | ((uint64)b[6] << 48) | ((uint64)b[5] << 40) | ((uint64)b[4] << 32) | ((uint64)b[3] << 24) | ((uint64)b[2] << 16) | ((uint64)b[1] << 8) | ((uint64)b[0]);
|
|
}
|
|
inline void WRITE_LE_UINT64(void *ptr, uint64 value) {
|
|
uint8 *b = (uint8 *)ptr;
|
|
b[0] = (uint8)(value >> 0);
|
|
b[1] = (uint8)(value >> 8);
|
|
b[2] = (uint8)(value >> 16);
|
|
b[3] = (uint8)(value >> 24);
|
|
b[4] = (uint8)(value >> 32);
|
|
b[5] = (uint8)(value >> 40);
|
|
b[6] = (uint8)(value >> 48);
|
|
b[7] = (uint8)(value >> 56);
|
|
}
|
|
|
|
# else
|
|
|
|
inline uint16 READ_LE_UINT16(const void *ptr) {
|
|
return SWAP_BYTES_16(READ_UINT16(ptr));
|
|
}
|
|
inline uint32 READ_LE_UINT32(const void *ptr) {
|
|
return SWAP_BYTES_32(READ_UINT32(ptr));
|
|
}
|
|
inline void WRITE_LE_UINT16(void *ptr, uint16 value) {
|
|
WRITE_UINT16(ptr, SWAP_BYTES_16(value));
|
|
}
|
|
inline void WRITE_LE_UINT32(void *ptr, uint32 value) {
|
|
WRITE_UINT32(ptr, SWAP_BYTES_32(value));
|
|
}
|
|
inline uint64 READ_LE_UINT64(const void *ptr) {
|
|
return SWAP_BYTES_64(READ_UINT64(ptr));
|
|
}
|
|
inline void WRITE_LE_UINT64(void *ptr, uint64 value) {
|
|
WRITE_UINT64(ptr, SWAP_BYTES_64(value));
|
|
}
|
|
|
|
# endif // if defined(SCUMM_NEED_ALIGNMENT)
|
|
|
|
#endif // if defined(SCUMM_LITTLE_ENDIAN)
|
|
|
|
inline uint32 READ_LE_UINT24(const void *ptr) {
|
|
const uint8 *b = (const uint8 *)ptr;
|
|
return (b[2] << 16) | (b[1] << 8) | (b[0]);
|
|
}
|
|
|
|
inline void WRITE_LE_UINT24(void *ptr, uint32 value) {
|
|
uint8 *b = (uint8 *)ptr;
|
|
b[0] = (uint8)(value >> 0);
|
|
b[1] = (uint8)(value >> 8);
|
|
b[2] = (uint8)(value >> 16);
|
|
}
|
|
|
|
inline uint32 READ_BE_UINT24(const void *ptr) {
|
|
const uint8 *b = (const uint8 *)ptr;
|
|
return (b[0] << 16) | (b[1] << 8) | (b[2]);
|
|
}
|
|
|
|
inline void WRITE_BE_UINT24(void *ptr, uint32 value) {
|
|
uint8 *b = (uint8 *)ptr;
|
|
b[0] = (uint8)(value >> 16);
|
|
b[1] = (uint8)(value >> 8);
|
|
b[2] = (uint8)(value >> 0);
|
|
}
|
|
|
|
#ifdef SCUMM_LITTLE_ENDIAN
|
|
#define READ_UINT24(a) READ_LE_UINT24(a)
|
|
#define WRITE_UINT24(a,b) WRITE_LE_UINT24(a,b)
|
|
#else
|
|
#define READ_UINT24(a) READ_BE_UINT24(a)
|
|
#define WRITE_UINT24(a,b) WRITE_BE_UINT24(a,b)
|
|
#endif
|
|
|
|
union SwapFloat {
|
|
float f;
|
|
uint32 u32;
|
|
};
|
|
|
|
STATIC_ASSERT(sizeof(float) == sizeof(uint32), Unexpected_size_of_float);
|
|
|
|
inline float READ_LE_FLOAT32(const void *ptr) {
|
|
SwapFloat swap;
|
|
swap.u32 = READ_LE_UINT32(ptr);
|
|
return swap.f;
|
|
}
|
|
|
|
inline void WRITE_LE_FLOAT32(void *ptr, float value) {
|
|
SwapFloat swap;
|
|
swap.f = value;
|
|
WRITE_LE_UINT32(ptr, swap.u32);
|
|
}
|
|
|
|
inline float READ_BE_FLOAT32(const void *ptr) {
|
|
SwapFloat swap;
|
|
swap.u32 = READ_BE_UINT32(ptr);
|
|
return swap.f;
|
|
}
|
|
|
|
inline void WRITE_BE_FLOAT32(void *ptr, float value) {
|
|
SwapFloat swap;
|
|
swap.f = value;
|
|
WRITE_BE_UINT32(ptr, swap.u32);
|
|
}
|
|
|
|
#ifdef SCUMM_LITTLE_ENDIAN
|
|
#define READ_FLOAT32(a) READ_LE_FLOAT32(a)
|
|
#define WRITE_FLOAT32(a,b) WRITE_LE_FLOAT32(a,b)
|
|
#else
|
|
#define READ_FLOAT32(a) READ_BE_FLOAT32(a)
|
|
#define WRITE_FLOAT32(a,b) WRITE_BE_FLOAT32(a,b)
|
|
#endif
|
|
|
|
#ifdef SCUMM_FLOAT_WORD_LITTLE_ENDIAN
|
|
union SwapDouble {
|
|
double d;
|
|
uint64 u64;
|
|
struct {
|
|
uint32 low, high;
|
|
} u32;
|
|
};
|
|
#else
|
|
union SwapDouble {
|
|
double d;
|
|
uint64 u64;
|
|
struct {
|
|
uint32 high, low;
|
|
} u32;
|
|
};
|
|
#endif
|
|
|
|
STATIC_ASSERT(sizeof(double) == sizeof(uint64) || sizeof(double) == sizeof(uint32), Unexpected_size_of_double);
|
|
|
|
template<size_t n> inline double READ_DOUBLE(const SwapDouble& sw);
|
|
template<size_t n> inline void WRITE_DOUBLE(SwapDouble &sw, double d);
|
|
|
|
// 64-bit double
|
|
template<> inline double READ_DOUBLE<sizeof(uint64)>(const SwapDouble& sd)
|
|
{
|
|
return sd.d;
|
|
}
|
|
|
|
template<> inline void WRITE_DOUBLE<sizeof(uint64)>(SwapDouble &sd, double d)
|
|
{
|
|
sd.d = d;
|
|
}
|
|
|
|
// 32-bit double
|
|
template<> inline double READ_DOUBLE<sizeof(uint32)>(const SwapDouble& sd)
|
|
{
|
|
SwapFloat sf;
|
|
uint32 e = (sd.u32.high >> 20) & 0x7ff;
|
|
if (e <= 896) {
|
|
// Too small for normalized, create a zero with the correct sign
|
|
// (FIXME: Create denormalized numbers instead when possible?)
|
|
sf.u32 = (sd.u32.high & 0x80000000U); // sign bit
|
|
return sf.f;
|
|
} else if(e >= 1151) {
|
|
// Overflow, infinity or NaN
|
|
if (e < 2047) {
|
|
// Overflow; make sure result is infinity and not NaN
|
|
sf.u32 = (sd.u32.high & 0x80000000U) | // sign bit
|
|
(255 << 23); // exponent
|
|
return sf.f;
|
|
}
|
|
e = 255;
|
|
} else
|
|
e -= 896;
|
|
sf.u32 = (sd.u32.high & 0x80000000U) | // sign bit
|
|
(e << 23) | // exponent
|
|
((sd.u32.high & 0xfffff) << 3) | (sd.u32.low >> 29); // mantissa
|
|
return sf.f;
|
|
}
|
|
|
|
template<> inline void WRITE_DOUBLE<sizeof(uint32)>(SwapDouble &sd, double d)
|
|
{
|
|
SwapFloat sf;
|
|
sf.f = d;
|
|
uint32 e = (sf.u32 >> 23) & 0xff;
|
|
if (!e) {
|
|
// Denormalized or zero, create a zero with the correct sign
|
|
// (FIXME: Convert denormalized 32-bit to normalized 64-bit?)
|
|
sd.u32.high = (sf.u32 & 0x80000000U); // sign bit
|
|
sd.u32.low = 0;
|
|
return;
|
|
} else if (e == 255) {
|
|
// Infinity or NaN
|
|
e = 2047;
|
|
} else
|
|
e += 896;
|
|
sd.u32.high = (sf.u32 & 0x80000000U) | // sign bit
|
|
(e << 20) | // exponent
|
|
((sf.u32 >> 3) & 0xfffff); // mantissa
|
|
sd.u32.low = sf.u32 << 29;
|
|
}
|
|
|
|
inline double READ_LE_FLOAT64(const void *ptr) {
|
|
SwapDouble swap;
|
|
const uint8 *b = (const uint8 *)ptr;
|
|
swap.u32.low = READ_LE_UINT32(b);
|
|
swap.u32.high = READ_LE_UINT32(b + 4);
|
|
return READ_DOUBLE<sizeof(double)>(swap);
|
|
}
|
|
|
|
inline void WRITE_LE_FLOAT64(void *ptr, double value) {
|
|
SwapDouble swap;
|
|
WRITE_DOUBLE<sizeof(double)>(swap, value);
|
|
uint8 *b = (uint8 *)ptr;
|
|
WRITE_LE_UINT32(b, swap.u32.low);
|
|
WRITE_LE_UINT32(b + 4, swap.u32.high);
|
|
}
|
|
|
|
inline double READ_BE_FLOAT64(const void *ptr) {
|
|
SwapDouble swap;
|
|
const uint8 *b = (const uint8 *)ptr;
|
|
swap.u32.high = READ_BE_UINT32(b);
|
|
swap.u32.low = READ_BE_UINT32(b + 4);
|
|
return READ_DOUBLE<sizeof(double)>(swap);
|
|
}
|
|
|
|
inline void WRITE_BE_FLOAT64(void *ptr, double value) {
|
|
SwapDouble swap;
|
|
WRITE_DOUBLE<sizeof(double)>(swap, value);
|
|
uint8 *b = (uint8 *)ptr;
|
|
WRITE_BE_UINT32(b, swap.u32.high);
|
|
WRITE_BE_UINT32(b + 4, swap.u32.low);
|
|
}
|
|
|
|
inline double READ_FPA_FLOAT64(const void *ptr) {
|
|
SwapDouble swap;
|
|
const uint8 *b = (const uint8 *)ptr;
|
|
swap.u32.high = READ_LE_UINT32(b);
|
|
swap.u32.low = READ_LE_UINT32(b + 4);
|
|
return READ_DOUBLE<sizeof(double)>(swap);
|
|
}
|
|
|
|
inline void WRITE_FPA_FLOAT64(void *ptr, double value) {
|
|
SwapDouble swap;
|
|
WRITE_DOUBLE<sizeof(double)>(swap, value);
|
|
uint8 *b = (uint8 *)ptr;
|
|
WRITE_LE_UINT32(b, swap.u32.high);
|
|
WRITE_LE_UINT32(b + 4, swap.u32.low);
|
|
}
|
|
|
|
inline double READ_FLOAT64(const void *ptr) {
|
|
SwapDouble swap;
|
|
swap.u64 = READ_UINT64(ptr);
|
|
return READ_DOUBLE<sizeof(double)>(swap);
|
|
}
|
|
|
|
inline void WRITE_FLOAT64(void *ptr, double value) {
|
|
SwapDouble swap;
|
|
WRITE_DOUBLE<sizeof(double)>(swap, value);
|
|
WRITE_UINT64(ptr, swap.u64);
|
|
}
|
|
|
|
inline int16 READ_LE_INT16(const void *ptr) {
|
|
return static_cast<int16>(READ_LE_UINT16(ptr));
|
|
}
|
|
|
|
inline void WRITE_LE_INT16(void *ptr, int16 value) {
|
|
WRITE_LE_UINT16(ptr, static_cast<uint16>(value));
|
|
}
|
|
|
|
inline int16 READ_BE_INT16(const void *ptr) {
|
|
return static_cast<int16>(READ_BE_UINT16(ptr));
|
|
}
|
|
|
|
inline void WRITE_BE_INT16(void *ptr, int16 value) {
|
|
WRITE_BE_UINT16(ptr, static_cast<uint16>(value));
|
|
}
|
|
|
|
inline int32 READ_LE_INT32(const void *ptr) {
|
|
return static_cast<int32>(READ_LE_UINT32(ptr));
|
|
}
|
|
|
|
inline void WRITE_LE_INT32(void *ptr, int32 value) {
|
|
WRITE_LE_UINT32(ptr, static_cast<uint32>(value));
|
|
}
|
|
|
|
inline int32 READ_BE_INT32(const void *ptr) {
|
|
return static_cast<int32>(READ_BE_UINT32(ptr));
|
|
}
|
|
|
|
inline void WRITE_BE_INT32(void *ptr, int32 value) {
|
|
WRITE_BE_UINT32(ptr, static_cast<uint32>(value));
|
|
}
|
|
/** @} */
|
|
/** @} */
|
|
|
|
#endif
|