scummvm/engines/xeen/music.cpp
2016-09-19 20:59:55 -04:00

744 lines
19 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "common/md5.h"
#include "xeen/music.h"
#include "xeen/xeen.h"
#include "xeen/files.h"
namespace Xeen {
#define CALLBACKS_PER_SECOND 73
/*------------------------------------------------------------------------*/
MusicDriver::MusicDriver() : _musicPlaying(false), _fxPlaying(false),
_musCountdownTimer(0), _fxCountdownTimer(0), _musDataPtr(nullptr),
_fxDataPtr(nullptr), _fxStartPtr(nullptr), _musStartPtr(nullptr),
_exclude7(false), _frameCtr(0) {
_channels.resize(CHANNEL_COUNT);
}
MusicDriver::~MusicDriver() {
_musicPlaying = _fxPlaying = false;
_musCountdownTimer = _fxCountdownTimer = 0;
}
void MusicDriver::execute() {
bool isFX = false;
const byte *srcP = nullptr;
const byte *startP = nullptr;
// Single iteration loop to avoid use of GOTO
do {
if (_musicPlaying) {
startP = _musStartPtr;
srcP = _musDataPtr;
isFX = false;
if (_musCountdownTimer == 0 || --_musCountdownTimer == 0)
break;
}
if (_fxPlaying) {
startP = _fxStartPtr;
srcP = _fxDataPtr;
isFX = true;
if (_fxCountdownTimer == 0 || --_fxCountdownTimer == 0)
break;
}
pausePostProcess();
return;
} while (0);
++_frameCtr;
debugC(3, kDebugSound, "\nMusicDriver frame - #%x", _frameCtr);
// Main loop
bool breakFlag = false;
while (!breakFlag) {
debugCN(3, kDebugSound, "MUSCODE %.4x - %.2x ", (srcP - startP), *srcP);
byte nextByte = *srcP++;
int cmd = (nextByte >> 4) & 15;
int param = (nextByte & 15);
CommandFn fn = isFX ? FX_COMMANDS[cmd] : MUSIC_COMMANDS[cmd];
breakFlag = (this->*fn)(srcP, param);
}
}
bool MusicDriver::musCallSubroutine(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "musCallSubroutine");
if (_musSubroutines.size() < 16) {
const byte *returnP = srcP + 2;
srcP = _musStartPtr + READ_LE_UINT16(srcP);
_musSubroutines.push(Subroutine(returnP, srcP));
}
return false;
}
bool MusicDriver::musSetCountdown(const byte *&srcP, byte param) {
// Set the countdown timer
if (!param)
param = *srcP++;
_musCountdownTimer = param;
_musDataPtr = srcP;
debugC(3, kDebugSound, "musSetCountdown %d", param);
// Do paused handling and break out of processing loop
pausePostProcess();
return true;
}
bool MusicDriver::cmdNoOperation(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "cmdNoOperation");
return false;
}
bool MusicDriver::musSkipWord(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "musSkipWord");
srcP += 2;
return false;
}
bool MusicDriver::cmdFreezeFrequency(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "cmdFreezeFrequency %d", param);
_channels[param]._changeFrequency = false;
return false;
}
bool MusicDriver::cmdChangeFrequency(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "cmdChangeFrequency %d", param);
if (param != 7 || !_exclude7) {
_channels[param]._freqCtrChange = (int8)*srcP++;
_channels[param]._freqCtr = 0xFF;
_channels[param]._changeFrequency = true;
_channels[param]._freqChange = (int16)READ_BE_UINT16(srcP);
srcP += 2;
} else {
srcP += 3;
}
return true;
}
bool MusicDriver::musEndSubroutine(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "musEndSubroutine %d", param);
if (param != 15) {
// Music has ended, so flag it stopped
_musicPlaying = false;
return true;
}
// Returning from subroutine, or looping back to start of music
srcP = _musSubroutines.empty() ? _musStartPtr : _musSubroutines.pop()._returnP;
return false;
}
bool MusicDriver::fxCallSubroutine(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "fxCallSubroutine");
if (_fxSubroutines.size() < 16) {
const byte *startP = srcP + 2;
srcP = _musStartPtr + READ_LE_UINT16(srcP);
_fxSubroutines.push(Subroutine(startP, srcP));
}
return false;
}
bool MusicDriver::fxSetCountdown(const byte *&srcP, byte param) {
// Set the countdown timer
if (!param)
param = *srcP++;
_fxCountdownTimer = param;
_fxDataPtr = srcP;
debugC(3, kDebugSound, "fxSetCountdown %d", param);
// Do paused handling and break out of processing loop
pausePostProcess();
return true;
}
bool MusicDriver::fxEndSubroutine(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "fxEndSubroutine %d", param);
if (param != 15) {
// FX has ended, so flag it stopped
_fxPlaying = false;
return true;
}
srcP = _fxSubroutines.empty() ? _fxStartPtr : _fxSubroutines.pop()._returnP;
return false;
}
void MusicDriver::playFX(uint effectId, const byte *data) {
if (!_fxPlaying || effectId < 7 || effectId >= 11) {
_musStartPtr = nullptr;
_fxDataPtr = _fxStartPtr = data;
_fxCountdownTimer = 0;
_channels[7]._changeFrequency = _channels[8]._changeFrequency = false;
resetFX();
_fxPlaying = true;
}
debugC(1, kDebugSound, "Starting FX %d", effectId);
}
void MusicDriver::stopFX() {
resetFX();
_fxPlaying = false;
_fxStartPtr = _fxDataPtr = nullptr;
}
void MusicDriver::playSong(const byte *data) {
_musDataPtr = _musStartPtr = data;
_musSubroutines.clear();
_musCountdownTimer = 0;
_musicPlaying = true;
debugC(1, kDebugSound, "Starting song");
}
int MusicDriver::songCommand(uint commandId, byte volume) {
if (commandId == STOP_SONG) {
_musicPlaying = false;
} else if (commandId == RESTART_SONG) {
_musicPlaying = true;
_musDataPtr = nullptr;
_musSubroutines.clear();
}
return 0;
}
const CommandFn MusicDriver::MUSIC_COMMANDS[16] = {
&MusicDriver::musCallSubroutine, &MusicDriver::musSetCountdown,
&MusicDriver::musSetInstrument, &MusicDriver::cmdNoOperation,
&MusicDriver::musSetPitchWheel, &MusicDriver::musSkipWord,
&MusicDriver::musSetPanning, &MusicDriver::cmdNoOperation,
&MusicDriver::musFade, &MusicDriver::musStartNote,
&MusicDriver::musSetVolume, &MusicDriver::musInjectMidi,
&MusicDriver::musPlayInstrument, &MusicDriver::cmdFreezeFrequency,
&MusicDriver::cmdChangeFrequency, &MusicDriver::musEndSubroutine
};
const CommandFn MusicDriver::FX_COMMANDS[16] = {
&MusicDriver::fxCallSubroutine, &MusicDriver::fxSetCountdown,
&MusicDriver::fxSetInstrument, &MusicDriver::fxSetVolume,
&MusicDriver::fxMidiReset, &MusicDriver::fxMidiDword,
&MusicDriver::fxSetPanning, &MusicDriver::fxChannelOff,
&MusicDriver::fxFade, &MusicDriver::fxStartNote,
&MusicDriver::cmdNoOperation, &MusicDriver::fxInjectMidi,
&MusicDriver::fxPlayInstrument, &MusicDriver::cmdFreezeFrequency,
&MusicDriver::cmdChangeFrequency, &MusicDriver::fxEndSubroutine
};
/*------------------------------------------------------------------------*/
AdlibMusicDriver::AdlibMusicDriver() : _field180(0), _field181(0), _field182(0),
_volume(127) {
Common::fill(&_musInstrumentPtrs[0], &_musInstrumentPtrs[16], (const byte *)nullptr);
Common::fill(&_fxInstrumentPtrs[0], &_fxInstrumentPtrs[16], (const byte *)nullptr);
_opl = OPL::Config::create();
_opl->init();
_opl->start(new Common::Functor0Mem<void, AdlibMusicDriver>(this, &AdlibMusicDriver::onTimer), CALLBACKS_PER_SECOND);
initialize();
}
AdlibMusicDriver::~AdlibMusicDriver() {
_opl->stop();
delete _opl;
}
void AdlibMusicDriver::onTimer() {
Common::StackLock slock(_driverMutex);
execute();
flush();
}
void AdlibMusicDriver::initialize() {
write(1, 0x20);
write(8, 0);
write(0xBD, 0);
resetFrequencies();
AdlibMusicDriver::resetFX();
}
void AdlibMusicDriver::playFX(uint effectId, const byte *data) {
Common::StackLock slock(_driverMutex);
MusicDriver::playFX(effectId, data);
}
void AdlibMusicDriver::playSong(const byte *data) {
Common::StackLock slock(_driverMutex);
MusicDriver::playSong(data);
_field180 = 0;
resetFrequencies();
}
int AdlibMusicDriver::songCommand(uint commandId, byte volume) {
Common::StackLock slock(_driverMutex);
MusicDriver::songCommand(commandId, volume);
if (commandId == STOP_SONG) {
_field180 = 0;
resetFrequencies();
} else if (commandId == RESTART_SONG) {
_field180 = 0;
_musicPlaying = true;
} else if (commandId < 0x100) {
if (_musicPlaying) {
_field180 = commandId;
_field182 = 63;
}
} else if (commandId == SET_VOLUME) {
_volume = volume;
} else if (commandId == GET_STATUS) {
return _field180;
}
return 0;
}
void AdlibMusicDriver::write(int reg, int val) {
_queue.push(RegisterValue(reg, val));
debugC(9, kDebugSound, "%.2x %.2x", reg, val);
}
void AdlibMusicDriver::flush() {
Common::StackLock slock(_driverMutex);
while (!_queue.empty()) {
RegisterValue v = _queue.pop();
_opl->writeReg(v._regNum, v._value);
}
}
void AdlibMusicDriver::pausePostProcess() {
if (_field180 && ((_field181 += _field180) < 0)) {
if (--_field182 < 0) {
_musicPlaying = false;
_field180 = 0;
resetFrequencies();
} else {
for (int channelNum = 6; channelNum >= 0; --channelNum) {
if (_channels[channelNum]._volume < 63)
setOutputLevel(channelNum, ++_channels[channelNum]._volume);
}
}
}
for (int channelNum = 8; channelNum != 6 || (channelNum == 7 && _exclude7); --channelNum) {
Channel &chan = _channels[channelNum];
if (!chan._changeFrequency || (chan._freqCtr += chan._freqCtrChange) >= 0)
continue;
uint freq = chan._frequency & 0x3FF;
uint val = chan._frequency >> 8;
byte val1 = val & 0x20;
byte val2 = val & 0x1C;
freq += chan._freqChange;
if (chan._freqChange < 0) {
if (freq <= 388) {
freq <<= 1;
if (!(freq & 0x3FF))
--freq;
}
val2 = (val2 - 4) & 0x1C;
} else {
if (freq >= 734) {
freq >>= 1;
if (!(freq & 0x3FF))
++freq;
}
val2 = (val2 + 4) & 0x1C;
}
freq &= 0x3FF;
freq |= (val2 << 8);
freq |= val1;
chan._frequency = freq;
setFrequency(channelNum, freq);
}
}
void AdlibMusicDriver::resetFX() {
if (!_exclude7) {
_channels[7]._frequency = 0;
setFrequency(7, 0);
_channels[7]._volume = 63;
setOutputLevel(7, 63);
}
_channels[8]._frequency = 0;
setFrequency(8, 0);
_channels[8]._volume = 63;
setOutputLevel(8, 63);
}
void AdlibMusicDriver::resetFrequencies() {
for (int opNum = 6; opNum >= 0; --opNum) {
_channels[opNum]._frequency = 0;
setFrequency(opNum, 0);
}
}
void AdlibMusicDriver::setFrequency(byte operatorNum, uint frequency) {
write(0xA0 + operatorNum, frequency & 0xff);
write(0xB0 + operatorNum, (frequency >> 8));
}
uint AdlibMusicDriver::calcFrequency(byte note) {
return WAVEFORMS[note & 0x1F] + ((note & 0xE0) << 5);
}
void AdlibMusicDriver::setOutputLevel(byte channelNum, uint level) {
write(0x40 + OPERATOR2_INDEXES[channelNum], level |
(_channels[channelNum]._scalingValue & 0xC0));
}
void AdlibMusicDriver::playInstrument(byte channelNum, const byte *data) {
byte op1 = OPERATOR1_INDEXES[channelNum];
byte op2 = OPERATOR2_INDEXES[channelNum];
debugC(2, kDebugSound, "---START-playInstrument - %d", channelNum);
write(0x20 + op1, *data++);
write(0x40 + op1, *data++);
write(0x60 + op1, *data++);
write(0x80 + op1, *data++);
write(0xE0 + op1, *data++);
write(0x20 + op2, *data++);
int scalingVal = *data++;
_channels[channelNum]._scalingValue = scalingVal;
scalingVal += (127 - _volume) / 2;
if (scalingVal > 63) {
scalingVal = 63;
if (_field180)
scalingVal = (scalingVal & 0xC0) | _field182;
}
write(0x40 + op2, scalingVal);
write(0x60 + op2, *data++);
write(0x80 + op2, *data++);
write(0xE0 + op2, *data++);
write(0xC0 + channelNum, *data++);
debugC(2, kDebugSound, "---END-playInstrument");
}
bool AdlibMusicDriver::musSetInstrument(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "musSetInstrument %d", param);
_musInstrumentPtrs[param] = srcP;
srcP += 26;
return false;
}
bool AdlibMusicDriver::musSetPitchWheel(const byte *&srcP, byte param) {
// Adlib does not support this
debugC(3, kDebugSound, "musSetPitchWheel");
srcP += 2;
return false;
}
bool AdlibMusicDriver::musSetPanning(const byte *&srcP, byte param) {
// Adlib does not support this
debugC(3, kDebugSound, "musSetPanning");
++srcP;
return false;
}
bool AdlibMusicDriver::musFade(const byte *&srcP, byte param) {
++srcP;
if (param < 7)
setFrequency(param, _channels[param]._frequency);
debugC(3, kDebugSound, "musFade");
return false;
}
bool AdlibMusicDriver::musStartNote(const byte *&srcP, byte param) {
if (param < 7) {
byte note = *srcP++;
++srcP; // Second byte is fade, which is unused by Adlib
uint freq = calcFrequency(note);
debugC(3, kDebugSound, "musStartNote %x -> %x", note, freq);
setFrequency(param, freq);
freq |= 0x2000;
_channels[param]._frequency = freq;
setFrequency(param, freq);
} else {
srcP += 2;
debugC(3, kDebugSound, "musStartNote skipped");
}
return false;
}
bool AdlibMusicDriver::musSetVolume(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "musSetVolume %d", (int)*srcP);
if (*srcP++ == 5 && !_field180) {
_channels[param]._volume = *srcP;
setOutputLevel(param, *srcP);
}
++srcP;
return false;
}
bool AdlibMusicDriver::musInjectMidi(const byte *&srcP, byte param) {
// Adlib does not support MIDI. So simply keep skipping over bytes
// until an 'F7' byte is found that flags the end of the MIDI data
debugC(3, kDebugSound, "musInjectMidi");
while (*srcP++ != 0xF7)
;
return false;
}
bool AdlibMusicDriver::musPlayInstrument(const byte *&srcP, byte param) {
byte instrument = *srcP++;
debugC(3, kDebugSound, "musPlayInstrument %d, %d", param, instrument);
if (param < 7)
playInstrument(param, _musInstrumentPtrs[instrument]);
return false;
}
bool AdlibMusicDriver::fxSetInstrument(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "fxSetInstrument %d", param);
_fxInstrumentPtrs[param] = srcP;
srcP += 11;
return false;
}
bool AdlibMusicDriver::fxSetVolume(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "fxSetVolume %d", (int)*srcP);
if (!_field180 && (!_exclude7 || param != 7)) {
_channels[param]._volume = *srcP;
setOutputLevel(param, *srcP);
}
++srcP;
return false;
}
bool AdlibMusicDriver::fxMidiReset(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "fxMidiReset");
return false;
}
bool AdlibMusicDriver::fxMidiDword(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "fxMidiDword");
return false;
}
bool AdlibMusicDriver::fxSetPanning(const byte *&srcP, byte param) {
byte note = *srcP++;
debugC(3, kDebugSound, "fxSetPanning - %x", note);
if (!_exclude7 || param != 7) {
uint freq = calcFrequency(note);
setFrequency(param, freq);
_channels[param]._frequency = freq;
}
return false;
}
bool AdlibMusicDriver::fxChannelOff(const byte *&srcP, byte param) {
debugC(3, kDebugSound, "fxChannelOff %d", param);
_channels[param]._frequency &= ~0x2000;
write(0xB0 + param, _channels[param]._frequency);
return false;
}
bool AdlibMusicDriver::fxFade(const byte *&srcP, byte param) {
uint freq = calcFrequency(*srcP++);
debugC(3, kDebugSound, "fxFade %d %x", param, freq);
if (!_exclude7 || param != 7) {
_channels[param]._frequency = freq;
setFrequency(param, freq);
}
return false;
}
bool AdlibMusicDriver::fxStartNote(const byte *&srcP, byte param) {
if (!_exclude7 || param != 7) {
byte note = *srcP++;
uint freq = calcFrequency(note);
debugC(3, kDebugSound, "fxStartNote %x -> %x", note, freq);
setFrequency(param, freq);
freq |= 0x2000;
_channels[param]._frequency = freq;
setFrequency(param, freq);
} else {
++srcP;
debugC(3, kDebugSound, "fxStartNote skipped");
}
return false;
}
bool AdlibMusicDriver::fxInjectMidi(const byte *&srcP, byte param) {
// Surpringly, unlike the musInjectMidi, this version doesn't have
// any logic to skip over following MIDI data. Which must mean the opcode
// and/or it's data aren't present in the admus driver file
debugC(3, kDebugSound, "fxInjectMidi");
return false;
}
bool AdlibMusicDriver::fxPlayInstrument(const byte *&srcP, byte param) {
byte instrument = *srcP++;
debugC(3, kDebugSound, "fxPlayInstrument %d, %d", param, instrument);
if (!_exclude7 || param != 7)
playInstrument(param, _fxInstrumentPtrs[instrument]);
return false;
}
const byte AdlibMusicDriver::OPERATOR1_INDEXES[CHANNEL_COUNT] = {
0, 1, 2, 8, 9, 0xA, 0x10, 0x11, 0x12
};
const byte AdlibMusicDriver::OPERATOR2_INDEXES[CHANNEL_COUNT] = {
3, 4, 5, 0xB, 0xC, 0xD, 0x13, 0x14, 0x15
};
const uint AdlibMusicDriver::WAVEFORMS[24] = {
0, 347, 388, 436, 462, 519, 582, 646,
0, 362, 406, 455, 484, 542, 607, 680,
0, 327, 367, 412, 436, 489, 549, 618
};
/*------------------------------------------------------------------------*/
Music::Music() : _musicDriver(nullptr), _songData(nullptr),
_archiveType(ANY_ARCHIVE), _effectsData(nullptr), _musicOn(true) {
_musicDriver = new AdlibMusicDriver();
}
Music::~Music() {
stopSong();
delete _musicDriver;
delete[] _effectsData;
delete[] _songData;
}
void Music::loadEffectsData() {
// Check whether it's the first load, or switching from intro to game data
if (_effectsData && !(_archiveType == INTRO_ARCHIVE && File::_currentArchive != INTRO_ARCHIVE))
return;
// Stop any prior FX
stopFX();
delete[] _effectsData;
_archiveType = File::_currentArchive;
// Load in an entire driver so we have quick access to the effects data
// that's hardcoded within it
File file("blastmus");
byte *effectsData = new byte[file.size()];
file.seek(0);
file.read(effectsData, file.size());
file.close();
_effectsData = effectsData;
// Locate the playFX routine
const byte *fx = effectsData + READ_LE_UINT16(effectsData + 10) + 12;
assert(READ_BE_UINT16(fx + 28) == 0x81FB);
uint numEffects = READ_LE_UINT16(fx + 30);
assert(READ_BE_UINT16(fx + 36) == 0x8B87);
const byte *table = effectsData + READ_LE_UINT16(fx + 38);
// Extract the effects offsets
_effectsOffsets.resize(numEffects);
for (uint idx = 0; idx < numEffects; ++idx)
_effectsOffsets[idx] = READ_LE_UINT16(&table[idx * 2]);
}
void Music::playFX(uint effectId) {
stopFX();
loadEffectsData();
if (effectId < _effectsOffsets.size()) {
const byte *dataP = &_effectsData[_effectsOffsets[effectId]];
_musicDriver->playFX(effectId, dataP);
}
}
void Music::stopFX() {
_musicDriver->stopFX();
}
int Music::songCommand(uint commandId, byte volume) {
int result = _musicDriver->songCommand(commandId, volume);
if (commandId == STOP_SONG) {
delete[] _songData;
_songData = nullptr;
}
return result;
}
void Music::playSong(Common::SeekableReadStream &stream) {
stopSong();
byte *songData = new byte[stream.size()];
stream.seek(0);
stream.read(songData, stream.size());
_songData = songData;
_musicDriver->playSong(_songData);
}
void Music::playSong(const Common::String &name, int param) {
File f(name);
playSong(f);
}
} // End of namespace Xeen