scummvm/video/qt_decoder.cpp

617 lines
18 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
//
// Partially based on ffmpeg code.
//
// Copyright (c) 2001 Fabrice Bellard.
// First version by Francois Revol revol@free.fr
// Seek function by Gael Chardon gael.dev@4now.net
//
#include "video/qt_decoder.h"
#include "audio/audiostream.h"
#include "common/debug.h"
#include "common/endian.h"
#include "common/memstream.h"
#include "common/system.h"
#include "common/textconsole.h"
#include "common/util.h"
// Video codecs
#include "video/codecs/codec.h"
#include "video/codecs/cinepak.h"
#include "video/codecs/mjpeg.h"
#include "video/codecs/qtrle.h"
#include "video/codecs/rpza.h"
#include "video/codecs/smc.h"
#include "video/codecs/cdtoons.h"
namespace Video {
////////////////////////////////////////////
// QuickTimeDecoder
////////////////////////////////////////////
QuickTimeDecoder::QuickTimeDecoder() {
_curFrame = -1;
_startTime = _nextFrameStartTime = 0;
_audHandle = Audio::SoundHandle();
_scaledSurface = 0;
_dirtyPalette = false;
_palette = 0;
}
QuickTimeDecoder::~QuickTimeDecoder() {
close();
}
uint16 QuickTimeDecoder::getWidth() const {
if (_videoTrackIndex < 0)
return 0;
return (Common::Rational(_tracks[_videoTrackIndex]->width) / getScaleFactorX()).toInt();
}
uint16 QuickTimeDecoder::getHeight() const {
if (_videoTrackIndex < 0)
return 0;
return (Common::Rational(_tracks[_videoTrackIndex]->height) / getScaleFactorY()).toInt();
}
uint32 QuickTimeDecoder::getFrameCount() const {
if (_videoTrackIndex < 0)
return 0;
return _tracks[_videoTrackIndex]->frameCount;
}
Common::Rational QuickTimeDecoder::getScaleFactorX() const {
if (_videoTrackIndex < 0)
return 1;
return (_scaleFactorX * _tracks[_videoTrackIndex]->scaleFactorX);
}
Common::Rational QuickTimeDecoder::getScaleFactorY() const {
if (_videoTrackIndex < 0)
return 1;
return (_scaleFactorY * _tracks[_videoTrackIndex]->scaleFactorY);
}
uint32 QuickTimeDecoder::getFrameDuration() {
if (_videoTrackIndex < 0)
return 0;
uint32 curFrameIndex = 0;
for (int32 i = 0; i < _tracks[_videoTrackIndex]->timeToSampleCount; i++) {
curFrameIndex += _tracks[_videoTrackIndex]->timeToSample[i].count;
if ((uint32)_curFrame < curFrameIndex) {
// Ok, now we have what duration this frame has.
return _tracks[_videoTrackIndex]->timeToSample[i].duration;
}
}
// This should never occur
error ("Cannot find duration for frame %d", _curFrame);
return 0;
}
Graphics::PixelFormat QuickTimeDecoder::getPixelFormat() const {
Codec *codec = findDefaultVideoCodec();
if (!codec)
return Graphics::PixelFormat::createFormatCLUT8();
return codec->getPixelFormat();
}
uint32 QuickTimeDecoder::findKeyFrame(uint32 frame) const {
for (int i = _tracks[_videoTrackIndex]->keyframeCount - 1; i >= 0; i--)
if (_tracks[_videoTrackIndex]->keyframes[i] <= frame)
return _tracks[_videoTrackIndex]->keyframes[i];
// If none found, we'll assume the requested frame is a key frame
return frame;
}
void QuickTimeDecoder::seekToFrame(uint32 frame) {
assert(_videoTrackIndex >= 0);
assert(frame < _tracks[_videoTrackIndex]->frameCount);
// Stop all audio (for now)
stopAudio();
// Track down the keyframe
_curFrame = findKeyFrame(frame) - 1;
while (_curFrame < (int32)frame - 1)
decodeNextFrame();
// Map out the starting point
_nextFrameStartTime = 0;
uint32 curFrame = 0;
for (int32 i = 0; i < _tracks[_videoTrackIndex]->timeToSampleCount && curFrame < frame; i++) {
for (int32 j = 0; j < _tracks[_videoTrackIndex]->timeToSample[i].count && curFrame < frame; j++) {
curFrame++;
_nextFrameStartTime += _tracks[_videoTrackIndex]->timeToSample[i].duration;
}
}
// Adjust the video starting point
const Audio::Timestamp curVideoTime(0, _nextFrameStartTime, _tracks[_videoTrackIndex]->timeScale);
_startTime = g_system->getMillis() - curVideoTime.msecs();
resetPauseStartTime();
// Adjust the audio starting point
if (_audioTrackIndex >= 0) {
_audioStartOffset = curVideoTime;
// Seek to the new audio location
setAudioStreamPos(_audioStartOffset);
// Restart the audio
startAudio();
}
}
void QuickTimeDecoder::seekToTime(Audio::Timestamp time) {
// Use makeQuickTimeStream() instead
if (_videoTrackIndex < 0)
error("Audio-only seeking not supported");
// Try to find the last frame that should have been decoded
uint32 frame = 0;
Audio::Timestamp totalDuration(0, _tracks[_videoTrackIndex]->timeScale);
bool done = false;
for (int32 i = 0; i < _tracks[_videoTrackIndex]->timeToSampleCount && !done; i++) {
for (int32 j = 0; j < _tracks[_videoTrackIndex]->timeToSample[i].count; j++) {
totalDuration = totalDuration.addFrames(_tracks[_videoTrackIndex]->timeToSample[i].duration);
if (totalDuration > time) {
done = true;
break;
}
frame++;
}
}
seekToFrame(frame);
}
void QuickTimeDecoder::startAudio() {
if (_audStream) {
updateAudioBuffer();
g_system->getMixer()->playStream(Audio::Mixer::kPlainSoundType, &_audHandle, _audStream, -1, Audio::Mixer::kMaxChannelVolume, 0, DisposeAfterUse::NO);
} // else no audio or the audio compression is not supported
}
void QuickTimeDecoder::stopAudio() {
if (_audStream)
g_system->getMixer()->stopHandle(_audHandle);
}
void QuickTimeDecoder::pauseVideoIntern(bool pause) {
if (_audStream)
g_system->getMixer()->pauseHandle(_audHandle, pause);
}
Codec *QuickTimeDecoder::findDefaultVideoCodec() const {
if (_videoTrackIndex < 0 || _tracks[_videoTrackIndex]->sampleDescs.empty())
return 0;
return ((VideoSampleDesc *)_tracks[_videoTrackIndex]->sampleDescs[0])->_videoCodec;
}
const Graphics::Surface *QuickTimeDecoder::decodeNextFrame() {
if (_videoTrackIndex < 0 || _curFrame >= (int32)getFrameCount() - 1)
return 0;
if (_startTime == 0)
_startTime = g_system->getMillis();
_curFrame++;
_nextFrameStartTime += getFrameDuration();
// Update the audio while we're at it
updateAudioBuffer();
// Get the next packet
uint32 descId;
Common::SeekableReadStream *frameData = getNextFramePacket(descId);
if (!frameData || !descId || descId > _tracks[_videoTrackIndex]->sampleDescs.size())
return 0;
// Find which video description entry we want
VideoSampleDesc *entry = (VideoSampleDesc *)_tracks[_videoTrackIndex]->sampleDescs[descId - 1];
if (!entry->_videoCodec)
return 0;
const Graphics::Surface *frame = entry->_videoCodec->decodeImage(frameData);
delete frameData;
// Update the palette
if (entry->_videoCodec->containsPalette()) {
// The codec itself contains a palette
if (entry->_videoCodec->hasDirtyPalette()) {
_palette = entry->_videoCodec->getPalette();
_dirtyPalette = true;
}
} else {
// Check if the video description has been updated
byte *palette = entry->_palette;
if (palette != _palette) {
_palette = palette;
_dirtyPalette = true;
}
}
return scaleSurface(frame);
}
const Graphics::Surface *QuickTimeDecoder::scaleSurface(const Graphics::Surface *frame) {
if (getScaleFactorX() == 1 && getScaleFactorY() == 1)
return frame;
assert(_scaledSurface);
for (int32 j = 0; j < _scaledSurface->h; j++)
for (int32 k = 0; k < _scaledSurface->w; k++)
memcpy(_scaledSurface->getBasePtr(k, j), frame->getBasePtr((k * getScaleFactorX()).toInt() , (j * getScaleFactorY()).toInt()), frame->format.bytesPerPixel);
return _scaledSurface;
}
bool QuickTimeDecoder::endOfVideo() const {
return (!_audStream || _audStream->endOfData()) && (!findDefaultVideoCodec() || SeekableVideoDecoder::endOfVideo());
}
uint32 QuickTimeDecoder::getElapsedTime() const {
if (_audStream)
return g_system->getMixer()->getSoundElapsedTime(_audHandle) + _audioStartOffset.msecs();
return SeekableVideoDecoder::getElapsedTime();
}
uint32 QuickTimeDecoder::getTimeToNextFrame() const {
if (endOfVideo() || _curFrame < 0)
return 0;
// Convert from the QuickTime rate base to 1000
uint32 nextFrameStartTime = _nextFrameStartTime * 1000 / _tracks[_videoTrackIndex]->timeScale;
uint32 elapsedTime = getElapsedTime();
if (nextFrameStartTime <= elapsedTime)
return 0;
return nextFrameStartTime - elapsedTime;
}
bool QuickTimeDecoder::loadFile(const Common::String &filename) {
if (!Common::QuickTimeParser::parseFile(filename))
return false;
init();
return true;
}
bool QuickTimeDecoder::loadStream(Common::SeekableReadStream *stream) {
if (!Common::QuickTimeParser::parseStream(stream))
return false;
init();
return true;
}
void QuickTimeDecoder::init() {
Audio::QuickTimeAudioDecoder::init();
_videoTrackIndex = -1;
_startTime = 0;
// Find video streams
for (uint32 i = 0; i < _tracks.size(); i++)
if (_tracks[i]->codecType == CODEC_TYPE_VIDEO && _videoTrackIndex < 0)
_videoTrackIndex = i;
// Start the audio codec if we've got one that we can handle
if (_audStream) {
startAudio();
_audioStartOffset = Audio::Timestamp(0);
}
// Initialize video, if present
if (_videoTrackIndex >= 0) {
for (uint32 i = 0; i < _tracks[_videoTrackIndex]->sampleDescs.size(); i++)
((VideoSampleDesc *)_tracks[_videoTrackIndex]->sampleDescs[i])->initCodec();
if (getScaleFactorX() != 1 || getScaleFactorY() != 1) {
// We have to initialize the scaled surface
_scaledSurface = new Graphics::Surface();
_scaledSurface->create(getWidth(), getHeight(), getPixelFormat());
}
}
}
Common::QuickTimeParser::SampleDesc *QuickTimeDecoder::readSampleDesc(Track *track, uint32 format) {
if (track->codecType == CODEC_TYPE_VIDEO) {
debug(0, "Video Codec FourCC: \'%s\'", tag2str(format));
VideoSampleDesc *entry = new VideoSampleDesc(track, format);
_fd->readUint16BE(); // version
_fd->readUint16BE(); // revision level
_fd->readUint32BE(); // vendor
_fd->readUint32BE(); // temporal quality
_fd->readUint32BE(); // spacial quality
uint16 width = _fd->readUint16BE(); // width
uint16 height = _fd->readUint16BE(); // height
// The width is most likely invalid for entries after the first one
// so only set the overall width if it is not zero here.
if (width)
track->width = width;
if (height)
track->height = height;
_fd->readUint32BE(); // horiz resolution
_fd->readUint32BE(); // vert resolution
_fd->readUint32BE(); // data size, always 0
_fd->readUint16BE(); // frames per samples
byte codecName[32];
_fd->read(codecName, 32); // codec name, pascal string (FIXME: true for mp4?)
if (codecName[0] <= 31) {
memcpy(entry->_codecName, &codecName[1], codecName[0]);
entry->_codecName[codecName[0]] = 0;
}
entry->_bitsPerSample = _fd->readUint16BE(); // depth
entry->_colorTableId = _fd->readUint16BE(); // colortable id
// figure out the palette situation
byte colorDepth = entry->_bitsPerSample & 0x1F;
bool colorGreyscale = (entry->_bitsPerSample & 0x20) != 0;
debug(0, "color depth: %d", colorDepth);
// if the depth is 2, 4, or 8 bpp, file is palettized
if (colorDepth == 2 || colorDepth == 4 || colorDepth == 8) {
// Initialize the palette
entry->_palette = new byte[256 * 3];
memset(entry->_palette, 0, 256 * 3);
if (colorGreyscale) {
debug(0, "Greyscale palette");
// compute the greyscale palette
uint16 colorCount = 1 << colorDepth;
int16 colorIndex = 255;
byte colorDec = 256 / (colorCount - 1);
for (byte j = 0; j < colorCount; j++) {
entry->_palette[j * 3] = entry->_palette[j * 3 + 1] = entry->_palette[j * 3 + 2] = colorIndex;
colorIndex -= colorDec;
if (colorIndex < 0)
colorIndex = 0;
}
} else if (entry->_colorTableId & 0x08) {
// if flag bit 3 is set, use the default palette
//uint16 colorCount = 1 << colorDepth;
warning("Predefined palette! %dbpp", colorDepth);
} else {
debug(0, "Palette from file");
// load the palette from the file
uint32 colorStart = _fd->readUint32BE();
/* uint16 colorCount = */ _fd->readUint16BE();
uint16 colorEnd = _fd->readUint16BE();
for (uint32 j = colorStart; j <= colorEnd; j++) {
// each R, G, or B component is 16 bits;
// only use the top 8 bits; skip alpha bytes
// up front
_fd->readByte();
_fd->readByte();
entry->_palette[j * 3] = _fd->readByte();
_fd->readByte();
entry->_palette[j * 3 + 1] = _fd->readByte();
_fd->readByte();
entry->_palette[j * 3 + 2] = _fd->readByte();
_fd->readByte();
}
}
}
return entry;
}
// Pass it on up
return Audio::QuickTimeAudioDecoder::readSampleDesc(track, format);
}
void QuickTimeDecoder::close() {
stopAudio();
if (_scaledSurface) {
_scaledSurface->free();
delete _scaledSurface;
_scaledSurface = 0;
}
Common::QuickTimeParser::close();
SeekableVideoDecoder::reset();
}
Common::SeekableReadStream *QuickTimeDecoder::getNextFramePacket(uint32 &descId) {
if (_videoTrackIndex < 0)
return NULL;
// First, we have to track down which chunk holds the sample and which sample in the chunk contains the frame we are looking for.
int32 totalSampleCount = 0;
int32 sampleInChunk = 0;
int32 actualChunk = -1;
for (uint32 i = 0; i < _tracks[_videoTrackIndex]->chunkCount; i++) {
int32 sampleToChunkIndex = -1;
for (uint32 j = 0; j < _tracks[_videoTrackIndex]->sampleToChunkCount; j++)
if (i >= _tracks[_videoTrackIndex]->sampleToChunk[j].first)
sampleToChunkIndex = j;
if (sampleToChunkIndex < 0)
error("This chunk (%d) is imaginary", sampleToChunkIndex);
totalSampleCount += _tracks[_videoTrackIndex]->sampleToChunk[sampleToChunkIndex].count;
if (totalSampleCount > getCurFrame()) {
actualChunk = i;
descId = _tracks[_videoTrackIndex]->sampleToChunk[sampleToChunkIndex].id;
sampleInChunk = _tracks[_videoTrackIndex]->sampleToChunk[sampleToChunkIndex].count - totalSampleCount + getCurFrame();
break;
}
}
if (actualChunk < 0) {
warning ("Could not find data for frame %d", getCurFrame());
return NULL;
}
// Next seek to that frame
_fd->seek(_tracks[_videoTrackIndex]->chunkOffsets[actualChunk]);
// Then, if the chunk holds more than one frame, seek to where the frame we want is located
for (int32 i = getCurFrame() - sampleInChunk; i < getCurFrame(); i++) {
if (_tracks[_videoTrackIndex]->sampleSize != 0)
_fd->skip(_tracks[_videoTrackIndex]->sampleSize);
else
_fd->skip(_tracks[_videoTrackIndex]->sampleSizes[i]);
}
// Finally, read in the raw data for the frame
//printf ("Frame Data[%d]: Offset = %d, Size = %d\n", getCurFrame(), _fd->pos(), _tracks[_videoTrackIndex]->sampleSizes[getCurFrame()]);
if (_tracks[_videoTrackIndex]->sampleSize != 0)
return _fd->readStream(_tracks[_videoTrackIndex]->sampleSize);
return _fd->readStream(_tracks[_videoTrackIndex]->sampleSizes[getCurFrame()]);
}
void QuickTimeDecoder::updateAudioBuffer() {
if (!_audStream)
return;
uint32 numberOfChunksNeeded = 0;
if (_videoTrackIndex < 0 || _curFrame == (int32)_tracks[_videoTrackIndex]->frameCount - 1) {
// If we have no video, there's nothing to base our buffer against
// However, one must ask why a QuickTimeDecoder is being used instead of the nice makeQuickTimeStream() function
// If we're on the last frame, make sure all audio remaining is buffered
numberOfChunksNeeded = _tracks[_audioTrackIndex]->chunkCount;
} else {
Audio::QuickTimeAudioDecoder::AudioSampleDesc *entry = (Audio::QuickTimeAudioDecoder::AudioSampleDesc *)_tracks[_audioTrackIndex]->sampleDescs[0];
// Calculate the amount of chunks we need in memory until the next frame
uint32 timeToNextFrame = getTimeToNextFrame();
uint32 timeFilled = 0;
uint32 curAudioChunk = _curAudioChunk - _audStream->numQueuedStreams();
for (; timeFilled < timeToNextFrame && curAudioChunk < _tracks[_audioTrackIndex]->chunkCount; numberOfChunksNeeded++, curAudioChunk++) {
uint32 sampleCount = entry->getAudioChunkSampleCount(curAudioChunk);
assert(sampleCount);
timeFilled += sampleCount * 1000 / entry->_sampleRate;
}
// Add a couple extra to ensure we don't underrun
numberOfChunksNeeded += 3;
}
// Keep three streams in buffer so that if/when the first two end, it goes right into the next
while (_audStream->numQueuedStreams() < numberOfChunksNeeded && _curAudioChunk < _tracks[_audioTrackIndex]->chunkCount)
queueNextAudioChunk();
}
QuickTimeDecoder::VideoSampleDesc::VideoSampleDesc(Common::QuickTimeParser::Track *parentTrack, uint32 codecTag) : Common::QuickTimeParser::SampleDesc(parentTrack, codecTag) {
memset(_codecName, 0, 32);
_colorTableId = 0;
_palette = 0;
_videoCodec = 0;
_bitsPerSample = 0;
}
QuickTimeDecoder::VideoSampleDesc::~VideoSampleDesc() {
delete[] _palette;
delete _videoCodec;
}
void QuickTimeDecoder::VideoSampleDesc::initCodec() {
switch (_codecTag) {
case MKTAG('c','v','i','d'):
// Cinepak: As used by most Myst and all Riven videos as well as some Myst ME videos. "The Chief" videos also use this.
_videoCodec = new CinepakDecoder(_bitsPerSample & 0x1f);
break;
case MKTAG('r','p','z','a'):
// Apple Video ("Road Pizza"): Used by some Myst videos.
_videoCodec = new RPZADecoder(_parentTrack->width, _parentTrack->height);
break;
case MKTAG('r','l','e',' '):
// QuickTime RLE: Used by some Myst ME videos.
_videoCodec = new QTRLEDecoder(_parentTrack->width, _parentTrack->height, _bitsPerSample & 0x1f);
break;
case MKTAG('s','m','c',' '):
// Apple SMC: Used by some Myst videos.
_videoCodec = new SMCDecoder(_parentTrack->width, _parentTrack->height);
break;
case MKTAG('S','V','Q','1'):
// Sorenson Video 1: Used by some Myst ME videos.
warning("Sorenson Video 1 not yet supported");
break;
case MKTAG('S','V','Q','3'):
// Sorenson Video 3: Used by some Myst ME videos.
warning("Sorenson Video 3 not yet supported");
break;
case MKTAG('j','p','e','g'):
// Motion JPEG: Used by some Myst ME 10th Anniversary videos.
_videoCodec = new JPEGDecoder();
break;
case MKTAG('Q','k','B','k'):
// CDToons: Used by most of the Broderbund games.
_videoCodec = new CDToonsDecoder(_parentTrack->width, _parentTrack->height);
break;
default:
warning("Unsupported codec \'%s\'", tag2str(_codecTag));
}
}
} // End of namespace Video