scummvm/common/events.h
Paweł Kołodziejski 35b9cccbde ALL: Merge ResidualVM
2020-10-09 19:44:13 +02:00

565 lines
14 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#ifndef COMMON_EVENTS_H
#define COMMON_EVENTS_H
#include "common/keyboard.h"
#include "common/queue.h"
#include "common/rect.h"
#include "common/noncopyable.h"
#include "common/list.h"
#include "common/singleton.h"
namespace Common {
/**
* @defgroup common_events Events
* @ingroup common
*
* @brief The types of events backends may generate.
*
* @todo Merge EVENT_LBUTTONDOWN, EVENT_RBUTTONDOWN and EVENT_WHEELDOWN;
* likewise EVENT_LBUTTONUP, EVENT_RBUTTONUP, EVENT_WHEELUP.
* To do that, we just have to add a field to the Event which
* indicates which button was pressed.
* @{
*/
enum EventType {
EVENT_INVALID = 0,
/** A key was pressed, details in Event::kbd. */
EVENT_KEYDOWN = 1,
/** A key was released, details in Event::kbd. */
EVENT_KEYUP = 2,
/** The mouse moved, details in Event::mouse. */
EVENT_MOUSEMOVE = 3,
EVENT_LBUTTONDOWN = 4,
EVENT_LBUTTONUP = 5,
EVENT_RBUTTONDOWN = 6,
EVENT_RBUTTONUP = 7,
EVENT_WHEELUP = 8,
EVENT_WHEELDOWN = 9,
EVENT_MBUTTONDOWN = 13,
EVENT_MBUTTONUP = 14,
EVENT_MAINMENU = 15,
EVENT_RETURN_TO_LAUNCHER = 16,
EVENT_MUTE = 17,
EVENT_QUIT = 10,
EVENT_SCREEN_CHANGED = 11,
/** The input devices have changed, input related configuration needs to be re-applied */
EVENT_INPUT_CHANGED = 35,
/**
* The backend requests the agi engine's predictive dialog to be shown.
* TODO: Fingolfin suggests that it would be of better value to expand
* on this notion by generalizing its use. For example the backend could
* use events to ask for the save game dialog or to pause the engine.
* An associated enumerated type can accomplish this.
**/
EVENT_PREDICTIVE_DIALOG = 12,
EVENT_CUSTOM_BACKEND_ACTION_START = 18,
EVENT_CUSTOM_BACKEND_ACTION_END = 19,
EVENT_CUSTOM_BACKEND_ACTION_AXIS = 34,
EVENT_CUSTOM_ENGINE_ACTION_START = 20,
EVENT_CUSTOM_ENGINE_ACTION_END = 21,
#ifdef ENABLE_VKEYBD
EVENT_VIRTUAL_KEYBOARD = 22,
#endif
EVENT_DROP_FILE = 23,
EVENT_JOYAXIS_MOTION = 24,
EVENT_JOYBUTTON_DOWN = 25,
EVENT_JOYBUTTON_UP = 26,
EVENT_CLIPBOARD_UPDATE = 27,
EVENT_CUSTOM_BACKEND_HARDWARE = 28,
EVENT_DEBUGGER = 29,
/**
* Additional mouse events, details in Event::mouse.
*
* Note that X1 and X2 are usually back and forward, however
* this can't be guaranteed on all platforms.
*/
EVENT_X1BUTTONDOWN = 30,
EVENT_X1BUTTONUP = 31,
EVENT_X2BUTTONDOWN = 32,
EVENT_X2BUTTONUP = 33,
/** ScummVM has gained or lost focus */
EVENT_FOCUS_GAINED = 36,
EVENT_FOCUS_LOST = 37
};
const int16 JOYAXIS_MIN = -32768;
const int16 JOYAXIS_MAX = 32767;
/**
* Data structure for joystick events
*/
struct JoystickState {
/** The axis for EVENT_JOYAXIS_MOTION events */
byte axis;
/** The new axis position for EVENT_JOYAXIS_MOTION events */
int16 position;
/**
* The button index for EVENT_JOYBUTTON_DOWN/UP events
*
* Some of the button indices match well-known game controller
* buttons. See JoystickButton.
*/
uint8 button;
JoystickState() : axis(0), position(0), button(0) {}
};
/**
* The list of named buttons available from a joystick
*/
enum JoystickButton {
JOYSTICK_BUTTON_A,
JOYSTICK_BUTTON_B,
JOYSTICK_BUTTON_X,
JOYSTICK_BUTTON_Y,
JOYSTICK_BUTTON_BACK,
JOYSTICK_BUTTON_GUIDE,
JOYSTICK_BUTTON_START,
JOYSTICK_BUTTON_LEFT_STICK,
JOYSTICK_BUTTON_RIGHT_STICK,
JOYSTICK_BUTTON_LEFT_SHOULDER,
JOYSTICK_BUTTON_RIGHT_SHOULDER,
JOYSTICK_BUTTON_DPAD_UP,
JOYSTICK_BUTTON_DPAD_DOWN,
JOYSTICK_BUTTON_DPAD_LEFT,
JOYSTICK_BUTTON_DPAD_RIGHT
};
/**
* The list of named axes available from a joystick
*/
enum JoystickAxis {
JOYSTICK_AXIS_LEFT_STICK_X,
JOYSTICK_AXIS_LEFT_STICK_Y,
JOYSTICK_AXIS_RIGHT_STICK_X,
JOYSTICK_AXIS_RIGHT_STICK_Y,
JOYSTICK_AXIS_LEFT_TRIGGER,
JOYSTICK_AXIS_RIGHT_TRIGGER
};
/**
* The list named buttons available from a mouse
*/
enum MouseButton {
MOUSE_BUTTON_LEFT = 0,
MOUSE_BUTTON_RIGHT = 1,
MOUSE_BUTTON_MIDDLE = 2,
MOUSE_WHEEL_UP = 3,
MOUSE_WHEEL_DOWN = 4,
MOUSE_BUTTON_X1 = 5,
MOUSE_BUTTON_X2 = 6
};
typedef uint32 CustomEventType;
/**
* Data structure for an event. A pointer to an instance of Event
* can be passed to pollEvent.
*/
struct Event {
/** The type of the event. */
EventType type;
/**
* True if this is a key down repeat event.
*
* Only valid for EVENT_KEYDOWN events.
*/
bool kbdRepeat;
/**
* Keyboard data; only valid for keyboard events (EVENT_KEYDOWN and
* EVENT_KEYUP). For all other event types, content is undefined.
*/
KeyState kbd;
/**
* The mouse coordinates, in virtual screen coordinates. Only valid
* for mouse events.
* Virtual screen coordinates means: the coordinate system of the
* screen area as defined by the most recent call to initSize().
*/
Point mouse;
CustomEventType customType;
/* The path of the file or directory dragged to the ScummVM window */
Common::String path;
/**
* Mouse movement since the last mouse movement event.
*/
Common::Point relMouse;
/**
* Joystick data; only valid for joystick events (EVENT_JOYAXIS_MOTION,
* EVENT_JOYBUTTON_DOWN and EVENT_JOYBUTTON_UP).
*/
JoystickState joystick;
Event() : type(EVENT_INVALID), kbdRepeat(false), customType(0) {
}
};
/**
* Determinates whether an event is a mouse event
*
* Mouse events have valid mouse coordinates
*/
bool isMouseEvent(const Event &event);
/**
* A source of Events.
*
* An example for this is OSystem, it provides events created by the system
* and or user.
*/
class EventSource {
public:
virtual ~EventSource();
/**
* Queries a event from the source.
*
* @param event a reference to the event struct, where the event should be stored.
* @return true if an event was polled, false otherwise.
*/
virtual bool pollEvent(Event &event) = 0;
/**
* Checks whether events from this source are allowed to be mapped.
*
* Possible event sources not allowing mapping are: the event recorder/player and/or
* the EventManager, which allows user events to be pushed.
*
* By default we allow mapping for every event source.
*/
virtual bool allowMapping() const { return true; }
};
/**
* An artificial event source. This is class is used as an event source, which is
* made up by client specific events.
*
* Example usage cases for this are the Keymapper or the DefaultEventManager.
*/
class ArtificialEventSource : public EventSource {
protected:
Queue<Event> _artificialEventQueue;
public:
void addEvent(const Event &ev) {
_artificialEventQueue.push(ev);
}
bool pollEvent(Event &ev) {
if (!_artificialEventQueue.empty()) {
ev = _artificialEventQueue.pop();
return true;
} else {
return false;
}
}
/**
* By default an artificial event source prevents its events
* from being mapped.
*/
virtual bool allowMapping() const { return false; }
};
/**
* Object which catches and processes Events.
*
* An example for this is the Engine object, it is catching events and processing them.
*/
class EventObserver {
public:
virtual ~EventObserver();
/**
* Notifies the observer of an incoming event.
*
* An observer is supposed to eat the event, with returning true, when
* it wants to prevent other observers from receiving the event.
* A usage example here is the keymapper:
* If it processes an Event, it should 'eat' it and create a new
* event, which the EventDispatcher will then catch.
*
* @param event the event, which is incoming.
* @return true if the event should not be passed to other observers,
* false otherwise.
*/
virtual bool notifyEvent(const Event &event) = 0;
/**
* Notifies the observer of pollEvent() query.
*/
virtual void notifyPoll() { }
};
/**
* A event mapper, which will map events to others.
*
* An example for this is the Keymapper.
*/
class EventMapper {
public:
virtual ~EventMapper();
/**
* Map an incoming event to one or more action events
*/
virtual List<Event> mapEvent(const Event &ev) = 0;
};
/**
* Dispatches events from various sources to various observers.
*
* EventDispatcher is using a priority based approach. Observers
* with higher priority will be notified before observers with
* lower priority. Because of the possibility that oberservers
* might 'eat' events, not all observers might be notified.
*
* Another speciality is the support for a event mapper, which
* will catch events and create new events out of them. This
* mapper will be processed before an event is sent to the
* observers.
*/
class EventDispatcher {
public:
EventDispatcher();
~EventDispatcher();
/**
* Tries to catch events from the registered event
* sources and dispatch them to the observers.
*
* This dispatches *all* events the sources offer.
*/
void dispatch();
/**
* Clear all events currently in the event queue.
* The cleared events are not dispatched and are simply discarded.
*/
void clearEvents();
/**
* Registers an event mapper with the dispatcher.
*/
void registerMapper(EventMapper *mapper);
/**
* Registers a new EventSource with the Dispatcher.
*/
void registerSource(EventSource *source, bool autoFree);
/**
* Unregisters a EventSource.
*
* This takes the "autoFree" flag passed to registerSource into account.
*/
void unregisterSource(EventSource *source);
/**
* Registers a new EventObserver with the Dispatcher.
*
* @param listenPolls if set, then all pollEvent() calls are passed to observer
* currently it is used by keyMapper
*/
void registerObserver(EventObserver *obs, uint priority, bool autoFree, bool listenPolls = false);
/**
* Unregisters a EventObserver.
*
* This takes the "autoFree" flag passed to registerObserver into account.
*/
void unregisterObserver(EventObserver *obs);
private:
EventMapper *_mapper;
struct Entry {
bool autoFree;
};
struct SourceEntry : public Entry {
EventSource *source;
};
List<SourceEntry> _sources;
struct ObserverEntry : public Entry {
uint priority;
EventObserver *observer;
bool poll;
};
List<ObserverEntry> _observers;
void dispatchEvent(const Event &event);
void dispatchPoll();
};
class Keymap;
class Keymapper;
/**
* The EventManager provides user input events to the client code.
* In addition, it keeps track of the state of various input devices,
* like keys, mouse position and buttons.
*/
class EventManager : NonCopyable {
public:
virtual ~EventManager();
enum {
LBUTTON = 1 << MOUSE_BUTTON_LEFT,
RBUTTON = 1 << MOUSE_BUTTON_RIGHT
};
/**
* Initialize the event manager.
* @note called after graphics system has been set up
*/
virtual void init() {}
/**
* Get the next event in the event queue.
* @param event point to an Event struct, which will be filled with the event data.
* @return true if an event was retrieved.
*/
virtual bool pollEvent(Event &event) = 0;
/**
* Pushes a "fake" event into the event queue
*/
virtual void pushEvent(const Event &event) = 0;
/**
* Purges all unprocessed mouse events already in the event queue.
*/
virtual void purgeMouseEvents() = 0;
/** Return the current mouse position */
virtual Point getMousePos() const = 0;
/**
* Return a bitmask with the button states:
* - bit 0: left button up=0, down=1
* - bit 1: right button up=0, down=1
*/
virtual int getButtonState() const = 0;
/** Get a bitmask with the current modifier state */
virtual int getModifierState() const = 0;
/**
* Should the application terminate? Set to true if we
* received an EVENT_QUIT.
*/
virtual int shouldQuit() const = 0;
/**
* Should we return to the launcher?
*/
virtual int shouldReturnToLauncher() const = 0;
/**
* Reset the "return to launcher" flag (as returned shouldReturnToLauncher()) to false.
* Used when we have returned to the launcher.
*/
virtual void resetReturnToLauncher() = 0;
#ifdef FORCE_RETURN_TO_LAUNCHER
virtual void resetQuit() = 0;
#endif
// Optional: check whether a given key is currently pressed ????
//virtual bool isKeyPressed(int keycode) = 0;
// TODO: Keyboard repeat support?
// TODO: Consider removing OSystem::getScreenChangeID and
// replacing it by a generic getScreenChangeID method here
virtual Keymapper *getKeymapper() = 0;
virtual Keymap *getGlobalKeymap() = 0;
enum {
/**
* Priority of the event manager, for now it's lowest since it eats
* *all* events, we might to change that in the future though.
*/
kEventManPriority = 0,
/**
* Priority of the event recorder. It has to go after event manager
* in order to record events generated by it
*/
kEventRecorderPriority = 1,
/**
* Priority of the remap dialog. It has to go first to capture all
* the events before they are consumed by other observers.
*/
kEventRemapperPriority = 999
};
/**
* Returns the underlying EventDispatcher.
*/
EventDispatcher *getEventDispatcher() { return &_dispatcher; }
protected:
EventDispatcher _dispatcher;
};
/**
* Wrap an event source so the key down events are repeated while
* keys are held down.
*
* Does not take ownership of the wrapped EventSource.
*/
EventSource *makeKeyboardRepeatingEventSource(EventSource *eventSource);
/** @} */
} // End of namespace Common
#endif