Filippos Karapetis 4f3bb60cd5 Really silence the warning with _bufSize
svn-id: r49652
2010-06-14 13:53:15 +00:00

862 lines
23 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#ifndef SCI_ENGINE_SEGMENT_H
#define SCI_ENGINE_SEGMENT_H
#include "common/serializer.h"
#include "sci/engine/vm.h"
#include "sci/engine/vm_types.h" // for reg_t
#include "sci/util.h"
namespace Sci {
struct SegmentRef {
bool isRaw; ///< true if data is raw, false if it is a reg_t sequence
union {
byte *raw;
reg_t *reg;
};
int maxSize; ///< number of available bytes
// FIXME: Perhaps a generic 'offset' is more appropriate here
bool skipByte; ///< true if referencing the 2nd data byte of *reg, false otherwise
// TODO: Add this?
//reg_t pointer; // Original pointer
// TODO: Add this?
//SegmentType type;
SegmentRef() : isRaw(true), raw(0), maxSize(0), skipByte(false) {}
bool isValid() const { return (isRaw ? raw != 0 : reg != 0); }
};
enum SegmentType {
SEG_TYPE_INVALID = 0,
SEG_TYPE_SCRIPT = 1,
SEG_TYPE_CLONES = 2,
SEG_TYPE_LOCALS = 3,
SEG_TYPE_STACK = 4,
SEG_TYPE_SYS_STRINGS = 5,
SEG_TYPE_LISTS = 6,
SEG_TYPE_NODES = 7,
SEG_TYPE_HUNK = 8,
SEG_TYPE_DYNMEM = 9,
SEG_TYPE_STRING_FRAG = 10, // obsolete, we keep it to be able to load old saves
#ifdef ENABLE_SCI32
SEG_TYPE_ARRAY = 11,
SEG_TYPE_STRING = 12,
#endif
SEG_TYPE_MAX // For sanity checking
};
struct SegmentObj : public Common::Serializable {
SegmentType _type;
typedef void (*NoteCallback)(void *param, reg_t addr); // FIXME: Bad choice of name
public:
static SegmentObj *createSegmentObj(SegmentType type);
public:
SegmentObj(SegmentType type) : _type(type) {}
virtual ~SegmentObj() {}
inline SegmentType getType() const { return _type; }
/**
* Check whether the given offset into this memory object is valid,
* i.e., suitable for passing to dereference.
*/
virtual bool isValidOffset(uint16 offset) const = 0;
/**
* Dereferences a raw memory pointer.
* @param reg reference to dereference
* @return the data block referenced
*/
virtual SegmentRef dereference(reg_t pointer);
/**
* Finds the canonic address associated with sub_reg.
*
* For each valid address a, there exists a canonic address c(a) such that c(a) = c(c(a)).
* This address "governs" a in the sense that deallocating c(a) will deallocate a.
*
* @param sub_addr base address whose canonic address is to be found
*/
virtual reg_t findCanonicAddress(SegManager *segMan, reg_t sub_addr) const { return sub_addr; }
/**
* Deallocates all memory associated with the specified address.
* @param sub_addr address (within the given segment) to deallocate
*/
virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr) {}
/**
* Iterates over and reports all addresses within the current segment.
* @param note Invoked for each address on which free_at_address() makes sense
* @param param parameter passed to 'note'
*/
virtual void listAllDeallocatable(SegmentId segId, void *param, NoteCallback note) const {}
/**
* Iterates over all references reachable from the specified object.
* @param object object (within the current segment) to analyse
* @param param parameter passed to 'note'
* @param note Invoked for each outgoing reference within the object
* Note: This function may also choose to report numbers (segment 0) as adresses
*/
virtual void listAllOutgoingReferences(reg_t object, void *param, NoteCallback note) const {}
};
struct IntMapper;
enum {
SYS_STRINGS_MAX = 4,
SYS_STRING_SAVEDIR = 0,
SYS_STRING_PARSER_BASE = 1,
MAX_PARSER_BASE = 64
};
struct SystemString {
Common::String _name;
int _maxSize;
char *_value;
};
struct SystemStrings : public SegmentObj {
SystemString _strings[SYS_STRINGS_MAX];
public:
SystemStrings() : SegmentObj(SEG_TYPE_SYS_STRINGS) {
for (int i = 0; i < SYS_STRINGS_MAX; i++) {
_strings[i]._maxSize = 0;
_strings[i]._value = 0;
}
}
~SystemStrings() {
for (int i = 0; i < SYS_STRINGS_MAX; i++) {
SystemString *str = &_strings[i];
if (!str->_name.empty()) {
free(str->_value);
str->_value = NULL;
str->_maxSize = 0;
}
}
}
virtual bool isValidOffset(uint16 offset) const;
virtual SegmentRef dereference(reg_t pointer);
virtual void saveLoadWithSerializer(Common::Serializer &ser);
};
struct LocalVariables : public SegmentObj {
int script_id; /**< Script ID this local variable block belongs to */
Common::Array<reg_t> _locals;
public:
LocalVariables(): SegmentObj(SEG_TYPE_LOCALS) {
script_id = 0;
}
virtual bool isValidOffset(uint16 offset) const;
virtual SegmentRef dereference(reg_t pointer);
virtual reg_t findCanonicAddress(SegManager *segMan, reg_t sub_addr) const;
virtual void listAllOutgoingReferences(reg_t object, void *param, NoteCallback note) const;
virtual void saveLoadWithSerializer(Common::Serializer &ser);
};
/** Clone has been marked as 'freed' */
enum {
OBJECT_FLAG_FREED = (1 << 0)
};
enum infoSelectorFlags {
kInfoFlagClone = 0x0001,
kInfoFlagClass = 0x8000
};
enum ObjectOffsets {
kOffsetLocalVariables = -6,
kOffsetFunctionArea = -4,
kOffsetSelectorCounter = -2,
kOffsetSelectorSegment = 0,
kOffsetInfoSelectorSci0 = 4,
kOffsetNamePointerSci0 = 6,
kOffsetInfoSelectorSci11 = 14,
kOffsetNamePointerSci11 = 16
};
class Object {
public:
Object() {
_flags = 0;
_offset = getSciVersion() < SCI_VERSION_1_1 ? 0 : 5;
}
~Object() { }
reg_t getSpeciesSelector() const { return _variables[_offset]; }
void setSpeciesSelector(reg_t value) { _variables[_offset] = value; }
reg_t getSuperClassSelector() const { return _variables[_offset + 1]; }
void setSuperClassSelector(reg_t value) { _variables[_offset + 1] = value; }
reg_t getInfoSelector() const { return _variables[_offset + 2]; }
void setInfoSelector(reg_t value) { _variables[_offset + 2] = value; }
reg_t getNameSelector() const { return _variables[_offset + 3]; }
void setNameSelector(reg_t value) { _variables[_offset + 3] = value; }
reg_t getPropDictSelector() const { return _variables[2]; }
void setPropDictSelector(reg_t value) { _variables[2] = value; }
reg_t getClassScriptSelector() const { return _variables[4]; }
void setClassScriptSelector(reg_t value) { _variables[4] = value; }
Selector getVarSelector(uint16 i) const { return READ_SCI11ENDIAN_UINT16(_baseVars + i); }
reg_t getFunction(uint16 i) const {
uint16 offset = (getSciVersion() < SCI_VERSION_1_1) ? _methodCount + 1 + i : i * 2 + 2;
return make_reg(_pos.segment, READ_SCI11ENDIAN_UINT16(_baseMethod + offset));
}
Selector getFuncSelector(uint16 i) const {
uint16 offset = (getSciVersion() < SCI_VERSION_1_1) ? i : i * 2 + 1;
return READ_SCI11ENDIAN_UINT16(_baseMethod + offset);
}
/**
* Determines if this object is a class and explicitly defines the
* selector as a funcselector. Does NOT say anything about the object's
* superclasses, i.e. failure may be returned even if one of the
* superclasses defines the funcselector
*/
int funcSelectorPosition(Selector sel) const {
for (uint i = 0; i < _methodCount; i++)
if (getFuncSelector(i) == sel)
return i;
return -1;
}
/**
* Determines if the object explicitly defines slc as a varselector.
* Returns -1 if not found.
*/
int locateVarSelector(SegManager *segMan, Selector slc) const;
bool isClass() const { return (getInfoSelector().offset & kInfoFlagClass); }
const Object *getClass(SegManager *segMan) const;
void markAsClone() { setInfoSelector(make_reg(0, kInfoFlagClone)); }
bool isClone() const { return (getInfoSelector().offset & kInfoFlagClone); }
void markAsFreed() { _flags |= OBJECT_FLAG_FREED; }
bool isFreed() const { return _flags & OBJECT_FLAG_FREED; }
uint getVarCount() const { return _variables.size(); }
void init(byte *buf, reg_t obj_pos, bool initVariables = true);
reg_t getVariable(uint var) const { return _variables[var]; }
reg_t &getVariableRef(uint var) { return _variables[var]; }
uint16 getMethodCount() const { return _methodCount; }
reg_t getPos() const { return _pos; }
void saveLoadWithSerializer(Common::Serializer &ser);
void cloneFromObject(const Object *obj) {
_baseObj = obj ? obj->_baseObj : NULL;
_baseMethod = obj ? obj->_baseMethod : NULL;
_baseVars = obj ? obj->_baseVars : NULL;
}
bool relocate(SegmentId segment, int location, size_t scriptSize);
int propertyOffsetToId(SegManager *segMan, int propertyOffset) const;
void initSpecies(SegManager *segMan, reg_t addr);
void initSuperClass(SegManager *segMan, reg_t addr);
bool initBaseObject(SegManager *segMan, reg_t addr, bool doInitSuperClass = true);
// TODO: make private
// Only SegManager::reconstructScripts() is left needing direct access to these
public:
const byte *_baseObj; /**< base + object offset within base */
private:
const uint16 *_baseVars; /**< Pointer to the varselector area for this object */
const uint16 *_baseMethod; /**< Pointer to the method selector area for this object */
Common::Array<reg_t> _variables;
uint16 _methodCount;
int _flags;
uint16 _offset;
reg_t _pos; /**< Object offset within its script; for clones, this is their base */
};
struct CodeBlock {
reg_t pos;
int size;
};
typedef Common::HashMap<uint16, Object> ObjMap;
class Script : public SegmentObj {
public:
int _nr; /**< Script number */
byte *_buf; /**< Static data buffer, or NULL if not used */
byte *_heapStart; /**< Start of heap if SCI1.1, NULL otherwise */
uint32 getScriptSize() { return _scriptSize; }
uint32 getHeapSize() { return _heapSize; }
uint32 getBufSize() { return _bufSize; }
protected:
int _lockers; /**< Number of classes and objects that require this script */
private:
size_t _scriptSize;
size_t _heapSize;
uint16 _bufSize;
const uint16 *_exportTable; /**< Abs. offset of the export table or 0 if not present */
uint16 _numExports; /**< Number of entries in the exports table */
const byte *_synonyms; /**< Synonyms block or 0 if not present*/
uint16 _numSynonyms; /**< Number of entries in the synonyms block */
Common::Array<CodeBlock> _codeBlocks;
int _localsOffset;
uint16 _localsCount;
public:
/**
* Table for objects, contains property variables.
* Indexed by the TODO offset.
*/
ObjMap _objects;
int getLocalsOffset() const { return _localsOffset; }
uint16 getLocalsCount() const { return _localsCount; }
SegmentId _localsSegment; /**< The local variable segment */
LocalVariables *_localsBlock;
bool _markedAsDeleted;
public:
Script();
~Script();
void freeScript();
void init(int script_nr, ResourceManager *resMan);
void load(ResourceManager *resMan);
virtual bool isValidOffset(uint16 offset) const;
virtual SegmentRef dereference(reg_t pointer);
virtual reg_t findCanonicAddress(SegManager *segMan, reg_t sub_addr) const;
virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr);
virtual void listAllDeallocatable(SegmentId segId, void *param, NoteCallback note) const;
virtual void listAllOutgoingReferences(reg_t object, void *param, NoteCallback note) const;
virtual void saveLoadWithSerializer(Common::Serializer &ser);
Object *allocateObject(uint16 offset);
Object *getObject(uint16 offset);
const Object *getObject(uint16 offset) const;
/**
* Informs the segment manager that a code block must be relocated
* @param location Start of block to relocate
*/
void scriptAddCodeBlock(reg_t location);
/**
* Initializes an object within the segment manager
* @param obj_pos Location (segment, offset) of the object. It must
* point to the beginning of the script/class block
* (as opposed to what the VM considers to be the
* object location)
* @returns A newly created Object describing the object,
* stored within the relevant script
*/
Object *scriptObjInit(reg_t obj_pos, bool fullObjectInit = true);
/**
* Removes a script object
* @param obj_pos Location (segment, offset) of the object.
*/
void scriptObjRemove(reg_t obj_pos);
/**
* Processes a relocation block witin a script
* This function is idempotent, but it must only be called after all
* objects have been instantiated, or a run-time error will occur.
* @param obj_pos Location (segment, offset) of the block
* @return Location of the relocation block
*/
void relocate(reg_t block);
private:
bool relocateLocal(SegmentId segment, int location);
public:
// script lock operations
/** Increments the number of lockers of this script by one. */
void incrementLockers();
/** Decrements the number of lockers of this script by one. */
void decrementLockers();
/**
* Retrieves the number of locks held on this script.
* @return the number of locks held on the previously identified script
*/
int getLockers() const;
/** Sets the number of locks held on this script. */
void setLockers(int lockers);
/**
* Retrieves a pointer to the exports of this script
* @return pointer to the exports.
*/
const uint16 *getExportTable() const { return _exportTable; }
/**
* Retrieves the number of exports of script.
* @return the number of exports of this script
*/
uint16 getExportsNr() const { return _numExports; }
/**
* Retrieves a pointer to the synonyms associated with this script
* @return pointer to the synonyms, in non-parsed format.
*/
const byte *getSynonyms() const { return _synonyms; }
/**
* Retrieves the number of synonyms associated with this script.
* @return the number of synonyms associated with this script
*/
uint16 getSynonymsNr() const { return _numSynonyms; }
/**
* Validate whether the specified public function is exported by
* the script in the specified segment.
* @param pubfunct Index of the function to validate
* @return NULL if the public function is invalid, its
* offset into the script's segment otherwise
*/
uint16 validateExportFunc(int pubfunct);
/**
* Marks the script as deleted.
* This will not actually delete the script. If references remain present on the
* heap or the stack, the script will stay in memory in a quasi-deleted state until
* either unreachable (resulting in its eventual deletion) or reloaded (resulting
* in its data being updated).
*/
void markDeleted() {
_markedAsDeleted = true;
}
/**
* Determines whether the script is marked as being deleted.
*/
bool isMarkedAsDeleted() const {
return _markedAsDeleted;
}
/**
* Copies a byte string into a script's heap representation.
* @param dst script-relative offset of the destination area
* @param src pointer to the data source location
* @param n number of bytes to copy
*/
void mcpyInOut(int dst, const void *src, size_t n);
/**
* Retrieves a 16 bit value from within a script's heap representation.
* @param offset offset to read from
* @return the value read from the specified location
*/
int16 getHeap(uint16 offset) const;
/**
* Finds the pointer where a block of a specific type starts from
*/
byte *findBlock(int type);
};
/** Data stack */
struct DataStack : SegmentObj {
int _capacity; /**< Number of stack entries */
reg_t *_entries;
public:
DataStack() : SegmentObj(SEG_TYPE_STACK) {
_capacity = 0;
_entries = NULL;
}
~DataStack() {
free(_entries);
_entries = NULL;
}
virtual bool isValidOffset(uint16 offset) const;
virtual SegmentRef dereference(reg_t pointer);
virtual reg_t findCanonicAddress(SegManager *segMan, reg_t sub_addr) const;
virtual void listAllOutgoingReferences(reg_t object, void *param, NoteCallback note) const;
virtual void saveLoadWithSerializer(Common::Serializer &ser);
};
enum {
CLONE_USED = -1,
CLONE_NONE = -1
};
typedef Object Clone;
struct Node {
reg_t pred; /**< Predecessor node */
reg_t succ; /**< Successor node */
reg_t key;
reg_t value;
}; /* List nodes */
struct List {
reg_t first;
reg_t last;
};
struct Hunk {
void *mem;
unsigned int size;
const char *type;
};
template<typename T>
struct Table : public SegmentObj {
typedef T value_type;
struct Entry : public T {
int next_free; /* Only used for free entries */
};
enum { HEAPENTRY_INVALID = -1 };
int first_free; /**< Beginning of a singly linked list for entries */
int entries_used; /**< Statistical information */
Common::Array<Entry> _table;
public:
Table(SegmentType type) : SegmentObj(type) {
initTable();
}
void initTable() {
entries_used = 0;
first_free = HEAPENTRY_INVALID;
_table.clear();
}
int allocEntry() {
entries_used++;
if (first_free != HEAPENTRY_INVALID) {
int oldff = first_free;
first_free = _table[oldff].next_free;
_table[oldff].next_free = oldff;
return oldff;
} else {
uint newIdx = _table.size();
_table.push_back(Entry());
_table[newIdx].next_free = newIdx; // Tag as 'valid'
return newIdx;
}
}
virtual bool isValidOffset(uint16 offset) const {
return isValidEntry(offset);
}
bool isValidEntry(int idx) const {
return idx >= 0 && (uint)idx < _table.size() && _table[idx].next_free == idx;
}
virtual void freeEntry(int idx) {
if (idx < 0 || (uint)idx >= _table.size())
::error("Table::freeEntry: Attempt to release invalid table index %d", idx);
_table[idx].next_free = first_free;
first_free = idx;
entries_used--;
}
virtual void listAllDeallocatable(SegmentId segId, void *param, NoteCallback note) const {
for (uint i = 0; i < _table.size(); i++)
if (isValidEntry(i))
(*note)(param, make_reg(segId, i));
}
};
/* CloneTable */
struct CloneTable : public Table<Clone> {
CloneTable() : Table<Clone>(SEG_TYPE_CLONES) {}
virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr);
virtual void listAllOutgoingReferences(reg_t object, void *param, NoteCallback note) const;
virtual void saveLoadWithSerializer(Common::Serializer &ser);
};
/* NodeTable */
struct NodeTable : public Table<Node> {
NodeTable() : Table<Node>(SEG_TYPE_NODES) {}
virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr);
virtual void listAllOutgoingReferences(reg_t object, void *param, NoteCallback note) const;
virtual void saveLoadWithSerializer(Common::Serializer &ser);
};
/* ListTable */
struct ListTable : public Table<List> {
ListTable() : Table<List>(SEG_TYPE_LISTS) {}
virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr);
virtual void listAllOutgoingReferences(reg_t object, void *param, NoteCallback note) const;
virtual void saveLoadWithSerializer(Common::Serializer &ser);
};
/* HunkTable */
struct HunkTable : public Table<Hunk> {
HunkTable() : Table<Hunk>(SEG_TYPE_HUNK) {}
virtual void freeEntry(int idx) {
Table<Hunk>::freeEntry(idx);
free(_table[idx].mem);
}
virtual void saveLoadWithSerializer(Common::Serializer &ser);
};
// Free-style memory
struct DynMem : public SegmentObj {
int _size;
Common::String _description;
byte *_buf;
public:
DynMem() : SegmentObj(SEG_TYPE_DYNMEM), _size(0), _buf(0) {}
~DynMem() {
free(_buf);
_buf = NULL;
}
virtual bool isValidOffset(uint16 offset) const;
virtual SegmentRef dereference(reg_t pointer);
virtual reg_t findCanonicAddress(SegManager *segMan, reg_t sub_addr) const;
virtual void listAllDeallocatable(SegmentId segId, void *param, NoteCallback note) const;
virtual void saveLoadWithSerializer(Common::Serializer &ser);
};
#ifdef ENABLE_SCI32
template <typename T>
class SciArray {
public:
SciArray() {
_type = -1;
_data = NULL;
_size = 0;
_actualSize = 0;
}
SciArray(const SciArray<T> &array) {
_type = array._type;
_size = array._size;
_actualSize = array._actualSize;
_data = new T[_actualSize];
assert(_data);
memcpy(_data, array._data, _size * sizeof(T));
}
SciArray<T>& operator=(const SciArray<T> &array) {
if (this == &array)
return *this;
delete[] _data;
_type = array._type;
_size = array._size;
_actualSize = array._actualSize;
_data = new T[_actualSize];
assert(_data);
memcpy(_data, array._data, _size * sizeof(T));
return *this;
}
virtual ~SciArray() {
destroy();
}
virtual void destroy() {
delete[] _data;
_data = NULL;
_type = -1;
_size = _actualSize = 0;
}
void setType(byte type) {
if (_type >= 0)
error("SciArray::setType(): Type already set");
_type = type;
}
void setSize(uint32 size) {
if (_type < 0)
error("SciArray::setSize(): No type set");
// Check if we don't have to do anything
if (_size == size)
return;
// Check if we don't have to expand the array
if (size <= _actualSize) {
_size = size;
return;
}
// So, we're going to have to create an array of some sort
T *newArray = new T[size];
memset(newArray, 0, size * sizeof(T));
// Check if we never created an array before
if (!_data) {
_size = _actualSize = size;
_data = newArray;
return;
}
// Copy data from the old array to the new
memcpy(newArray, _data, _size * sizeof(T));
// Now set the new array to the old and set the sizes
delete[] _data;
_data = newArray;
_size = _actualSize = size;
}
T getValue(uint16 index) const {
if (index >= _size)
error("SciArray::getValue(): %d is out of bounds (%d)", index, _size);
return _data[index];
}
void setValue(uint16 index, T value) {
if (index >= _size)
error("SciArray::setValue(): %d is out of bounds (%d)", index, _size);
_data[index] = value;
}
byte getType() const { return _type; }
uint32 getSize() const { return _size; }
T *getRawData() { return _data; }
protected:
int8 _type;
T *_data;
uint32 _size; // _size holds the number of entries that the scripts have requested
uint32 _actualSize; // _actualSize is the actual numbers of entries allocated
};
class SciString : public SciArray<char> {
public:
SciString() : SciArray<char>() { setType(3); }
// We overload destroy to ensure the string type is 3 after destroying
void destroy() { SciArray<char>::destroy(); _type = 3; }
Common::String toString() const;
void fromString(const Common::String &string);
};
struct ArrayTable : public Table<SciArray<reg_t> > {
ArrayTable() : Table<SciArray<reg_t> >(SEG_TYPE_ARRAY) {}
virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr);
virtual void listAllOutgoingReferences(reg_t object, void *param, NoteCallback note) const;
void saveLoadWithSerializer(Common::Serializer &ser);
SegmentRef dereference(reg_t pointer);
};
struct StringTable : public Table<SciString> {
StringTable() : Table<SciString>(SEG_TYPE_STRING) {}
virtual void freeAtAddress(SegManager *segMan, reg_t sub_addr);
void saveLoadWithSerializer(Common::Serializer &ser);
SegmentRef dereference(reg_t pointer);
};
#endif
} // End of namespace Sci
#endif // SCI_ENGINE_SEGMENT_H