scummvm/common/hashmap.h

596 lines
16 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
// The hash map (associative array) implementation in this file is
// based on the PyDict implementation of CPython.
#ifndef COMMON_HASHMAP_H
#define COMMON_HASHMAP_H
#include "common/func.h"
#include "common/str.h"
#include "common/util.h"
#define USE_HASHMAP_MEMORY_POOL
#ifdef USE_HASHMAP_MEMORY_POOL
#include "common/memorypool.h"
#endif
namespace Common {
// The sgi IRIX MIPSpro Compiler has difficulties with nested templates.
// This and the other __sgi conditionals below work around these problems.
// The Intel C++ Compiler suffers from the same problems.
#if (defined(__sgi) && !defined(__GNUC__)) || defined(__INTEL_COMPILER)
template<class T> class IteratorImpl;
#endif
// Enable the following #define if you want to check how many collisions the
// code produces (many collisions indicate either a bad hash function, or a
// hash table that is too small).
//#define DEBUG_HASH_COLLISIONS
/**
* HashMap<Key,Val> maps objects of type Key to objects of type Val.
* For each used Key type, we need an "uint hashit(Key,uint)" function
* that computes a hash for the given Key object and returns it as an
* an integer from 0 to hashsize-1, and also an "equality functor".
* that returns true if if its two arguments are to be considered
* equal. Also, we assume that "=" works on Val objects for assignment.
*
* If aa is an HashMap<Key,Val>, then space is allocated each time aa[key] is
* referenced, for a new key. If the object is const, then an assertion is
* triggered instead. Hence if you are not sure whether a key is contained in
* the map, use contains() first to check for its presence.
*/
template<class Key, class Val, class HashFunc = Hash<Key>, class EqualFunc = EqualTo<Key> >
class HashMap {
private:
typedef HashMap<Key, Val, HashFunc, EqualFunc> HM_t;
struct Node {
const Key _key;
Val _value;
explicit Node(const Key &key) : _key(key), _value() {}
Node() : _key(), _value() {}
};
enum {
HASHMAP_PERTURB_SHIFT = 5,
HASHMAP_MIN_CAPACITY = 16,
// The quotient of the next two constants controls how much the
// internal storage of the hashmap may fill up before being
// increased automatically.
// Note: the quotient of these two must be between and different
// from 0 and 1.
HASHMAP_LOADFACTOR_NUMERATOR = 2,
HASHMAP_LOADFACTOR_DENOMINATOR = 3,
HASHMAP_MEMORYPOOL_SIZE = HASHMAP_MIN_CAPACITY * HASHMAP_LOADFACTOR_NUMERATOR / HASHMAP_LOADFACTOR_DENOMINATOR
};
ObjectPool<Node, HASHMAP_MEMORYPOOL_SIZE> _nodePool;
Node **_storage; ///< hashtable of size arrsize.
uint _mask; ///< Capacity of the HashMap minus one; must be a power of two of minus one
uint _size;
uint _deleted; ///< Number of deleted elements (_dummyNodes)
HashFunc _hash;
EqualFunc _equal;
/** Default value, returned by the const getVal. */
const Val _defaultVal;
/** Dummy node, used as marker for erased objects. */
#define HASHMAP_DUMMY_NODE ((Node *)1)
#ifdef DEBUG_HASH_COLLISIONS
mutable int _collisions, _lookups, _dummyHits;
#endif
Node *allocNode(const Key &key) {
return new (_nodePool) Node(key);
}
void freeNode(Node *node) {
if (node && node != HASHMAP_DUMMY_NODE)
_nodePool.deleteChunk(node);
}
void assign(const HM_t &map);
int lookup(const Key &key) const;
int lookupAndCreateIfMissing(const Key &key);
void expandStorage(uint newCapacity);
#if !defined(__sgi) || defined(__GNUC__)
template<class T> friend class IteratorImpl;
#endif
/**
* Simple HashMap iterator implementation.
*/
template<class NodeType>
class IteratorImpl {
friend class HashMap;
#if (defined(__sgi) && !defined(__GNUC__)) || defined(__INTEL_COMPILER)
template<class T> friend class Common::IteratorImpl;
#else
template<class T> friend class IteratorImpl;
#endif
protected:
typedef const HashMap hashmap_t;
uint _idx;
hashmap_t *_hashmap;
protected:
IteratorImpl(uint idx, hashmap_t *hashmap) : _idx(idx), _hashmap(hashmap) {}
NodeType *deref() const {
assert(_hashmap != 0);
assert(_idx <= _hashmap->_mask);
Node *node = _hashmap->_storage[_idx];
assert(node != 0);
assert(node != HASHMAP_DUMMY_NODE);
return node;
}
public:
IteratorImpl() : _idx(0), _hashmap(0) {}
template<class T>
IteratorImpl(const IteratorImpl<T> &c) : _idx(c._idx), _hashmap(c._hashmap) {}
NodeType &operator*() const { return *deref(); }
NodeType *operator->() const { return deref(); }
bool operator==(const IteratorImpl &iter) const { return _idx == iter._idx && _hashmap == iter._hashmap; }
bool operator!=(const IteratorImpl &iter) const { return !(*this == iter); }
IteratorImpl &operator++() {
assert(_hashmap);
do {
_idx++;
} while (_idx <= _hashmap->_mask && (_hashmap->_storage[_idx] == 0 || _hashmap->_storage[_idx] == HASHMAP_DUMMY_NODE));
if (_idx > _hashmap->_mask)
_idx = (uint)-1;
return *this;
}
IteratorImpl operator++(int) {
IteratorImpl old = *this;
operator ++();
return old;
}
};
public:
typedef IteratorImpl<Node> iterator;
typedef IteratorImpl<const Node> const_iterator;
HashMap();
HashMap(const HM_t &map);
~HashMap();
HM_t &operator=(const HM_t &map) {
if (this == &map)
return *this;
// Remove the previous content and ...
clear();
delete[] _storage;
// ... copy the new stuff.
assign(map);
return *this;
}
bool contains(const Key &key) const;
Val &operator[](const Key &key);
const Val &operator[](const Key &key) const;
Val &getVal(const Key &key);
const Val &getVal(const Key &key) const;
const Val &getVal(const Key &key, const Val &defaultVal) const;
void setVal(const Key &key, const Val &val);
void clear(bool shrinkArray = 0);
void erase(const Key &key);
uint size() const { return _size; }
iterator begin() {
// Find and return the first non-empty entry
for (uint ctr = 0; ctr <= _mask; ++ctr) {
if (_storage[ctr] && _storage[ctr] != HASHMAP_DUMMY_NODE)
return iterator(ctr, this);
}
return end();
}
iterator end() {
return iterator((uint)-1, this);
}
const_iterator begin() const {
// Find and return the first non-empty entry
for (uint ctr = 0; ctr <= _mask; ++ctr) {
if (_storage[ctr] && _storage[ctr] != HASHMAP_DUMMY_NODE)
return const_iterator(ctr, this);
}
return end();
}
const_iterator end() const {
return const_iterator((uint)-1, this);
}
iterator find(const Key &key) {
uint ctr = lookup(key);
if (_storage[ctr])
return iterator(ctr, this);
return end();
}
const_iterator find(const Key &key) const {
uint ctr = lookup(key);
if (_storage[ctr])
return const_iterator(ctr, this);
return end();
}
// TODO: insert() method?
bool empty() const {
return (_size == 0);
}
};
//-------------------------------------------------------
// HashMap functions
/**
* Base constructor, creates an empty hashmap.
*/
template<class Key, class Val, class HashFunc, class EqualFunc>
HashMap<Key, Val, HashFunc, EqualFunc>::HashMap()
//
// We have to skip _defaultVal() on PS2 to avoid gcc 3.2.2 ICE
//
#ifdef __PLAYSTATION2__
{
#else
: _defaultVal() {
#endif
_mask = HASHMAP_MIN_CAPACITY - 1;
_storage = new Node *[HASHMAP_MIN_CAPACITY];
assert(_storage != NULL);
memset(_storage, 0, HASHMAP_MIN_CAPACITY * sizeof(Node *));
_size = 0;
_deleted = 0;
#ifdef DEBUG_HASH_COLLISIONS
_collisions = 0;
_lookups = 0;
_dummyHits = 0;
#endif
}
/**
* Copy constructor, creates a full copy of the given hashmap.
* We must provide a custom copy constructor as we use pointers
* to heap buffers for the internal storage.
*/
template<class Key, class Val, class HashFunc, class EqualFunc>
HashMap<Key, Val, HashFunc, EqualFunc>::HashMap(const HM_t &map) :
_defaultVal() {
#ifdef DEBUG_HASH_COLLISIONS
_collisions = 0;
_lookups = 0;
_dummyHits = 0;
#endif
assign(map);
}
/**
* Destructor, frees all used memory.
*/
template<class Key, class Val, class HashFunc, class EqualFunc>
HashMap<Key, Val, HashFunc, EqualFunc>::~HashMap() {
for (uint ctr = 0; ctr <= _mask; ++ctr)
freeNode(_storage[ctr]);
delete[] _storage;
#ifdef DEBUG_HASH_COLLISIONS
extern void updateHashCollisionStats(int, int, int, int, int);
updateHashCollisionStats(_collisions, _dummyHits, _lookups, _mask+1, _size);
#endif
}
/**
* Internal method for assigning the content of another HashMap
* to this one.
*
* @note We do *not* deallocate the previous storage here -- the caller is
* responsible for doing that!
*/
template<class Key, class Val, class HashFunc, class EqualFunc>
void HashMap<Key, Val, HashFunc, EqualFunc>::assign(const HM_t &map) {
_mask = map._mask;
_storage = new Node *[_mask+1];
assert(_storage != NULL);
memset(_storage, 0, (_mask+1) * sizeof(Node *));
// Simply clone the map given to us, one by one.
_size = 0;
_deleted = 0;
for (uint ctr = 0; ctr <= _mask; ++ctr) {
if (map._storage[ctr] == HASHMAP_DUMMY_NODE) {
_storage[ctr] = HASHMAP_DUMMY_NODE;
_deleted++;
} else if (map._storage[ctr] != NULL) {
_storage[ctr] = allocNode(map._storage[ctr]->_key);
_storage[ctr]->_value = map._storage[ctr]->_value;
_size++;
}
}
// Perform a sanity check (to help track down hashmap corruption)
assert(_size == map._size);
assert(_deleted == map._deleted);
}
template<class Key, class Val, class HashFunc, class EqualFunc>
void HashMap<Key, Val, HashFunc, EqualFunc>::clear(bool shrinkArray) {
for (uint ctr = 0; ctr <= _mask; ++ctr) {
freeNode(_storage[ctr]);
_storage[ctr] = NULL;
}
#ifdef USE_HASHMAP_MEMORY_POOL
_nodePool.freeUnusedPages();
#endif
if (shrinkArray && _mask >= HASHMAP_MIN_CAPACITY) {
delete[] _storage;
_mask = HASHMAP_MIN_CAPACITY;
_storage = new Node *[HASHMAP_MIN_CAPACITY];
assert(_storage != NULL);
memset(_storage, 0, HASHMAP_MIN_CAPACITY * sizeof(Node *));
}
_size = 0;
_deleted = 0;
}
template<class Key, class Val, class HashFunc, class EqualFunc>
void HashMap<Key, Val, HashFunc, EqualFunc>::expandStorage(uint newCapacity) {
assert(newCapacity > _mask+1);
#ifndef NDEBUG
const uint old_size = _size;
#endif
const uint old_mask = _mask;
Node **old_storage = _storage;
// allocate a new array
_size = 0;
_deleted = 0;
_mask = newCapacity - 1;
_storage = new Node *[newCapacity];
assert(_storage != NULL);
memset(_storage, 0, newCapacity * sizeof(Node *));
// rehash all the old elements
for (uint ctr = 0; ctr <= old_mask; ++ctr) {
if (old_storage[ctr] == NULL || old_storage[ctr] == HASHMAP_DUMMY_NODE)
continue;
// Insert the element from the old table into the new table.
// Since we know that no key exists twice in the old table, we
// can do this slightly better than by calling lookup, since we
// don't have to call _equal().
const uint hash = _hash(old_storage[ctr]->_key);
uint idx = hash & _mask;
for (uint perturb = hash; _storage[idx] != NULL && _storage[idx] != HASHMAP_DUMMY_NODE; perturb >>= HASHMAP_PERTURB_SHIFT) {
idx = (5 * idx + perturb + 1) & _mask;
}
_storage[idx] = old_storage[ctr];
_size++;
}
// Perform a sanity check: Old number of elements should match the new one!
// This check will fail if some previous operation corrupted this hashmap.
assert(_size == old_size);
delete[] old_storage;
return;
}
template<class Key, class Val, class HashFunc, class EqualFunc>
int HashMap<Key, Val, HashFunc, EqualFunc>::lookup(const Key &key) const {
const uint hash = _hash(key);
uint ctr = hash & _mask;
for (uint perturb = hash; ; perturb >>= HASHMAP_PERTURB_SHIFT) {
if (_storage[ctr] == NULL)
break;
if (_storage[ctr] == HASHMAP_DUMMY_NODE) {
#ifdef DEBUG_HASH_COLLISIONS
_dummyHits++;
#endif
} else if (_equal(_storage[ctr]->_key, key))
break;
ctr = (5 * ctr + perturb + 1) & _mask;
#ifdef DEBUG_HASH_COLLISIONS
_collisions++;
#endif
}
#ifdef DEBUG_HASH_COLLISIONS
_lookups++;
fprintf(stderr, "collisions %d, dummies hit %d, lookups %d, ratio %f in HashMap %p; size %d num elements %d\n",
_collisions, _dummyHits, _lookups, ((double) _collisions / (double)_lookups),
(const void *)this, _mask+1, _size);
#endif
return ctr;
}
template<class Key, class Val, class HashFunc, class EqualFunc>
int HashMap<Key, Val, HashFunc, EqualFunc>::lookupAndCreateIfMissing(const Key &key) {
const uint hash = _hash(key);
uint ctr = hash & _mask;
const uint NONE_FOUND = _mask + 1;
uint first_free = NONE_FOUND;
bool found = false;
for (uint perturb = hash; ; perturb >>= HASHMAP_PERTURB_SHIFT) {
if (_storage[ctr] == NULL)
break;
if (_storage[ctr] == HASHMAP_DUMMY_NODE) {
#ifdef DEBUG_HASH_COLLISIONS
_dummyHits++;
#endif
if (first_free != _mask + 1)
first_free = ctr;
} else if (_equal(_storage[ctr]->_key, key)) {
found = true;
break;
}
ctr = (5 * ctr + perturb + 1) & _mask;
#ifdef DEBUG_HASH_COLLISIONS
_collisions++;
#endif
}
#ifdef DEBUG_HASH_COLLISIONS
_lookups++;
fprintf(stderr, "collisions %d, dummies hit %d, lookups %d, ratio %f in HashMap %p; size %d num elements %d\n",
_collisions, _dummyHits, _lookups, ((double) _collisions / (double)_lookups),
(const void *)this, _mask+1, _size);
#endif
if (!found && first_free != _mask + 1)
ctr = first_free;
if (!found) {
if (_storage[ctr])
_deleted--;
_storage[ctr] = allocNode(key);
assert(_storage[ctr] != NULL);
_size++;
// Keep the load factor below a certain threshold.
// Deleted nodes are also counted
uint capacity = _mask + 1;
if ((_size + _deleted) * HASHMAP_LOADFACTOR_DENOMINATOR >
capacity * HASHMAP_LOADFACTOR_NUMERATOR) {
capacity = capacity < 500 ? (capacity * 4) : (capacity * 2);
expandStorage(capacity);
ctr = lookup(key);
assert(_storage[ctr] != NULL);
}
}
return ctr;
}
template<class Key, class Val, class HashFunc, class EqualFunc>
bool HashMap<Key, Val, HashFunc, EqualFunc>::contains(const Key &key) const {
uint ctr = lookup(key);
return (_storage[ctr] != NULL);
}
template<class Key, class Val, class HashFunc, class EqualFunc>
Val &HashMap<Key, Val, HashFunc, EqualFunc>::operator[](const Key &key) {
return getVal(key);
}
template<class Key, class Val, class HashFunc, class EqualFunc>
const Val &HashMap<Key, Val, HashFunc, EqualFunc>::operator[](const Key &key) const {
return getVal(key);
}
template<class Key, class Val, class HashFunc, class EqualFunc>
Val &HashMap<Key, Val, HashFunc, EqualFunc>::getVal(const Key &key) {
uint ctr = lookupAndCreateIfMissing(key);
assert(_storage[ctr] != NULL);
return _storage[ctr]->_value;
}
template<class Key, class Val, class HashFunc, class EqualFunc>
const Val &HashMap<Key, Val, HashFunc, EqualFunc>::getVal(const Key &key) const {
return getVal(key, _defaultVal);
}
template<class Key, class Val, class HashFunc, class EqualFunc>
const Val &HashMap<Key, Val, HashFunc, EqualFunc>::getVal(const Key &key, const Val &defaultVal) const {
uint ctr = lookup(key);
if (_storage[ctr] != NULL)
return _storage[ctr]->_value;
else
return defaultVal;
}
template<class Key, class Val, class HashFunc, class EqualFunc>
void HashMap<Key, Val, HashFunc, EqualFunc>::setVal(const Key &key, const Val &val) {
uint ctr = lookupAndCreateIfMissing(key);
assert(_storage[ctr] != NULL);
_storage[ctr]->_value = val;
}
template<class Key, class Val, class HashFunc, class EqualFunc>
void HashMap<Key, Val, HashFunc, EqualFunc>::erase(const Key &key) {
uint ctr = lookup(key);
if (_storage[ctr] == NULL)
return;
// If we remove a key, we replace it with a dummy node.
freeNode(_storage[ctr]);
_storage[ctr] = HASHMAP_DUMMY_NODE;
_size--;
_deleted++;
return;
}
#undef HASHMAP_DUMMY_NODE
} // End of namespace Common
#endif