mirror of
https://github.com/libretro/scummvm.git
synced 2025-01-07 18:31:37 +00:00
a66e661df1
Combined if statements and simplified trig. cos(atan2(y,x)) = x / sqrt(x^2 + y^2) and sin(atan2(y,x)) = y / sqrt(x^2 + y^2).
425 lines
12 KiB
C++
425 lines
12 KiB
C++
/* ScummVM - Graphic Adventure Engine
|
|
*
|
|
* ScummVM is the legal property of its developers, whose names
|
|
* are too numerous to list here. Please refer to the COPYRIGHT
|
|
* file distributed with this source distribution.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
*/
|
|
|
|
#include "common/algorithm.h"
|
|
#include "common/util.h"
|
|
#include "graphics/primitives.h"
|
|
|
|
namespace Graphics {
|
|
|
|
void drawLine(int x0, int y0, int x1, int y1, int color, void (*plotProc)(int, int, int, void *), void *data) {
|
|
// Bresenham's line algorithm, as described by Wikipedia
|
|
const bool steep = ABS(y1 - y0) > ABS(x1 - x0);
|
|
|
|
if (steep) {
|
|
SWAP(x0, y0);
|
|
SWAP(x1, y1);
|
|
}
|
|
|
|
const int delta_x = ABS(x1 - x0);
|
|
const int delta_y = ABS(y1 - y0);
|
|
const int delta_err = delta_y;
|
|
int x = x0;
|
|
int y = y0;
|
|
int err = 0;
|
|
|
|
const int x_step = (x0 < x1) ? 1 : -1;
|
|
const int y_step = (y0 < y1) ? 1 : -1;
|
|
|
|
if (steep)
|
|
(*plotProc)(y, x, color, data);
|
|
else
|
|
(*plotProc)(x, y, color, data);
|
|
|
|
while (x != x1) {
|
|
x += x_step;
|
|
err += delta_err;
|
|
if (2 * err > delta_x) {
|
|
y += y_step;
|
|
err -= delta_x;
|
|
}
|
|
if (steep)
|
|
(*plotProc)(y, x, color, data);
|
|
else
|
|
(*plotProc)(x, y, color, data);
|
|
}
|
|
}
|
|
|
|
void drawHLine(int x1, int x2, int y, int color, void (*plotProc)(int, int, int, void *), void *data) {
|
|
if (x1 > x2)
|
|
SWAP(x1, x2);
|
|
|
|
for (int x = x1; x <= x2; x++)
|
|
(*plotProc)(x, y, color, data);
|
|
}
|
|
|
|
void drawVLine(int x, int y1, int y2, int color, void (*plotProc)(int, int, int, void *), void *data) {
|
|
if (y1 > y2)
|
|
SWAP(y1, y2);
|
|
|
|
for (int y = y1; y <= y2; y++)
|
|
(*plotProc)(x, y, color, data);
|
|
}
|
|
|
|
void drawThickLine(int x0, int y0, int x1, int y1, int penX, int penY, int color, void (*plotProc)(int, int, int, void *), void *data) {
|
|
assert(penX > 0 && penY > 0);
|
|
|
|
// Shortcut
|
|
if (penX == 1 && penY == 1) {
|
|
drawLine(x0, y0, x1, y1, color, plotProc, data);
|
|
return;
|
|
}
|
|
|
|
// TODO: Optimize this. It currently is a very naive way of handling
|
|
// thick lines since quite often it will be drawing to the same pixel
|
|
// multiple times.
|
|
for (int x = 0; x < penX; x++)
|
|
for (int y = 0; y < penY; y++)
|
|
drawLine(x0 + x, y0 + y, x1 + x, y1 + y, color, plotProc, data);
|
|
}
|
|
|
|
/* Bresenham as presented in Foley & Van Dam */
|
|
/* Code is based on GD lib http://libgd.github.io/ */
|
|
void drawThickLine2(int x1, int y1, int x2, int y2, int thick, int color, void (*plotProc)(int, int, int, void *), void *data) {
|
|
int incr1, incr2, d, x, y, xend, yend, xdirflag, ydirflag;
|
|
int wid;
|
|
int w, wstart;
|
|
|
|
int dx = abs(x2 - x1);
|
|
int dy = abs(y2 - y1);
|
|
|
|
if (dx == 0) {
|
|
int xn = x1 - thick / 2;
|
|
Common::Rect r(xn, MIN(y1, y2), xn + thick - 1, MAX(y1, y2));
|
|
drawFilledRect(r, color, plotProc, data);
|
|
return;
|
|
} else if (dy == 0) {
|
|
int yn = y1 - thick / 2;
|
|
Common::Rect r(MIN(x1, x2), yn, MAX(x1, x2), yn + thick - 1);
|
|
drawFilledRect(r, color, plotProc, data);
|
|
return;
|
|
}
|
|
|
|
if (dy <= dx) {
|
|
/* More-or-less horizontal. use wid for vertical stroke */
|
|
|
|
/* 2.0.12: Michael Schwartz: divide rather than multiply;
|
|
TBB: but watch out for /0! */
|
|
if (dx != 0 && thick != 0) {
|
|
double ac_recip = 1/dx * sqrt(dx * dx + dy * dy); // 1 / cos(atan2((double)dy, (double)dx));
|
|
wid = thick * ac_recip;
|
|
} else {
|
|
wid = 1;
|
|
}
|
|
|
|
d = 2 * dy - dx;
|
|
incr1 = 2 * dy;
|
|
incr2 = 2 * (dy - dx);
|
|
if (x1 > x2) {
|
|
x = x2;
|
|
y = y2;
|
|
ydirflag = (-1);
|
|
xend = x1;
|
|
} else {
|
|
x = x1;
|
|
y = y1;
|
|
ydirflag = 1;
|
|
xend = x2;
|
|
}
|
|
|
|
/* Set up line thickness */
|
|
wstart = y - wid / 2;
|
|
for (w = wstart; w < wstart + wid; w++)
|
|
(*plotProc)(x, y, color, data);
|
|
|
|
if (((y2 - y1) * ydirflag) > 0) {
|
|
while (x < xend) {
|
|
x++;
|
|
if (d < 0) {
|
|
d += incr1;
|
|
} else {
|
|
y++;
|
|
d += incr2;
|
|
}
|
|
wstart = y - wid / 2;
|
|
for (w = wstart; w < wstart + wid; w++)
|
|
(*plotProc)(x, w, color, data);
|
|
}
|
|
} else {
|
|
while (x < xend) {
|
|
x++;
|
|
if (d < 0) {
|
|
d += incr1;
|
|
} else {
|
|
y--;
|
|
d += incr2;
|
|
}
|
|
wstart = y - wid / 2;
|
|
for (w = wstart; w < wstart + wid; w++)
|
|
(*plotProc)(x, w, color, data);
|
|
}
|
|
}
|
|
} else {
|
|
/* More-or-less vertical. use wid for horizontal stroke */
|
|
/* 2.0.12: Michael Schwartz: divide rather than multiply;
|
|
TBB: but watch out for /0! */
|
|
if (dy != 0 && thick != 0) {
|
|
double as_recip = 1/dy * sqrt(dx * dx + dy * dy); // 1 / sin(atan2((double)dy, (double)dx));
|
|
wid = thick * as_recip;
|
|
} else {
|
|
wid = 1;
|
|
}
|
|
|
|
d = 2 * dx - dy;
|
|
incr1 = 2 * dx;
|
|
incr2 = 2 * (dx - dy);
|
|
if (y1 > y2) {
|
|
y = y2;
|
|
x = x2;
|
|
yend = y1;
|
|
xdirflag = (-1);
|
|
} else {
|
|
y = y1;
|
|
x = x1;
|
|
yend = y2;
|
|
xdirflag = 1;
|
|
}
|
|
|
|
/* Set up line thickness */
|
|
wstart = x - wid / 2;
|
|
for (w = wstart; w < wstart + wid; w++)
|
|
(*plotProc)(w, y, color, data);
|
|
|
|
if (((x2 - x1) * xdirflag) > 0) {
|
|
while (y < yend) {
|
|
y++;
|
|
if (d < 0) {
|
|
d += incr1;
|
|
} else {
|
|
x++;
|
|
d += incr2;
|
|
}
|
|
wstart = x - wid / 2;
|
|
for (w = wstart; w < wstart + wid; w++)
|
|
(*plotProc)(w, y, color, data);
|
|
}
|
|
} else {
|
|
while (y < yend) {
|
|
y++;
|
|
if (d < 0) {
|
|
d += incr1;
|
|
} else {
|
|
x--;
|
|
d += incr2;
|
|
}
|
|
wstart = x - wid / 2;
|
|
for (w = wstart; w < wstart + wid; w++)
|
|
(*plotProc)(w, y, color, data);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void drawFilledRect(Common::Rect &rect, int color, void (*plotProc)(int, int, int, void *), void *data) {
|
|
for (int y = rect.top; y <= rect.bottom; y++)
|
|
drawHLine(rect.left, rect.right, y, color, plotProc, data);
|
|
}
|
|
|
|
// http://members.chello.at/easyfilter/bresenham.html
|
|
void drawRoundRect(Common::Rect &rect, int arc, int color, bool filled, void (*plotProc)(int, int, int, void *), void *data) {
|
|
if (rect.height() < rect.width()) {
|
|
int x = -arc, y = 0, err = 2-2*arc; /* II. Quadrant */
|
|
int dy = rect.height() - arc * 2;
|
|
int r = arc;
|
|
int stop = 0;
|
|
int lastx = 0, lasty = 0;
|
|
if (dy < 0)
|
|
stop = -dy / 2;
|
|
|
|
do {
|
|
if (filled) {
|
|
drawHLine(rect.left + x + r, rect.right - x - r, rect.top - y + r - stop, color, plotProc, data);
|
|
drawHLine(rect.left + x + r, rect.right - x - r, rect.bottom + y - r + stop, color, plotProc, data);
|
|
} else {
|
|
(*plotProc)(rect.left + x + r, rect.top - y + r - stop, color, data);
|
|
(*plotProc)(rect.right - x - r, rect.top - y + r - stop, color, data);
|
|
(*plotProc)(rect.left + x + r, rect.bottom + y - r + stop, color, data);
|
|
(*plotProc)(rect.right - x - r, rect.bottom + y - r + stop, color, data);
|
|
|
|
lastx = x;
|
|
lasty = y;
|
|
}
|
|
arc = err;
|
|
if (arc <= y) err += ++y*2+1; /* e_xy+e_y < 0 */
|
|
if (arc > x || err > y) err += ++x*2+1; /* e_xy+e_x > 0 or no 2nd y-step */
|
|
if (stop && y > stop)
|
|
break;
|
|
} while (x < 0);
|
|
|
|
if (!filled) {
|
|
x = lastx;
|
|
y = lasty;
|
|
|
|
drawHLine(rect.left + x + r, rect.right - x - r, rect.top - y + r - stop, color, plotProc, data);
|
|
drawHLine(rect.left + x + r, rect.right - x - r, rect.bottom + y - r + stop, color, plotProc, data);
|
|
}
|
|
|
|
for (int i = 0; i < dy; i++) {
|
|
if (filled) {
|
|
drawHLine(rect.left, rect.right, rect.top + r + i, color, plotProc, data);
|
|
} else {
|
|
(*plotProc)(rect.left, rect.top + r + i, color, data);
|
|
(*plotProc)(rect.right, rect.top + r + i, color, data);
|
|
}
|
|
}
|
|
} else {
|
|
int y = -arc, x = 0, err = 2-2*arc; /* II. Quadrant */
|
|
int dx = rect.width() - arc * 2;
|
|
int r = arc;
|
|
int stop = 0;
|
|
int lastx = 0, lasty = 0;
|
|
if (dx < 0)
|
|
stop = -dx / 2;
|
|
|
|
do {
|
|
if (filled) {
|
|
drawVLine(rect.left - x + r - stop, rect.top + y + r, rect.bottom - y - r, color, plotProc, data);
|
|
drawVLine(rect.right + x - r + stop, rect.top + y + r, rect.bottom - y - r, color, plotProc, data);
|
|
} else {
|
|
(*plotProc)(rect.left - x + r - stop, rect.top + y + r, color, data);
|
|
(*plotProc)(rect.left - x + r - stop, rect.bottom - y - r, color, data);
|
|
(*plotProc)(rect.right + x - r + stop, rect.top + y + r, color, data);
|
|
(*plotProc)(rect.right + x - r + stop, rect.bottom - y - r, color, data);
|
|
|
|
lastx = x;
|
|
lasty = y;
|
|
}
|
|
|
|
arc = err;
|
|
if (arc <= x) err += ++x*2+1; /* e_xy+e_y < 0 */
|
|
if (arc > y || err > x) err += ++y*2+1; /* e_xy+e_x > 0 or no 2nd y-step */
|
|
if (stop && x > stop)
|
|
break;
|
|
} while (y < 0);
|
|
|
|
if (!filled) {
|
|
x = lastx;
|
|
y = lasty;
|
|
drawVLine(rect.left - x + r - stop, rect.top + y + r, rect.bottom - y - r, color, plotProc, data);
|
|
drawVLine(rect.right + x - r + stop, rect.top + y + r, rect.bottom - y - r, color, plotProc, data);
|
|
}
|
|
|
|
for (int i = 0; i < dx; i++) {
|
|
if (filled) {
|
|
drawVLine(rect.left + r + i, rect.top, rect.bottom, color, plotProc, data);
|
|
} else {
|
|
(*plotProc)(rect.left + r + i, rect.top, color, data);
|
|
(*plotProc)(rect.left + r + i, rect.bottom, color, data);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Based on public-domain code by Darel Rex Finley, 2007
|
|
// http://alienryderflex.com/polygon_fill/
|
|
void drawPolygonScan(int *polyX, int *polyY, int npoints, Common::Rect &bbox, int color, void (*plotProc)(int, int, int, void *), void *data) {
|
|
int *nodeX = (int *)calloc(npoints, sizeof(int));
|
|
int i, j;
|
|
|
|
// Loop through the rows of the image.
|
|
for (int pixelY = bbox.top; pixelY < bbox.bottom; pixelY++) {
|
|
// Build a list of nodes.
|
|
int nodes = 0;
|
|
j = npoints - 1;
|
|
|
|
for (i = 0; i < npoints; i++) {
|
|
if ((polyY[i] < pixelY && polyY[j] >= pixelY) || (polyY[j] < pixelY && polyY[i] >= pixelY)) {
|
|
nodeX[nodes++] = (int)(polyX[i] + (double)(pixelY - polyY[i]) / (double)(polyY[j]-polyY[i]) *
|
|
(double)(polyX[j] - polyX[i]) + 0.5);
|
|
}
|
|
j = i;
|
|
}
|
|
|
|
// Sort the nodes
|
|
Common::sort(nodeX, &nodeX[nodes]);
|
|
|
|
// Fill the pixels between node pairs.
|
|
for (i = 0; i < nodes; i += 2) {
|
|
if (nodeX[i ] >= bbox.right)
|
|
break;
|
|
if (nodeX[i + 1] > bbox.left) {
|
|
nodeX[i] = MAX<int16>(nodeX[i], bbox.left);
|
|
nodeX[i + 1] = MIN<int16>(nodeX[i + 1], bbox.right);
|
|
|
|
drawHLine(nodeX[i], nodeX[i + 1], pixelY, color, plotProc, data);
|
|
}
|
|
}
|
|
}
|
|
|
|
free(nodeX);
|
|
}
|
|
|
|
// http://members.chello.at/easyfilter/bresenham.html
|
|
void drawEllipse(int x0, int y0, int x1, int y1, int color, bool filled, void (*plotProc)(int, int, int, void *), void *data) {
|
|
int a = abs(x1 - x0), b = abs(y1 - y0), b1 = b & 1; /* values of diameter */
|
|
long dx = 4 * (1 - a) * b * b, dy = 4 * (b1 + 1) * a * a; /* error increment */
|
|
long err = dx + dy + b1 * a * a, e2; /* error of 1.step */
|
|
|
|
if (x0 > x1) { x0 = x1; x1 += a; } /* if called with swapped points */
|
|
if (y0 > y1) y0 = y1; /* .. exchange them */
|
|
y0 += (b + 1) / 2; y1 = y0 - b1; /* starting pixel */
|
|
a *= 8 * a; b1 = 8 * b * b;
|
|
|
|
do {
|
|
if (filled) {
|
|
drawHLine(x0, x1, y0, color, plotProc, data);
|
|
drawHLine(x0, x1, y1, color, plotProc, data);
|
|
} else {
|
|
(*plotProc)(x1, y0, color, data); /* I. Quadrant */
|
|
(*plotProc)(x0, y0, color, data); /* II. Quadrant */
|
|
(*plotProc)(x0, y1, color, data); /* III. Quadrant */
|
|
(*plotProc)(x1, y1, color, data); /* IV. Quadrant */
|
|
}
|
|
e2 = 2*err;
|
|
if (e2 <= dy) { y0++; y1--; err += dy += a; } /* y step */
|
|
if (e2 >= dx || 2*err > dy) { x0++; x1--; err += dx += b1; } /* x step */
|
|
} while (x0 <= x1);
|
|
|
|
while (y0-y1 < b) { /* too early stop of flat ellipses a=1 */
|
|
if (filled) {
|
|
drawHLine(x0 - 1, x0 - 1, y0, color, plotProc, data); /* -> finish tip of ellipse */
|
|
drawHLine(x1 + 1, x1 + 1, y0, color, plotProc, data);
|
|
drawHLine(x0 - 1, x0 - 1, y1, color, plotProc, data);
|
|
drawHLine(x1 + 1, x1 + 1, y1, color, plotProc, data);
|
|
} else {
|
|
(*plotProc)(x0 - 1, y0, color, data); /* -> finish tip of ellipse */
|
|
(*plotProc)(x1 + 1, y0, color, data);
|
|
(*plotProc)(x0 - 1, y1, color, data);
|
|
(*plotProc)(x1 + 1, y1, color, data);
|
|
}
|
|
y0++;
|
|
y1--;
|
|
}
|
|
}
|
|
|
|
} // End of namespace Graphics
|