scummvm/engines/cine/pal.cpp
2020-08-22 22:58:43 +02:00

425 lines
14 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "cine/cine.h"
#include "cine/various.h"
#include "cine/pal.h"
#include "common/system.h" // For g_system->getPaletteManager()->setPalette
#include "common/textconsole.h"
#include "graphics/palette.h"
namespace Cine {
static byte paletteBuffer1[16];
static byte paletteBuffer2[16];
void loadPal(const char *fileName) {
char buffer[20];
removeExtention(buffer, fileName);
strcat(buffer, ".PAL");
g_cine->_palArray.clear();
Common::File palFileHandle;
if (!palFileHandle.open(buffer))
error("loadPal(): Cannot open file %s", fileName);
uint16 palEntriesCount = palFileHandle.readUint16LE();
palFileHandle.readUint16LE(); // entry size
g_cine->_palArray.resize(palEntriesCount);
for (uint i = 0; i < g_cine->_palArray.size(); ++i) {
palFileHandle.read(g_cine->_palArray[i].name, 10);
palFileHandle.read(g_cine->_palArray[i].pal1, 16);
palFileHandle.read(g_cine->_palArray[i].pal2, 16);
}
palFileHandle.close();
}
int16 findPaletteFromName(const char *fileName) {
char buffer[10];
uint16 position = 0;
uint16 i;
Common::strlcpy(buffer, fileName, sizeof(buffer));
while (position < strlen(buffer)) {
if (buffer[position] > 'a' && buffer[position] < 'z') {
buffer[position] += 'A' - 'a';
}
position++;
}
for (i = 0; i < g_cine->_palArray.size(); i++) {
if (!strcmp(buffer, g_cine->_palArray[i].name)) {
return i;
}
}
return -1;
}
void loadRelatedPalette(const char *fileName) {
char localName[16];
byte i;
int16 paletteIndex;
removeExtention(localName, fileName);
paletteIndex = findPaletteFromName(localName);
if (paletteIndex == -1) {
// generate default palette
for (i = 0; i < 16; i++) {
paletteBuffer1[i] = paletteBuffer2[i] = (i << 4) + i;
}
} else {
assert(paletteIndex < (int32)g_cine->_palArray.size());
memcpy(paletteBuffer1, g_cine->_palArray[paletteIndex].pal1, 16);
memcpy(paletteBuffer2, g_cine->_palArray[paletteIndex].pal2, 16);
}
}
namespace {
/** Is given endian type big endian? (Handles native endian type too, otherwise this would be trivial). */
bool isBigEndian(const EndianType endian) {
assert(endian == CINE_NATIVE_ENDIAN || endian == CINE_LITTLE_ENDIAN || endian == CINE_BIG_ENDIAN);
// Handle explicit little and big endian types here
if (endian != CINE_NATIVE_ENDIAN) {
return (endian == CINE_BIG_ENDIAN);
}
// Handle native endian type here
#if defined(SCUMM_BIG_ENDIAN)
return true;
#elif defined(SCUMM_LITTLE_ENDIAN)
return false;
#else
#error No endianness defined
#endif
}
/** Calculate byte position of given bit position in a multibyte variable using defined endianness. */
int bytePos(const int bitPos, const int numBytes, const bool bigEndian) {
if (bigEndian)
return (numBytes - 1) - (bitPos / 8);
else // little endian
return bitPos / 8;
}
/** Calculate the value of "base" to the power of "power". */
int power(int base, int power) {
int result = 1;
while (power--)
result *= base;
return result;
}
} // end of anonymous namespace
Palette &Palette::rotateRight(byte firstIndex, byte lastIndex) {
debug(1, "Palette::rotateRight(firstIndex: %d, lastIndex: %d)", firstIndex, lastIndex);
const Color lastColor = _colors[lastIndex];
for (uint i = lastIndex; i > firstIndex; i--)
_colors[i] = _colors[i - 1];
_colors[firstIndex] = lastColor;
return *this;
}
Palette &Palette::rotateLeft(byte firstIndex, byte lastIndex) {
debug(1, "Palette::rotateLeft(firstIndex: %d, lastIndex: %d)", firstIndex, lastIndex);
const Color firstColor = _colors[firstIndex];
for (uint i = firstIndex; i < lastIndex; i++)
_colors[i] = _colors[i + 1];
_colors[lastIndex] = firstColor;
return *this;
}
bool Palette::empty() const {
return _colors.empty();
}
uint Palette::colorCount() const {
return _colors.size();
}
byte Palette::brightness(byte colorIndex) {
return (byte) ((_colors[colorIndex].r*19 +
_colors[colorIndex].g*38 +
_colors[colorIndex].b*7) / 64);
}
bool Palette::isEqual(byte index1, byte index2) {
return _colors[index1].r == _colors[index2].r &&
_colors[index1].g == _colors[index2].g &&
_colors[index1].b == _colors[index2].b;
}
int Palette::findMinBrightnessColorIndex(uint minColorIndex) {
int minFoundBrightness = 999;
int foundColorIndex = 0;
for (uint i = minColorIndex; i < colorCount(); i++) {
byte currColorBrightness = brightness(i);
if (currColorBrightness < minFoundBrightness) {
minFoundBrightness = currColorBrightness;
foundColorIndex = i;
}
}
return (_colors.size() >= 3 && isEqual(2, foundColorIndex)) ? 0 : foundColorIndex;
}
bool Palette::ensureContrast(byte &minBrightnessColorIndex) {
minBrightnessColorIndex = findMinBrightnessColorIndex();
if (_colors.size() >= 3 && isEqual(2, minBrightnessColorIndex)) {
Color black = {0, 0, 0};
Color white = {static_cast<uint8>(_format.rMax()), static_cast<uint8>(_format.gMax()), static_cast<uint8>(_format.bMax())};
_colors[2] = white;
if (isEqual(2, minBrightnessColorIndex)) {
_colors[minBrightnessColorIndex] = black;
}
return true;
}
return false;
}
Palette &Palette::fillWithBlack() {
for (uint i = 0; i < _colors.size(); i++) {
_colors[i].r = 0;
_colors[i].g = 0;
_colors[i].b = 0;
}
return *this;
}
// TODO: Add better heuristic for checking whether the color format is valid
bool Palette::isValid() const {
// Check that the color format has been actually set and not just default constructed.
// Also check that the alpha channel is discarded.
return _format != Graphics::PixelFormat() && _format.aLoss == 8;
}
const Graphics::PixelFormat &Palette::colorFormat() const {
return _format;
}
void Palette::setGlobalOSystemPalette() const {
byte buf[256 * 3]; // Allocate space for the largest possible palette
if (g_cine->mayHave256Colors()) {
memset(buf, 0, sizeof(buf)); // Clear whole palette
}
// The color format used by OSystem's setPalette-function:
save(buf, sizeof(buf), Graphics::PixelFormat(3, 8, 8, 8, 0, 0, 8, 16, 0), CINE_LITTLE_ENDIAN);
if (renderer->useTransparentDialogBoxes() && colorCount() == 16) {
// The Amiga version of Future Wars does use the upper 16 colors for a darkened
// game palette to allow transparent dialog boxes. To support that in our code
// we do calculate that palette over here and append it to the screen palette.
for (uint i = 0; i < 16 * 3; ++i)
buf[16 * 3 + i] = buf[i] >> 1;
g_system->getPaletteManager()->setPalette(buf, 0, colorCount() * 2);
} else if (g_cine->mayHave256Colors()) {
// If 256 colors are possible then always set 256 colors
// because resources may be a combination of 16 colors and 256 colors
// and going from a 16 color screen to a 256 color screen (e.g. when leaving
// the rat maze on Dr. Why's island in Operation Stealth) may leave
// the upper 240 colors not faded out.
g_system->getPaletteManager()->setPalette(buf, 0, 256);
} else {
g_system->getPaletteManager()->setPalette(buf, 0, colorCount());
}
}
Cine::Palette::Color Palette::getColor(byte index) const {
return _colors[index];
}
uint8 Palette::getR(byte index) const {
return _colors[index].r;
}
uint8 Palette::getG(byte index) const {
return _colors[index].g;
}
uint8 Palette::getB(byte index) const {
return _colors[index].b;
}
void Palette::setColorFormat(const Graphics::PixelFormat format) {
_format = format;
}
// a.k.a. transformPaletteRange
Palette &Palette::saturatedAddColor(Palette &output, byte firstIndex, byte lastIndex, signed r, signed g, signed b) const {
assert(firstIndex < colorCount() && lastIndex < colorCount());
assert(firstIndex < output.colorCount() && lastIndex < output.colorCount());
assert(output.colorFormat() == colorFormat());
for (uint i = firstIndex; i <= lastIndex; i++)
saturatedAddColor(output._colors[i], _colors[i], r, g, b);
return output;
}
Palette &Palette::saturatedAddColor(Palette &output, byte firstIndex, byte lastIndex, signed rSource, signed gSource, signed bSource, const Graphics::PixelFormat &sourceFormat) const {
// Convert the source color to the internal color format ensuring that no divide by zero will happen
const signed r = ((signed) _format.rMax()) * rSource / MAX<int>(sourceFormat.rMax(), 1);
const signed g = ((signed) _format.gMax()) * gSource / MAX<int>(sourceFormat.gMax(), 1);
const signed b = ((signed) _format.bMax()) * bSource / MAX<int>(sourceFormat.bMax(), 1);
return saturatedAddColor(output, firstIndex, lastIndex, r, g, b);
}
Palette &Palette::saturatedAddNormalizedGray(Palette &output, byte firstIndex, byte lastIndex, int grayDividend, int grayDenominator) const {
assert(grayDenominator != 0);
const signed r = ((signed) _format.rMax()) * grayDividend / grayDenominator;
const signed g = ((signed) _format.gMax()) * grayDividend / grayDenominator;
const signed b = ((signed) _format.bMax()) * grayDividend / grayDenominator;
return saturatedAddColor(output, firstIndex, lastIndex, r, g, b);
}
// a.k.a. transformColor
void Palette::saturatedAddColor(Color &result, const Color &baseColor, signed r, signed g, signed b) const {
result.r = CLIP<int>(baseColor.r + r, 0, _format.rMax());
result.g = CLIP<int>(baseColor.g + g, 0, _format.gMax());
result.b = CLIP<int>(baseColor.b + b, 0, _format.bMax());
}
Palette::Palette(const Graphics::PixelFormat format, const uint numColors) : _format(format), _colors() {
_colors.resize(numColors);
fillWithBlack();
}
Palette::Palette(const Palette& other) :
_format(other._format),
_colors(other._colors) {
}
Palette& Palette::operator=(const Palette& other) {
if (this != &other) {
_format = other._format;
_colors = other._colors;
}
return *this;
}
Palette &Palette::clear() {
_format = Graphics::PixelFormat();
_colors.clear();
return *this;
}
Palette &Palette::load(const byte *buf, const uint size, const Graphics::PixelFormat format, const uint numColors, const EndianType endian) {
assert(format.bytesPerPixel * numColors <= size); // Make sure there's enough input space
assert(format.aLoss == 8); // No alpha
assert(format.rShift / 8 == (format.rShift + MAX<int>(0, format.rBits() - 1)) / 8); // R must be inside one byte
assert(format.gShift / 8 == (format.gShift + MAX<int>(0, format.gBits() - 1)) / 8); // G must be inside one byte
assert(format.bShift / 8 == (format.bShift + MAX<int>(0, format.bBits() - 1)) / 8); // B must be inside one byte
setColorFormat(format);
_colors.clear();
_colors.resize(numColors);
const int rBytePos = bytePos(format.rShift, format.bytesPerPixel, isBigEndian(endian));
const int gBytePos = bytePos(format.gShift, format.bytesPerPixel, isBigEndian(endian));
const int bBytePos = bytePos(format.bShift, format.bytesPerPixel, isBigEndian(endian));
for (uint i = 0; i < numColors; i++) {
// format.rMax(), format.gMax(), format.bMax() are also used as masks here
_colors[i].r = (buf[i * format.bytesPerPixel + rBytePos] >> (format.rShift % 8)) & format.rMax();
_colors[i].g = (buf[i * format.bytesPerPixel + gBytePos] >> (format.gShift % 8)) & format.gMax();
_colors[i].b = (buf[i * format.bytesPerPixel + bBytePos] >> (format.bShift % 8)) & format.bMax();
}
return *this;
}
byte *Palette::save(byte *buf, const uint size, const EndianType endian) const {
return save(buf, size, colorFormat(), colorCount(), endian);
}
byte *Palette::save(byte *buf, const uint size, const Graphics::PixelFormat format, const EndianType endian) const {
return save(buf, size, format, colorCount(), endian);
}
byte *Palette::save(byte *buf, const uint size, const Graphics::PixelFormat format, const uint numColors, const EndianType endian, const byte firstIndex) const {
assert(format.bytesPerPixel * numColors <= size); // Make sure there's enough output space
assert(format.aLoss == 8); // No alpha
assert(format.rShift / 8 == (format.rShift + MAX<int>(0, format.rBits() - 1)) / 8); // R must be inside one byte
assert(format.gShift / 8 == (format.gShift + MAX<int>(0, format.gBits() - 1)) / 8); // G must be inside one byte
assert(format.bShift / 8 == (format.bShift + MAX<int>(0, format.bBits() - 1)) / 8); // B must be inside one byte
// Clear the part of the output palette we're going to be writing to with all black
memset(buf, 0, format.bytesPerPixel * numColors);
// Calculate original R/G/B max values
const int rOrigMax = power(2, 8 - colorFormat().rLoss) - 1;
const int gOrigMax = power(2, 8 - colorFormat().gLoss) - 1;
const int bOrigMax = power(2, 8 - colorFormat().bLoss) - 1;
// Calculate new R/G/B max values
const int rNewMax = power(2, 8 - format.rLoss) - 1;
const int gNewMax = power(2, 8 - format.gLoss) - 1;
const int bNewMax = power(2, 8 - format.bLoss) - 1;
// Calculate the byte position
const int rBytePos = bytePos(format.rShift, format.bytesPerPixel, isBigEndian(endian));
const int gBytePos = bytePos(format.gShift, format.bytesPerPixel, isBigEndian(endian));
const int bBytePos = bytePos(format.bShift, format.bytesPerPixel, isBigEndian(endian));
// Save the palette to the output in the specified format
for (uint i = firstIndex; i < firstIndex + numColors; i++) {
const uint r = (_colors[i].r * rNewMax) / (rOrigMax == 0 ? 1 : rOrigMax);
const uint g = (_colors[i].g * gNewMax) / (gOrigMax == 0 ? 1 : gOrigMax);
const uint b = (_colors[i].b * bNewMax) / (bOrigMax == 0 ? 1 : bOrigMax);
buf[i * format.bytesPerPixel + rBytePos] |= r << (format.rShift % 8);
buf[i * format.bytesPerPixel + gBytePos] |= g << (format.gShift % 8);
buf[i * format.bytesPerPixel + bBytePos] |= b << (format.bShift % 8);
}
// Return the pointer to the output palette
return buf;
}
} // End of namespace Cine