scummvm/sound/flac.cpp
Jordi Vilalta Prat 66e9d4f5e8 Removed trailing spaces.
svn-id: r30664
2008-01-27 19:47:41 +00:00

756 lines
28 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "sound/flac.h"
#ifdef USE_FLAC
#include "common/file.h"
#include "common/util.h"
#include "sound/audiostream.h"
#include "sound/audiocd.h"
#define FLAC__NO_DLL // that MS-magic gave me headaches - just link the library you like
#include <FLAC/export.h>
// check if we have FLAC >= 1.1.3; LEGACY_FLAC code can be removed once FLAC-1.1.3 propagates everywhere
#if !defined(FLAC_API_VERSION_CURRENT) || FLAC_API_VERSION_CURRENT < 8
#define LEGACY_FLAC
#else
#undef LEGACY_FLAC
#endif
#ifdef LEGACY_FLAC
// Before FLAC 1.1.3, we needed to use the stream decoder API.
#include <FLAC/seekable_stream_decoder.h>
typedef uint FLAC_size_t;
#else
// With FLAC 1.1.3, the stream decoder API was merged into the regular
// stream API. In order to stay compatible with older FLAC versions, we
// simply add some typedefs and #ifdefs to map between the old and new API.
// We use the typedefs (instead of only #defines) in order to somewhat
// improve the readability of the code.
#include <FLAC/stream_decoder.h>
typedef size_t FLAC_size_t;
// Add aliases for the old names
typedef FLAC__StreamDecoderState FLAC__SeekableStreamDecoderState;
typedef FLAC__StreamDecoderReadStatus FLAC__SeekableStreamDecoderReadStatus;
typedef FLAC__StreamDecoderSeekStatus FLAC__SeekableStreamDecoderSeekStatus;
typedef FLAC__StreamDecoderTellStatus FLAC__SeekableStreamDecoderTellStatus;
typedef FLAC__StreamDecoderLengthStatus FLAC__SeekableStreamDecoderLengthStatus;
typedef FLAC__StreamDecoder FLAC__SeekableStreamDecoder;
#endif
using Common::File;
namespace Audio {
#pragma mark -
#pragma mark --- Flac stream ---
#pragma mark -
static const uint MAX_OUTPUT_CHANNELS = 2;
class FlacInputStream : public AudioStream {
protected:
Common::SeekableReadStream *_inStream;
bool _disposeAfterUse;
uint _numLoops;
::FLAC__SeekableStreamDecoder *_decoder;
/** Header of the stream */
FLAC__StreamMetadata_StreamInfo _streaminfo;
/** index of the first sample to be played */
FLAC__uint64 _firstSample;
/** index + 1(!) of the last sample to be played - 0 is end of stream */
FLAC__uint64 _lastSample;
/** true if the last sample was decoded from the FLAC-API - there might still be data in the buffer */
bool _lastSampleWritten;
typedef int16 SampleType;
enum { BUFTYPE_BITS = 16 };
enum {
// Maximal buffer size. According to the FLAC format specification, the block size is
// a 16 bit value (in fact it seems the maximal block size is 32768, but we play it safe).
BUFFER_SIZE = 65536
};
struct {
SampleType bufData[BUFFER_SIZE];
SampleType *bufReadPos;
uint bufFill;
} _sampleCache;
SampleType *_outBuffer;
uint _requestedSamples;
typedef void (*PFCONVERTBUFFERS)(SampleType*, const FLAC__int32*[], uint, const uint, const uint8);
PFCONVERTBUFFERS _methodConvertBuffers;
public:
FlacInputStream(Common::SeekableReadStream *inStream, bool dispose, uint startTime = 0, uint endTime = 0, uint numLoops = 1);
virtual ~FlacInputStream();
int readBuffer(int16 *buffer, const int numSamples);
bool isStereo() const { return _streaminfo.channels >= 2; }
int getRate() const { return _streaminfo.sample_rate; }
bool endOfData() const {
// End of data is reached if there either is no valid stream data available,
// or if we reached the last sample and completely emptied the sample cache.
return _streaminfo.channels == 0 || (_lastSampleWritten && _sampleCache.bufFill == 0);
}
bool isStreamDecoderReady() const { return getStreamDecoderState() == FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC ; }
protected:
uint getChannels() const { return MIN(_streaminfo.channels, MAX_OUTPUT_CHANNELS); }
bool allocateBuffer(uint minSamples);
inline FLAC__StreamDecoderState getStreamDecoderState() const;
inline bool processSingleBlock();
inline bool processUntilEndOfMetadata();
bool seekAbsolute(FLAC__uint64 sample);
inline ::FLAC__SeekableStreamDecoderReadStatus callbackRead(FLAC__byte buffer[], FLAC_size_t *bytes);
inline ::FLAC__SeekableStreamDecoderSeekStatus callbackSeek(FLAC__uint64 absoluteByteOffset);
inline ::FLAC__SeekableStreamDecoderTellStatus callbackTell(FLAC__uint64 *absoluteByteOffset);
inline ::FLAC__SeekableStreamDecoderLengthStatus callbackLength(FLAC__uint64 *streamLength);
inline bool callbackEOF();
inline ::FLAC__StreamDecoderWriteStatus callbackWrite(const ::FLAC__Frame *frame, const FLAC__int32 * const buffer[]);
inline void callbackMetadata(const ::FLAC__StreamMetadata *metadata);
inline void callbackError(::FLAC__StreamDecoderErrorStatus status);
private:
static ::FLAC__SeekableStreamDecoderReadStatus callWrapRead(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__byte buffer[], FLAC_size_t *bytes, void *clientData);
static ::FLAC__SeekableStreamDecoderSeekStatus callWrapSeek(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 absoluteByteOffset, void *clientData);
static ::FLAC__SeekableStreamDecoderTellStatus callWrapTell(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 *absoluteByteOffset, void *clientData);
static ::FLAC__SeekableStreamDecoderLengthStatus callWrapLength(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 *streamLength, void *clientData);
static FLAC__bool callWrapEOF(const ::FLAC__SeekableStreamDecoder *decoder, void *clientData);
static ::FLAC__StreamDecoderWriteStatus callWrapWrite(const ::FLAC__SeekableStreamDecoder *decoder, const ::FLAC__Frame *frame, const FLAC__int32 * const buffer[], void *clientData);
static void callWrapMetadata(const ::FLAC__SeekableStreamDecoder *decoder, const ::FLAC__StreamMetadata *metadata, void *clientData);
static void callWrapError(const ::FLAC__SeekableStreamDecoder *decoder, ::FLAC__StreamDecoderErrorStatus status, void *clientData);
void setBestConvertBufferMethod();
static void convertBuffersGeneric(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits);
static void convertBuffersStereoNS(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits);
static void convertBuffersStereo8Bit(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits);
static void convertBuffersMonoNS(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits);
static void convertBuffersMono8Bit(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits);
};
FlacInputStream::FlacInputStream(Common::SeekableReadStream *inStream, bool dispose, uint startTime, uint endTime, uint numLoops)
#ifdef LEGACY_FLAC
: _decoder(::FLAC__seekable_stream_decoder_new()),
#else
: _decoder(::FLAC__stream_decoder_new()),
#endif
_inStream(inStream),
_disposeAfterUse(dispose),
_numLoops(numLoops),
_firstSample(0), _lastSample(0),
_outBuffer(NULL), _requestedSamples(0), _lastSampleWritten(false),
_methodConvertBuffers(&FlacInputStream::convertBuffersGeneric)
{
assert(_inStream);
memset(&_streaminfo, 0, sizeof(_streaminfo));
_sampleCache.bufReadPos = NULL;
_sampleCache.bufFill = 0;
_methodConvertBuffers = &FlacInputStream::convertBuffersGeneric;
bool success;
#ifdef LEGACY_FLAC
::FLAC__seekable_stream_decoder_set_read_callback(_decoder, &FlacInputStream::callWrapRead);
::FLAC__seekable_stream_decoder_set_seek_callback(_decoder, &FlacInputStream::callWrapSeek);
::FLAC__seekable_stream_decoder_set_tell_callback(_decoder, &FlacInputStream::callWrapTell);
::FLAC__seekable_stream_decoder_set_length_callback(_decoder, &FlacInputStream::callWrapLength);
::FLAC__seekable_stream_decoder_set_eof_callback(_decoder, &FlacInputStream::callWrapEOF);
::FLAC__seekable_stream_decoder_set_write_callback(_decoder, &FlacInputStream::callWrapWrite);
::FLAC__seekable_stream_decoder_set_metadata_callback(_decoder, &FlacInputStream::callWrapMetadata);
::FLAC__seekable_stream_decoder_set_error_callback(_decoder, &FlacInputStream::callWrapError);
::FLAC__seekable_stream_decoder_set_client_data(_decoder, (void*)this);
success = (::FLAC__seekable_stream_decoder_init(_decoder) == FLAC__SEEKABLE_STREAM_DECODER_OK);
#else
success = (::FLAC__stream_decoder_init_stream(
_decoder,
&FlacInputStream::callWrapRead,
&FlacInputStream::callWrapSeek,
&FlacInputStream::callWrapTell,
&FlacInputStream::callWrapLength,
&FlacInputStream::callWrapEOF,
&FlacInputStream::callWrapWrite,
&FlacInputStream::callWrapMetadata,
&FlacInputStream::callWrapError,
(void*)this
) == FLAC__STREAM_DECODER_INIT_STATUS_OK);
#endif
if (success) {
if (processUntilEndOfMetadata() && _streaminfo.channels > 0) {
// Compute the start/end sample (we use floating point arithmetics here to
// avoid overflows).
_firstSample = (FLAC__uint64)(startTime * (_streaminfo.sample_rate / 1000.0));
_lastSample = (FLAC__uint64)(endTime * (_streaminfo.sample_rate / 1000.0));
if (_firstSample == 0 || seekAbsolute(_firstSample)) {
return; // no error occured
}
}
}
warning("FlacInputStream: could not create audio stream");
}
FlacInputStream::~FlacInputStream() {
if (_decoder != NULL) {
#ifdef LEGACY_FLAC
(void) ::FLAC__seekable_stream_decoder_finish(_decoder);
::FLAC__seekable_stream_decoder_delete(_decoder);
#else
(void) ::FLAC__stream_decoder_finish(_decoder);
::FLAC__stream_decoder_delete(_decoder);
#endif
}
if (_disposeAfterUse)
delete _inStream;
}
inline FLAC__StreamDecoderState FlacInputStream::getStreamDecoderState() const {
assert(_decoder != NULL);
#ifdef LEGACY_FLAC
return ::FLAC__seekable_stream_decoder_get_stream_decoder_state(_decoder);
#else
return ::FLAC__stream_decoder_get_state(_decoder);
#endif
}
inline bool FlacInputStream::processSingleBlock() {
assert(_decoder != NULL);
#ifdef LEGACY_FLAC
return 0 != ::FLAC__seekable_stream_decoder_process_single(_decoder);
#else
return 0 != ::FLAC__stream_decoder_process_single(_decoder);
#endif
}
inline bool FlacInputStream::processUntilEndOfMetadata() {
assert(_decoder != NULL);
#ifdef LEGACY_FLAC
return 0 != ::FLAC__seekable_stream_decoder_process_until_end_of_metadata(_decoder);
#else
return 0 != ::FLAC__stream_decoder_process_until_end_of_metadata(_decoder);
#endif
}
bool FlacInputStream::seekAbsolute(FLAC__uint64 sample) {
assert(_decoder != NULL);
#ifdef LEGACY_FLAC
const bool result = (0 != ::FLAC__seekable_stream_decoder_seek_absolute(_decoder, sample));
#else
const bool result = (0 != ::FLAC__stream_decoder_seek_absolute(_decoder, sample));
#endif
if (result) {
_lastSampleWritten = (_lastSample != 0 && sample >= _lastSample); // only set if we are SURE
}
return result;
}
int FlacInputStream::readBuffer(int16 *buffer, const int numSamples) {
const uint numChannels = getChannels();
if (numChannels == 0) {
warning("FlacInputStream: Stream not sucessfully initialised, cant playback");
return -1; // streaminfo wasnt read!
}
assert(numSamples % numChannels == 0); // must be multiple of channels!
assert(buffer != NULL);
assert(_outBuffer == NULL);
assert(_requestedSamples == 0);
_outBuffer = buffer;
_requestedSamples = numSamples;
// If there is still data in our buffer from the last time around,
// copy that first.
if (_sampleCache.bufFill > 0) {
assert(_sampleCache.bufReadPos >= _sampleCache.bufData);
assert(_sampleCache.bufFill % numChannels == 0);
const uint copySamples = MIN((uint)numSamples, _sampleCache.bufFill);
memcpy(buffer, _sampleCache.bufReadPos, copySamples*sizeof(buffer[0]));
_outBuffer = buffer + copySamples;
_requestedSamples = numSamples - copySamples;
_sampleCache.bufReadPos += copySamples;
_sampleCache.bufFill -= copySamples;
}
bool decoderOk = true;
FLAC__StreamDecoderState state = getStreamDecoderState();
// Keep poking FLAC to process more samples until we completely satisfied the request
// respectively until we run out of data.
while (!_lastSampleWritten && _requestedSamples > 0 && state == FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC) {
assert(_sampleCache.bufFill == 0);
assert(_requestedSamples % numChannels == 0);
processSingleBlock();
state = getStreamDecoderState();
if (state == FLAC__STREAM_DECODER_END_OF_STREAM) {
_lastSampleWritten = true;
}
// If we reached the end of the stream, and looping is enabled: Try to rewind
if (_lastSampleWritten && _numLoops != 1) {
if (_numLoops != 0)
_numLoops--;
seekAbsolute(_firstSample);
state = getStreamDecoderState();
}
}
// Error handling
switch (state) {
case FLAC__STREAM_DECODER_END_OF_STREAM:
_lastSampleWritten = true;
break;
case FLAC__STREAM_DECODER_SEARCH_FOR_FRAME_SYNC:
break;
default:
decoderOk = false;
warning("FlacInputStream: An error occured while decoding. DecoderState is: %s",
FLAC__StreamDecoderStateString[getStreamDecoderState()]);
}
// Compute how many samples we actually produced
const int samples = (int)(_outBuffer - buffer);
assert(samples % numChannels == 0);
_outBuffer = NULL; // basically unnecessary, only for the purpose of the asserts
_requestedSamples = 0; // basically unnecessary, only for the purpose of the asserts
return decoderOk ? samples : -1;
}
inline ::FLAC__SeekableStreamDecoderReadStatus FlacInputStream::callbackRead(FLAC__byte buffer[], FLAC_size_t *bytes) {
if (*bytes == 0)
#ifdef LEGACY_FLAC
return FLAC__SEEKABLE_STREAM_DECODER_READ_STATUS_ERROR; /* abort to avoid a deadlock */
#else
return FLAC__STREAM_DECODER_READ_STATUS_ABORT; /* abort to avoid a deadlock */
#endif
const uint32 bytesRead = _inStream->read(buffer, *bytes);
if (bytesRead == 0 && _inStream->ioFailed())
#ifdef LEGACY_FLAC
return FLAC__SEEKABLE_STREAM_DECODER_READ_STATUS_ERROR;
#else
return FLAC__STREAM_DECODER_READ_STATUS_ABORT;
#endif
*bytes = static_cast<uint>(bytesRead);
#ifdef LEGACY_FLAC
return FLAC__SEEKABLE_STREAM_DECODER_READ_STATUS_OK;
#else
return FLAC__STREAM_DECODER_READ_STATUS_CONTINUE;
#endif
}
void FlacInputStream::setBestConvertBufferMethod() {
PFCONVERTBUFFERS tempMethod = &FlacInputStream::convertBuffersGeneric;
const uint numChannels = getChannels();
const uint8 numBits = (uint8)_streaminfo.bits_per_sample;
assert(numChannels >= 1);
assert(numBits >= 4 && numBits <=32);
if (numChannels == 1) {
if (numBits == 8)
tempMethod = &FlacInputStream::convertBuffersMono8Bit;
if (numBits == BUFTYPE_BITS)
tempMethod = &FlacInputStream::convertBuffersMonoNS;
} else if (numChannels == 2) {
if (numBits == 8)
tempMethod = &FlacInputStream::convertBuffersStereo8Bit;
if (numBits == BUFTYPE_BITS)
tempMethod = &FlacInputStream::convertBuffersStereoNS;
} /* else ... */
_methodConvertBuffers = tempMethod;
}
// 1 channel, no scaling
void FlacInputStream::convertBuffersMonoNS(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits) {
assert(numChannels == 1);
assert(numBits == BUFTYPE_BITS);
FLAC__int32 const* inChannel1 = inChannels[0];
while (numSamples >= 4) {
bufDestination[0] = static_cast<SampleType>(inChannel1[0]);
bufDestination[1] = static_cast<SampleType>(inChannel1[1]);
bufDestination[2] = static_cast<SampleType>(inChannel1[2]);
bufDestination[3] = static_cast<SampleType>(inChannel1[3]);
bufDestination += 4;
inChannel1 += 4;
numSamples -= 4;
}
for (; numSamples > 0; --numSamples) {
*bufDestination++ = static_cast<SampleType>(*inChannel1++);
}
inChannels[0] = inChannel1;
assert(numSamples == 0); // dint copy too many samples
}
// 1 channel, scaling from 8Bit
void FlacInputStream::convertBuffersMono8Bit(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits) {
assert(numChannels == 1);
assert(numBits == 8);
assert(8 < BUFTYPE_BITS);
FLAC__int32 const* inChannel1 = inChannels[0];
while (numSamples >= 4) {
bufDestination[0] = static_cast<SampleType>(inChannel1[0]) << (BUFTYPE_BITS - 8);
bufDestination[1] = static_cast<SampleType>(inChannel1[1]) << (BUFTYPE_BITS - 8);
bufDestination[2] = static_cast<SampleType>(inChannel1[2]) << (BUFTYPE_BITS - 8);
bufDestination[3] = static_cast<SampleType>(inChannel1[3]) << (BUFTYPE_BITS - 8);
bufDestination += 4;
inChannel1 += 4;
numSamples -= 4;
}
for (; numSamples > 0; --numSamples) {
*bufDestination++ = static_cast<SampleType>(*inChannel1++) << (BUFTYPE_BITS - 8);
}
inChannels[0] = inChannel1;
assert(numSamples == 0); // dint copy too many samples
}
// 2 channels, no scaling
void FlacInputStream::convertBuffersStereoNS(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits) {
assert(numChannels == 2);
assert(numBits == BUFTYPE_BITS);
assert(numSamples % 2 == 0); // must be integral multiply of channels
FLAC__int32 const* inChannel1 = inChannels[0]; // Left Channel
FLAC__int32 const* inChannel2 = inChannels[1]; // Right Channel
while (numSamples >= 2*2) {
bufDestination[0] = static_cast<SampleType>(inChannel1[0]);
bufDestination[1] = static_cast<SampleType>(inChannel2[0]);
bufDestination[2] = static_cast<SampleType>(inChannel1[1]);
bufDestination[3] = static_cast<SampleType>(inChannel2[1]);
bufDestination += 2 * 2;
inChannel1 += 2;
inChannel2 += 2;
numSamples -= 2 * 2;
}
while (numSamples > 0) {
bufDestination[0] = static_cast<SampleType>(*inChannel1++);
bufDestination[1] = static_cast<SampleType>(*inChannel2++);
bufDestination += 2;
numSamples -= 2;
}
inChannels[0] = inChannel1;
inChannels[1] = inChannel2;
assert(numSamples == 0); // dint copy too many samples
}
// 2 channels, scaling from 8Bit
void FlacInputStream::convertBuffersStereo8Bit(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits) {
assert(numChannels == 2);
assert(numBits == 8);
assert(numSamples % 2 == 0); // must be integral multiply of channels
assert(8 < BUFTYPE_BITS);
FLAC__int32 const* inChannel1 = inChannels[0]; // Left Channel
FLAC__int32 const* inChannel2 = inChannels[1]; // Right Channel
while (numSamples >= 2*2) {
bufDestination[0] = static_cast<SampleType>(inChannel1[0]) << (BUFTYPE_BITS - 8);
bufDestination[1] = static_cast<SampleType>(inChannel2[0]) << (BUFTYPE_BITS - 8);
bufDestination[2] = static_cast<SampleType>(inChannel1[1]) << (BUFTYPE_BITS - 8);
bufDestination[3] = static_cast<SampleType>(inChannel2[1]) << (BUFTYPE_BITS - 8);
bufDestination += 2 * 2;
inChannel1 += 2;
inChannel2 += 2;
numSamples -= 2 * 2;
}
while (numSamples > 0) {
bufDestination[0] = static_cast<SampleType>(*inChannel1++) << (BUFTYPE_BITS - 8);
bufDestination[1] = static_cast<SampleType>(*inChannel2++) << (BUFTYPE_BITS - 8);
bufDestination += 2;
numSamples -= 2;
}
inChannels[0] = inChannel1;
inChannels[1] = inChannel2;
assert(numSamples == 0); // dint copy too many samples
}
// all Purpose-conversion - slowest of em all
void FlacInputStream::convertBuffersGeneric(SampleType* bufDestination, const FLAC__int32 *inChannels[], uint numSamples, const uint numChannels, const uint8 numBits) {
assert(numSamples % numChannels == 0); // must be integral multiply of channels
if (numBits < BUFTYPE_BITS) {
const uint8 kPower = (uint8)(BUFTYPE_BITS - numBits);
for (; numSamples > 0; numSamples -= numChannels) {
for (uint i = 0; i < numChannels; ++i)
*bufDestination++ = static_cast<SampleType>(*(inChannels[i]++)) << kPower;
}
} else if (numBits > BUFTYPE_BITS) {
const uint8 kPower = (uint8)(numBits - BUFTYPE_BITS);
for (; numSamples > 0; numSamples -= numChannels) {
for (uint i = 0; i < numChannels; ++i)
*bufDestination++ = static_cast<SampleType>(*(inChannels[i]++) >> kPower) ;
}
} else {
for (; numSamples > 0; numSamples -= numChannels) {
for (uint i = 0; i < numChannels; ++i)
*bufDestination++ = static_cast<SampleType>(*(inChannels[i]++));
}
}
assert(numSamples == 0); // dint copy too many samples
}
inline ::FLAC__StreamDecoderWriteStatus FlacInputStream::callbackWrite(const ::FLAC__Frame *frame, const FLAC__int32 * const buffer[]) {
assert(frame->header.channels == _streaminfo.channels);
assert(frame->header.sample_rate == _streaminfo.sample_rate);
assert(frame->header.bits_per_sample == _streaminfo.bits_per_sample);
assert(frame->header.number_type == FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER || _streaminfo.min_blocksize == _streaminfo.max_blocksize);
// We require that either the sample cache is empty, or that no samples were requested
assert(_sampleCache.bufFill == 0 || _requestedSamples == 0);
uint numSamples = frame->header.blocksize;
const uint numChannels = getChannels();
const uint8 numBits = (uint8)_streaminfo.bits_per_sample;
assert(_requestedSamples % numChannels == 0); // must be integral multiply of channels
const FLAC__uint64 firstSampleNumber = (frame->header.number_type == FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER) ?
frame->header.number.sample_number : (static_cast<FLAC__uint64>(frame->header.number.frame_number)) * _streaminfo.max_blocksize;
// Check whether we are about to reach beyond the last sample we are supposed to play.
if (_lastSample != 0 && firstSampleNumber + numSamples >= _lastSample) {
numSamples = (uint)(firstSampleNumber >= _lastSample ? 0 : _lastSample - firstSampleNumber);
_lastSampleWritten = true;
}
// The value in _requestedSamples counts raw samples, so if there are more than one
// channel, we have to multiply the number of available sample "pairs" by numChannels
numSamples *= numChannels;
const FLAC__int32 *inChannels[MAX_OUTPUT_CHANNELS];
for (uint i = 0; i < numChannels; ++i)
inChannels[i] = buffer[i];
// write the incoming samples directly into the buffer provided to us by the mixer
if (_requestedSamples > 0) {
assert(_requestedSamples % numChannels == 0);
assert(_outBuffer != NULL);
// Copy & convert the available samples (limited both by how many we have available, and
// by how many are actually needed).
const uint copySamples = MIN(_requestedSamples, numSamples);
(*_methodConvertBuffers)(_outBuffer, inChannels, copySamples, numChannels, numBits);
_requestedSamples -= copySamples;
numSamples -= copySamples;
_outBuffer += copySamples;
}
// Write all remaining samples (i.e. those which didn't fit into the mixer buffer)
// into the sample cache.
if (_sampleCache.bufFill == 0)
_sampleCache.bufReadPos = _sampleCache.bufData;
const uint cacheSpace = (_sampleCache.bufData + BUFFER_SIZE) - (_sampleCache.bufReadPos + _sampleCache.bufFill);
assert(numSamples <= cacheSpace);
(*_methodConvertBuffers)(_sampleCache.bufReadPos + _sampleCache.bufFill, inChannels, numSamples, numChannels, numBits);
_sampleCache.bufFill += numSamples;
return FLAC__STREAM_DECODER_WRITE_STATUS_CONTINUE;
}
inline ::FLAC__SeekableStreamDecoderSeekStatus FlacInputStream::callbackSeek(FLAC__uint64 absoluteByteOffset) {
_inStream->seek(absoluteByteOffset, SEEK_SET);
const bool result = (absoluteByteOffset == _inStream->pos());
#ifdef LEGACY_FLAC
return result ? FLAC__SEEKABLE_STREAM_DECODER_SEEK_STATUS_OK : FLAC__SEEKABLE_STREAM_DECODER_SEEK_STATUS_ERROR;
#else
return result ? FLAC__STREAM_DECODER_SEEK_STATUS_OK : FLAC__STREAM_DECODER_SEEK_STATUS_ERROR;
#endif
}
inline ::FLAC__SeekableStreamDecoderTellStatus FlacInputStream::callbackTell(FLAC__uint64 *absoluteByteOffset) {
*absoluteByteOffset = static_cast<FLAC__uint64>(_inStream->pos());
#ifdef LEGACY_FLAC
return FLAC__SEEKABLE_STREAM_DECODER_TELL_STATUS_OK;
#else
return FLAC__STREAM_DECODER_TELL_STATUS_OK;
#endif
}
inline ::FLAC__SeekableStreamDecoderLengthStatus FlacInputStream::callbackLength(FLAC__uint64 *streamLength) {
*streamLength = static_cast<FLAC__uint64>(_inStream->size());
#ifdef LEGACY_FLAC
return FLAC__SEEKABLE_STREAM_DECODER_LENGTH_STATUS_OK;
#else
return FLAC__STREAM_DECODER_LENGTH_STATUS_OK;
#endif
}
inline bool FlacInputStream::callbackEOF() {
return _inStream->eos();
}
inline void FlacInputStream::callbackMetadata(const ::FLAC__StreamMetadata *metadata) {
assert(_decoder != NULL);
assert(metadata->type == FLAC__METADATA_TYPE_STREAMINFO); // others arent really interesting
_streaminfo = metadata->data.stream_info;
setBestConvertBufferMethod(); // should be set after getting stream-information. FLAC always parses the info first
}
inline void FlacInputStream::callbackError(::FLAC__StreamDecoderErrorStatus status) {
// some of these are non-critical-Errors
debug(1, "FlacInputStream: An error occured while decoding. DecoderState is: %s",
FLAC__StreamDecoderErrorStatusString[status]);
}
/* Static Callback Wrappers */
::FLAC__SeekableStreamDecoderReadStatus FlacInputStream::callWrapRead(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__byte buffer[], FLAC_size_t *bytes, void *clientData) {
FlacInputStream *instance = (FlacInputStream *)clientData;
assert(0 != instance);
return instance->callbackRead(buffer, bytes);
}
::FLAC__SeekableStreamDecoderSeekStatus FlacInputStream::callWrapSeek(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 absoluteByteOffset, void *clientData) {
FlacInputStream *instance = (FlacInputStream *)clientData;
assert(0 != instance);
return instance->callbackSeek(absoluteByteOffset);
}
::FLAC__SeekableStreamDecoderTellStatus FlacInputStream::callWrapTell(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 *absoluteByteOffset, void *clientData) {
FlacInputStream *instance = (FlacInputStream *)clientData;
assert(0 != instance);
return instance->callbackTell(absoluteByteOffset);
}
::FLAC__SeekableStreamDecoderLengthStatus FlacInputStream::callWrapLength(const ::FLAC__SeekableStreamDecoder *decoder, FLAC__uint64 *streamLength, void *clientData) {
FlacInputStream *instance = (FlacInputStream *)clientData;
assert(0 != instance);
return instance->callbackLength(streamLength);
}
FLAC__bool FlacInputStream::callWrapEOF(const ::FLAC__SeekableStreamDecoder *decoder, void *clientData) {
FlacInputStream *instance = (FlacInputStream *)clientData;
assert(0 != instance);
return instance->callbackEOF();
}
::FLAC__StreamDecoderWriteStatus FlacInputStream::callWrapWrite(const ::FLAC__SeekableStreamDecoder *decoder, const ::FLAC__Frame *frame, const FLAC__int32 * const buffer[], void *clientData) {
FlacInputStream *instance = (FlacInputStream *)clientData;
assert(0 != instance);
return instance->callbackWrite(frame, buffer);
}
void FlacInputStream::callWrapMetadata(const ::FLAC__SeekableStreamDecoder *decoder, const ::FLAC__StreamMetadata *metadata, void *clientData) {
FlacInputStream *instance = (FlacInputStream *)clientData;
assert(0 != instance);
instance->callbackMetadata(metadata);
}
void FlacInputStream::callWrapError(const ::FLAC__SeekableStreamDecoder *decoder, ::FLAC__StreamDecoderErrorStatus status, void *clientData) {
FlacInputStream *instance = (FlacInputStream *)clientData;
assert(0 != instance);
instance->callbackError(status);
}
#pragma mark -
#pragma mark --- Flac factory functions ---
#pragma mark -
AudioStream *makeFlacStream(
Common::SeekableReadStream *stream,
bool disposeAfterUse,
uint32 startTime,
uint32 duration,
uint numLoops) {
uint32 endTime = duration ? (startTime + duration) : 0;
FlacInputStream *input = new FlacInputStream(stream, disposeAfterUse, startTime, endTime, numLoops);
if (!input->isStreamDecoderReady()) {
delete input;
return 0;
}
return input;
}
} // End of namespace Audio
#endif // #ifdef USE_FLAC