scummvm/audio/midiparser_qt.cpp
2023-12-24 13:19:25 +01:00

517 lines
13 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "audio/midiparser_qt.h"
#include "audio/mididrv.h"
#include "common/debug.h"
#include "common/memstream.h"
bool MidiParser_QT::loadMusic(byte *data, uint32 size) {
if (size < 8)
return false;
Common::SeekableReadStream *stream = new Common::MemoryReadStream(data, size, DisposeAfterUse::NO);
// Attempt to detect what format we have
bool result;
if (READ_BE_UINT32(data + 4) == MKTAG('m', 'u', 's', 'i'))
result = loadFromTune(stream);
else
result = loadFromContainerStream(stream);
if (!result) {
delete stream;
return false;
}
return true;
}
void MidiParser_QT::unloadMusic() {
MidiParser::unloadMusic();
close();
// Unlike those lesser formats, we *do* hold track data
for (uint i = 0; i < _trackInfo.size(); i++)
free(_trackInfo[i].data);
_trackInfo.clear();
}
bool MidiParser_QT::loadFromTune(Common::SeekableReadStream *stream, DisposeAfterUse::Flag disposeAfterUse) {
unloadMusic();
// a tune starts off with a sample description
stream->readUint32BE(); // header size
if (stream->readUint32BE() != MKTAG('m', 'u', 's', 'i'))
return false;
stream->readUint32BE(); // reserved
stream->readUint16BE(); // reserved
stream->readUint16BE(); // index
stream->readUint32BE(); // flags, ignore
MIDITrackInfo trackInfo;
trackInfo.size = stream->size() - stream->pos();
assert(trackInfo.size > 0);
trackInfo.data = (byte *)malloc(trackInfo.size);
stream->read(trackInfo.data, trackInfo.size);
trackInfo.timeScale = 600; // the default
_trackInfo.push_back(trackInfo);
initCommon();
return true;
}
bool MidiParser_QT::loadFromContainerStream(Common::SeekableReadStream *stream, DisposeAfterUse::Flag disposeAfterUse) {
unloadMusic();
if (!parseStream(stream, disposeAfterUse))
return false;
initFromContainerTracks();
return true;
}
bool MidiParser_QT::loadFromContainerFile(const Common::Path &fileName) {
unloadMusic();
if (!parseFile(fileName))
return false;
initFromContainerTracks();
return true;
}
void MidiParser_QT::parseNextEvent(EventInfo &info) {
uint32 delta = 0;
while (_queuedEvents.empty())
delta += readNextEvent();
info = _queuedEvents.pop();
info.delta = delta;
}
uint32 MidiParser_QT::readNextEvent() {
if (_position._playPos >= _trackInfo[_activeTrack].data + _trackInfo[_activeTrack].size) {
// Manually insert end of track when we reach the end
EventInfo info;
info.event = 0xFF;
info.ext.type = 0x2F;
_queuedEvents.push(info);
return 0;
}
uint32 control = readUint32();
switch (control >> 28) {
case 0x0:
case 0x1:
// Rest
// We handle this by recursively adding up all the rests into the
// next event's delta
return readNextEvent() + (control & 0xFFFFFF);
case 0x2:
case 0x3:
// Note event
handleNoteEvent((control >> 24) & 0x1F, ((control >> 18) & 0x3F) + 32, (control >> 11) & 0x7F, control & 0x7FF);
break;
case 0x4:
case 0x5:
// Controller
handleControllerEvent((control >> 16) & 0xFF, (control >> 24) & 0x1F, (control >> 8) & 0xFF, control & 0xFF);
break;
case 0x6:
case 0x7:
// Marker
// Used for editing only, so we don't need to care about this
break;
case 0x9: {
// Extended note event
uint32 extra = readUint32();
handleNoteEvent((control >> 16) & 0xFFF, (control >> 8) & 0xFF, (extra >> 22) & 0x7F, extra & 0x3FFFFF);
break;
}
case 0xA: {
// Extended controller
uint32 extra = readUint32();
handleControllerEvent((extra >> 16) & 0x3FFF, (control >> 16) & 0xFFF, (extra >> 8) & 0xFF, extra & 0xFF);
break;
}
case 0xB:
// Knob
error("Encountered knob event in QuickTime MIDI");
break;
case 0x8:
case 0xC:
case 0xD:
case 0xE:
// Reserved
readUint32();
break;
case 0xF:
// General
handleGeneralEvent(control);
break;
default:
break;
}
return 0;
}
void MidiParser_QT::handleNoteEvent(uint32 part, byte pitch, byte velocity, uint32 length) {
byte channel = getChannel(part);
EventInfo info;
info.event = 0x90 | channel;
info.basic.param1 = pitch;
info.basic.param2 = velocity;
info.length = (velocity == 0) ? 0 : length;
_queuedEvents.push(info);
}
void MidiParser_QT::handleControllerEvent(uint32 control, uint32 part, byte intPart, byte fracPart) {
byte channel = getChannel(part);
EventInfo info;
if (control == 0) {
// "Bank select"
// QuickTime docs don't list this, but IHNM Mac calls this anyway
// We have to ignore this.
return;
} else if (control == 32) {
// Pitch bend
info.event = 0xE0 | channel;
// Actually an 8.8 fixed point number
int16 value = (int16)((intPart << 8) | fracPart);
if (value < -0x200 || value > 0x1FF) {
warning("QuickTime MIDI pitch bend value (%d) out of range, clipping", value);
value = CLIP<int16>(value, -0x200, 0x1FF);
}
// Now convert the value to 'normal' MIDI values
value += 0x200;
value *= 16;
// param1 holds the low 7 bits, param2 holds the high 7 bits
info.basic.param1 = value & 0x7F;
info.basic.param2 = value >> 7;
_partMap[part].pitchBend = value;
} else {
// Regular controller
info.event = 0xB0 | channel;
info.basic.param1 = control;
info.basic.param2 = intPart;
// TODO: Parse more controls to hold their status
switch (control) {
case 7:
_partMap[part].volume = intPart;
break;
case 10:
_partMap[part].pan = intPart;
break;
default:
break;
}
}
_queuedEvents.push(info);
}
void MidiParser_QT::handleGeneralEvent(uint32 control) {
uint32 part = (control >> 16) & 0xFFF;
uint32 dataSize = ((control & 0xFFFF) - 2) * 4;
byte subType = READ_BE_UINT16(_position._playPos + dataSize) & 0x3FFF;
switch (subType) {
case 1:
// Note Request
// Currently we're only using the GM number from the request
assert(dataSize == 84);
// We have to remap channels because GM needs percussion to be on the
// percussion channel but QuickTime can have that anywhere.
definePart(part, READ_BE_UINT32(_position._playPos + 80));
break;
case 5: // Tune Difference
case 8: // MIDI Channel
case 10: // No-op
case 11: // Used Notes
// Should be safe to skip these
break;
default:
warning("Unhandled general event %d", subType);
}
_position._playPos += dataSize + 4;
}
void MidiParser_QT::definePart(uint32 part, uint32 instrument) {
if (_partMap.contains(part))
warning("QuickTime MIDI part %d being redefined", part);
PartStatus partStatus;
partStatus.instrument = instrument;
partStatus.volume = 127;
partStatus.pan = 64;
partStatus.pitchBend = 0x2000;
_partMap[part] = partStatus;
}
byte MidiParser_QT::getChannel(uint32 part) {
// If we already mapped it, just go with it
if (!_channelMap.contains(part)) {
byte newChannel = findFreeChannel(part);
_channelMap[part] = newChannel;
setupPart(part);
}
return _channelMap[part];
}
byte MidiParser_QT::findFreeChannel(uint32 part) {
if (_partMap[part].instrument != 0x4001) {
// Normal Instrument -> First Free Channel
if (allChannelsAllocated())
deallocateFreeChannel();
for (int i = 0; i < 16; i++)
if (i != 9 && !isChannelAllocated(i)) // 9 is reserved for Percussion
return i;
// Can't actually get here
}
// Drum Kit -> Percussion Channel
deallocateChannel(9);
return 9;
}
void MidiParser_QT::deallocateFreeChannel() {
for (int i = 0; i < 16; i++) {
if (i != 9 && !_activeNotes[i]) {
// TODO: Improve this by looking for the channel with the longest
// time since the last note.
deallocateChannel(i);
return;
}
}
error("Exceeded QuickTime MIDI channel polyphony");
}
void MidiParser_QT::deallocateChannel(byte channel) {
for (ChannelMap::iterator it = _channelMap.begin(); it != _channelMap.end(); it++) {
if (it->_value == channel) {
_channelMap.erase(it);
return;
}
}
}
bool MidiParser_QT::isChannelAllocated(byte channel) const {
for (ChannelMap::const_iterator it = _channelMap.begin(); it != _channelMap.end(); it++)
if (it->_value == channel)
return true;
return false;
}
bool MidiParser_QT::allChannelsAllocated() const {
// Less than 15? We definitely have room
if (_channelMap.size() < 15)
return false;
// 15? One of the allocated channels might be the percussion one
if (_channelMap.size() == 15)
for (ChannelMap::const_iterator it = _channelMap.begin(); it != _channelMap.end(); it++)
if (it->_value == 9)
return false;
// 16 -> definitely all allocated
return true;
}
void MidiParser_QT::setupPart(uint32 part) {
PartStatus &status = _partMap[part];
byte channel = _channelMap[part];
EventInfo info;
// First, the program change
if (channel != 9) {
// 9 is always percussion
info.event = 0xC0 | channel;
info.basic.param1 = status.instrument;
_queuedEvents.push(info);
}
// Volume
info.event = 0xB0 | channel;
info.basic.param1 = 7;
info.basic.param2 = status.volume;
_queuedEvents.push(info);
// Pan
info.event = 0xB0 | channel;
info.basic.param1 = 10;
info.basic.param2 = status.pan;
_queuedEvents.push(info);
// Pitch Bend
info.event = 0xE0 | channel;
info.basic.param1 = status.pitchBend & 0x7F;
info.basic.param2 = status.pitchBend >> 7;
_queuedEvents.push(info);
}
void MidiParser_QT::resetTracking() {
MidiParser::resetTracking();
_channelMap.clear();
_queuedEvents.clear();
_partMap.clear();
}
void MidiParser_QT::sendToDriver(uint32 b) {
if (_source < 0) {
MidiParser::sendToDriver(b);
} else {
_driver->send(_source, b);
}
}
void MidiParser_QT::sendMetaEventToDriver(byte type, byte *data, uint16 length) {
if (_source < 0) {
MidiParser::sendMetaEventToDriver(type, data, length);
} else {
_driver->metaEvent(_source, type, data, length);
}
}
Common::QuickTimeParser::SampleDesc *MidiParser_QT::readSampleDesc(Track *track, uint32 format, uint32 descSize) {
if (track->codecType == CODEC_TYPE_MIDI) {
debug(0, "MIDI Codec FourCC '%s'", tag2str(format));
_fd->readUint32BE(); // flags, ignore
descSize -= 4;
MIDISampleDesc *entry = new MIDISampleDesc(track, format);
entry->_requestSize = descSize;
entry->_requestData = (byte *)malloc(descSize);
_fd->read(entry->_requestData, descSize);
return entry;
}
return nullptr;
}
MidiParser_QT::MIDISampleDesc::MIDISampleDesc(Common::QuickTimeParser::Track *parentTrack, uint32 codecTag) :
Common::QuickTimeParser::SampleDesc(parentTrack, codecTag) {
}
void MidiParser_QT::initFromContainerTracks() {
const Common::Array<Common::QuickTimeParser::Track *> &tracks = Common::QuickTimeParser::_tracks;
for (uint32 i = 0; i < tracks.size(); i++) {
if (tracks[i]->codecType == CODEC_TYPE_MIDI) {
assert(tracks[i]->sampleDescs.size() == 1);
if (tracks[i]->editList.size() != 1)
warning("Unhandled QuickTime MIDI edit lists, things may go awry");
MIDITrackInfo trackInfo;
trackInfo.data = readWholeTrack(tracks[i], trackInfo.size);
trackInfo.timeScale = tracks[i]->timeScale;
_trackInfo.push_back(trackInfo);
}
}
initCommon();
}
void MidiParser_QT::initCommon() {
// Now we have all our info needed in _trackInfo from whatever container
// form, we can fill in the MidiParser tracks.
_numTracks = _trackInfo.size();
assert(_numTracks > 0);
for (uint32 i = 0; i < _trackInfo.size(); i++)
MidiParser::_tracks[i] = _trackInfo[i].data;
_ppqn = _trackInfo[0].timeScale;
resetTracking();
setTempo(1000000);
setTrack(0);
}
byte *MidiParser_QT::readWholeTrack(Common::QuickTimeParser::Track *track, uint32 &trackSize) {
// This just goes through all chunks and appends them together
Common::MemoryWriteStreamDynamic output(DisposeAfterUse::NO);
uint32 curSample = 0;
// Read in the note request data first
MIDISampleDesc *entry = (MIDISampleDesc *)track->sampleDescs[0];
output.write(entry->_requestData, entry->_requestSize);
for (uint i = 0; i < track->chunkCount; i++) {
_fd->seek(track->chunkOffsets[i]);
uint32 sampleCount = 0;
for (uint32 j = 0; j < track->sampleToChunkCount; j++)
if (i >= track->sampleToChunk[j].first)
sampleCount = track->sampleToChunk[j].count;
for (uint32 j = 0; j < sampleCount; j++, curSample++) {
uint32 size = (track->sampleSize != 0) ? track->sampleSize : track->sampleSizes[curSample];
byte *data = new byte[size];
_fd->read(data, size);
output.write(data, size);
delete[] data;
}
}
trackSize = output.size();
return output.getData();
}
uint32 MidiParser_QT::readUint32() {
uint32 value = READ_BE_UINT32(_position._playPos);
_position._playPos += 4;
return value;
}
MidiParser *MidiParser::createParser_QT(int8 source) {
return new MidiParser_QT(source);
}