scummvm/saga/gfx.cpp

1105 lines
22 KiB
C++

/* ScummVM - Scumm Interpreter
* Copyright (C) 2004 The ScummVM project
*
* The ReInherit Engine is (C)2000-2003 by Daniel Balsom.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* $Header$
*
*/
// Misc. graphics routines
// Line drawing code utilizes Bresenham's run-length slice algorithm
// described in "Michael Abrash's Graphics Programming Black Book",
// Coriolis Group Books, 1997
#include "saga/saga.h"
#include "saga/gfx.h"
#include "common/system.h"
namespace Saga {
Gfx::Gfx(OSystem *system, int width, int height) {
R_SURFACE r_back_buf;
_system = system;
_system->initSize(width, height);
debug(0, "Init screen %dx%d", width, height);
// Convert surface data to R surface data
r_back_buf.buf = (byte *)calloc(1, width * height);
r_back_buf.buf_w = width;
r_back_buf.buf_h = height;
r_back_buf.buf_pitch = width;
r_back_buf.clip_rect.left = 0;
r_back_buf.clip_rect.top = 0;
r_back_buf.clip_rect.right = width - 1;
r_back_buf.clip_rect.bottom = height - 1;
// Set module data
_back_buf = r_back_buf;
_init = 1;
_white_index = -1;
_black_index = -1;
// For now, always show the mouse cursor.
setCursor(1);
g_system->showMouse(true);
}
/*
~Gfx() {
free(GfxModule.r_back_buf->buf);
}
*/
int Gfx::drawPalette(R_SURFACE *dst_s) {
int x;
int y;
int color = 0;
Rect pal_rect;
for (y = 0; y < 16; y++) {
pal_rect.top = (y * 8) + 4;
pal_rect.bottom = pal_rect.top + 8;
for (x = 0; x < 16; x++) {
pal_rect.left = (x * 8) + 4;
pal_rect.right = pal_rect.left + 8;
drawRect(dst_s, &pal_rect, color);
color++;
}
}
return 0;
}
int Gfx::simpleBlit(R_SURFACE *dst_s, R_SURFACE *src_s) {
byte *src_p;
byte *dst_p;
int y, w, p;
assert((dst_s != NULL) && (src_s != NULL));
assert(dst_s->buf_w == src_s->buf_w);
assert(dst_s->buf_h == src_s->buf_h);
src_p = src_s->buf;
dst_p = dst_s->buf;
w = src_s->buf_w;
p = src_s->buf_pitch;
for (y = 0; y < src_s->buf_h; y++) {
memcpy(dst_p, src_p, w);
dst_p += p;
src_p += p;
}
return R_SUCCESS;
}
// * Copies a rectangle from a raw 8 bit pixel buffer to the specified surface.
// The buffer is of width 'src_w' and height 'src_h'. The rectangle to be
// copied is defined by 'src_rect'.
// The rectangle is copied to the destination surface at point 'dst_pt'.
// - If dst_pt is NULL, the buffer is rectangle is copied to the destination
// origin.
// - If src_rect is NULL, the entire buffer is copied./
// - The surface must match the logical dimensions of the buffer exactly.
// - Returns R_FAILURE on error
int Gfx::bufToSurface(R_SURFACE *ds, const byte *src, int src_w, int src_h,
Rect *src_rect, Point *dst_pt) {
const byte *read_p;
byte *write_p;
int row;
Common::Rect s;
int d_x, d_y;
Common::Rect clip;
int dst_off_x, dst_off_y;
int src_off_x, src_off_y;
int src_draw_w, src_draw_h;
// Clamp source rectangle to source buffer
if (src_rect != NULL) {
src_rect->clip(src_w - 1, src_h - 1);
s = *src_rect;
if ((s.left >= s.right) || (s.top >= s.bottom)) {
// Empty or negative region
return R_FAILURE;
}
} else {
s.left = 0;
s.top = 0;
s.right = src_w - 1;
s.bottom = src_h - 1;
}
// Get destination origin and clip rectangle
if (dst_pt != NULL) {
d_x = dst_pt->x;
d_y = dst_pt->y;
} else {
d_x = 0;
d_y = 0;
}
clip = ds->clip_rect;
if (clip.left == clip.right) {
clip.left = 0;
clip.right = ds->buf_w - 1;
}
if (clip.top == clip.bottom) {
clip.top = 0;
clip.bottom = ds->buf_h - 1;
}
// Clip source rectangle to destination surface
dst_off_x = d_x;
dst_off_y = d_y;
src_off_x = s.left;
src_off_y = s.top;
src_draw_w = (s.right - s.left) + 1;
src_draw_h = (s.bottom - s.top) + 1;
// Clip to left edge
if (d_x < clip.left) {
if (d_x <= (-src_draw_w)) {
// dst rect completely off left edge
return R_SUCCESS;
}
src_off_x += (clip.left - d_x);
src_draw_w -= (clip.left - d_x);
dst_off_x = clip.left;
}
// Clip to top edge
if (d_y < clip.top) {
if (d_y >= (-src_draw_h)) {
// dst rect completely off top edge
return R_SUCCESS;
}
src_off_y += (clip.top - d_y);
src_draw_h -= (clip.top - d_y);
dst_off_y = clip.top;
}
// Clip to right edge
if (d_x > clip.right) {
// dst rect completely off right edge
return R_SUCCESS;
}
if ((d_x + src_draw_w - 1) > clip.right) {
src_draw_w -= (clip.right - (d_x + src_draw_w - 1));
}
// Clip to bottom edge
if (d_x > clip.bottom) {
// dst rect completely off bottom edge
return R_SUCCESS;
}
if ((d_y + src_draw_h - 1) > clip.bottom) {
src_draw_h -= (clip.bottom - (d_y + src_draw_h - 1));
}
// Transfer buffer data to surface
read_p = (src + src_off_x) + (src_w * src_off_y);
write_p = (ds->buf + dst_off_x) + (ds->buf_pitch * dst_off_y);
for (row = 0; row < src_draw_h; row++) {
memcpy(write_p, read_p, src_draw_w);
write_p += ds->buf_pitch;
read_p += src_w;
}
return R_SUCCESS;
}
int Gfx::bufToBuffer(byte *dst_buf, int dst_w, int dst_h, const byte *src,
int src_w, int src_h, Rect *src_rect, Point *dst_pt) {
const byte *read_p;
byte *write_p;
int row;
Common::Rect s;
int d_x, d_y;
Common::Rect clip;
int dst_off_x, dst_off_y;
int src_off_x, src_off_y;
int src_draw_w, src_draw_h;
// Clamp source rectangle to source buffer
if (src_rect != NULL) {
src_rect->clip(src_w - 1, src_h - 1);
s.left = src_rect->left;
s.top = src_rect->top;
s.right = src_rect->right;
s.bottom = src_rect->bottom;
if ((s.left >= s.right) || (s.top >= s.bottom)) {
// Empty or negative region
return R_FAILURE;
}
} else {
s.left = 0;
s.top = 0;
s.right = src_w - 1;
s.bottom = src_h - 1;
}
// Get destination origin and clip rectangle
if (dst_pt != NULL) {
d_x = dst_pt->x;
d_y = dst_pt->y;
} else {
d_x = 0;
d_y = 0;
}
clip.left = 0;
clip.top = 0;
clip.right = dst_w - 1;
clip.bottom = dst_h - 1;
// Clip source rectangle to destination surface
dst_off_x = d_x;
dst_off_y = d_y;
src_off_x = s.left;
src_off_y = s.top;
src_draw_w = (s.right - s.left) + 1;
src_draw_h = (s.bottom - s.top) + 1;
// Clip to left edge
if (d_x < clip.left) {
if (d_x <= (-src_draw_w)) {
// dst rect completely off left edge
return R_SUCCESS;
}
src_off_x += (clip.left - d_x);
src_draw_w -= (clip.left - d_x);
dst_off_x = clip.left;
}
// Clip to top edge
if (d_y < clip.top) {
if (d_y >= (-src_draw_h)) {
// dst rect completely off top edge
return R_SUCCESS;
}
src_off_y += (clip.top - d_y);
src_draw_h -= (clip.top - d_y);
dst_off_y = clip.top;
}
// Clip to right edge
if (d_x > clip.right) {
// dst rect completely off right edge
return R_SUCCESS;
}
if ((d_x + src_draw_w - 1) > clip.right) {
src_draw_w -= (clip.right - (d_x + src_draw_w - 1));
}
// Clip to bottom edge
if (d_x > clip.bottom) {
// dst rect completely off bottom edge
return R_SUCCESS;
}
if ((d_y + src_draw_h - 1) > clip.bottom) {
src_draw_h -= (clip.bottom - (d_y + src_draw_h - 1));
}
// Transfer buffer data to surface
read_p = (src + src_off_x) + (src_w * src_off_y);
write_p = (dst_buf + dst_off_x) + (dst_w * dst_off_y);
for (row = 0; row < src_draw_h; row++) {
memcpy(write_p, read_p, src_draw_w);
write_p += dst_w;
read_p += src_w;
}
return R_SUCCESS;
}
// Fills a rectangle in the surface ds from point 'p1' to point 'p2' using
// the specified color.
int Gfx::drawRect(R_SURFACE *ds, Rect *dst_rect, int color) {
byte *write_p;
int w;
int h;
int row;
int left, top, right, bottom;
if (dst_rect != NULL) {
dst_rect->clip(ds->buf_w - 1, ds->buf_h - 1);
left = dst_rect->left;
top = dst_rect->top;
right = dst_rect->right;
bottom = dst_rect->bottom;
if ((left >= right) || (top >= bottom)) {
// Empty or negative region
return R_FAILURE;
}
} else {
left = 0;
top = 0;
right = ds->buf_w - 1;
bottom = ds->buf_h - 1;
}
w = (right - left) + 1;
h = (bottom - top) + 1;
write_p = ds->buf + (ds->buf_pitch * top) + left;
for (row = 0; row < h; row++) {
memset(write_p, color, w);
write_p += ds->buf_pitch;
}
return R_SUCCESS;
}
int Gfx::drawFrame(R_SURFACE *ds, const Point *p1, const Point *p2, int color) {
int left, top, right, bottom;
int min_x;
int max_x;
int min_y;
int max_y;
Point n_p1; /* 1 .. 2 */
Point n_p2; /* . . */
Point n_p3; /* . . */
Point n_p4; /* 4 .. 3 */
assert((ds != NULL) && (p1 != NULL) && (p2 != NULL));
left = p1->x;
top = p1->y;
right = p2->x;
bottom = p2->y;
min_x = MIN(left, right);
min_y = MIN(top, bottom);
max_x = MAX(left, right);
max_y = MAX(top, bottom);
n_p1.x = min_x;
n_p1.y = min_y;
n_p2.x = max_x;
n_p2.y = min_y;
n_p3.x = max_x;
n_p3.y = max_y;
n_p4.x = min_x;
n_p4.y = max_y;
drawLine(ds, &n_p1, &n_p2, color);
drawLine(ds, &n_p2, &n_p3, color);
drawLine(ds, &n_p3, &n_p4, color);
drawLine(ds, &n_p4, &n_p1, color);
return R_SUCCESS;
}
int Gfx::drawPolyLine(R_SURFACE *ds, const Point *pts, int pt_ct, int draw_color) {
const Point *first_pt = pts;
int last_i = 1;
int i;
assert((ds != NULL) & (pts != NULL));
if (pt_ct < 3) {
return R_FAILURE;
}
for (i = 1; i < pt_ct; i++) {
drawLine(ds, &pts[i], &pts[i - 1], draw_color);
last_i = i;
}
drawLine(ds, &pts[last_i], first_pt, draw_color);
return R_SUCCESS;
}
int Gfx::getClipInfo(R_CLIPINFO *clipinfo) {
Common::Rect s;
int d_x, d_y;
Common::Rect clip;
if (clipinfo == NULL) {
return R_FAILURE;
}
if (clipinfo->dst_pt != NULL) {
d_x = clipinfo->dst_pt->x;
d_y = clipinfo->dst_pt->y;
} else {
d_x = 0;
d_y = 0;
}
s = *clipinfo->src_rect;
clip = *clipinfo->dst_rect;
// Clip source rectangle to destination surface
clipinfo->dst_draw_x = d_x;
clipinfo->dst_draw_y = d_y;
clipinfo->src_draw_x = s.left;
clipinfo->src_draw_y = s.top;
clipinfo->draw_w = (s.right - s.left) + 1;
clipinfo->draw_h = (s.bottom - s.top) + 1;
clipinfo->nodraw = 0;
// Clip to left edge
if (d_x < clip.left) {
if (d_x <= -(clipinfo->draw_w)) {
// dst rect completely off left edge
clipinfo->nodraw = 1;
return R_SUCCESS;
}
clipinfo->src_draw_x += (clip.left - d_x);
clipinfo->draw_w -= (clip.left - d_x);
clipinfo->dst_draw_x = clip.left;
}
// Clip to top edge
if (d_y < clip.top) {
if (d_y <= -(clipinfo->draw_h)) {
// dst rect completely off top edge
clipinfo->nodraw = 1;
return R_SUCCESS;
}
clipinfo->src_draw_y += (clip.top - d_y);
clipinfo->draw_h -= (clip.top - d_y);
clipinfo->dst_draw_y = clip.top;
}
// Clip to right edge
if (d_x > clip.right) {
// dst rect completely off right edge
clipinfo->nodraw = 1;
return R_SUCCESS;
}
if ((d_x + clipinfo->draw_w - 1) > clip.right) {
clipinfo->draw_w += (clip.right - (d_x + clipinfo->draw_w - 1));
}
// Clip to bottom edge
if (d_y > clip.bottom) {
// dst rect completely off bottom edge
clipinfo->nodraw = 1;
return R_SUCCESS;
}
if ((d_y + clipinfo->draw_h - 1) > clip.bottom) {
clipinfo->draw_h += (clip.bottom - (d_y + clipinfo->draw_h - 1));
}
return R_SUCCESS;
}
int Gfx::clipLine(R_SURFACE *ds, const Point *src_p1, const Point *src_p2,
Point *dst_p1, Point *dst_p2) {
const Point *n_p1;
const Point *n_p2;
Common::Rect clip;
int left, top, right, bottom;
int dx, dy;
float m;
int y_icpt_l, y_icpt_r;
clip = ds->clip_rect;
// Normalize points by x
if (src_p1->x < src_p2->x) {
n_p1 = src_p1;
n_p2 = src_p2;
} else {
n_p1 = src_p2;
n_p2 = src_p1;
}
dst_p1->x = n_p1->x;
dst_p1->y = n_p1->y;
dst_p2->x = n_p2->x;
dst_p2->y = n_p2->y;
left = n_p1->x;
top = n_p1->y;
right = n_p2->x;
bottom = n_p2->y;
dx = right - left;
dy = bottom - top;
if (left < 0) {
if (right < 0) {
// Line completely off left edge
return -1;
}
// Clip to left edge
m = ((float)bottom - top) / (right - left);
y_icpt_l = (int)(top - (left * m) + 0.5f);
dst_p1->x = 0;
dst_p1->y = y_icpt_l;
}
if (bottom > clip.right) {
if (left > clip.right) {
// Line completely off right edge
return -1;
}
// Clip to right edge
m = ((float)top - bottom) / (right - left);
y_icpt_r = (int)(top - ((clip.right - left) * m) + 0.5f);
dst_p1->y = y_icpt_r;
dst_p2->x = clip.right;
}
return 1;
}
// Utilizes Bresenham's run-length slice algorithm described in
// "Michael Abrash's Graphics Programming Black Book",
// Coriolis Group Books, 1997
//
// Performs no clipping
void Gfx::drawLine(R_SURFACE *ds, const Point *p1, const Point *p2, int color) {
byte *write_p;
int clip_result;
int temp;
int error_up, error_down;
int error;
int x_vector;
int dx, dy;
int min_run;
int init_run;
int run;
int end_run;
Point clip_p1, clip_p2;
int left, top, right, bottom;
int i, k;
clip_result = clipLine(ds, p1, p2, &clip_p1, &clip_p2);
if (clip_result < 0) {
// Line not visible
return;
}
left = clip_p1.x;
top = clip_p1.y;
right = clip_p2.x;
bottom = clip_p2.y;
if ((left < ds->clip_rect.left) || (right < ds->clip_rect.left) || (left > ds->clip_rect.right) || (right > ds->clip_rect.right)) {
return;
}
if ((top < ds->clip_rect.top) || (bottom < ds->clip_rect.top) || (top > ds->clip_rect.bottom) || (bottom > ds->clip_rect.bottom)) {
return;
}
if (top > bottom) {
temp = top;
top = bottom;
bottom = temp;
temp = left;
left = right;
right = temp;
}
write_p = ds->buf + (top * ds->buf_pitch) + left;
dx = right - left;
if (dx < 0) {
x_vector = -1;
dx = -dx;
} else {
x_vector = 1;
}
dy = bottom - top;
if (dx == 0) {
for (i = 0; i <= dy; i++) {
*write_p = (byte) color;
write_p += ds->buf_pitch;
}
return;
}
if (dy == 0) {
for (i = 0; i <= dx; i++) {
*write_p = (byte) color;
write_p += x_vector;
}
return;
}
if (dx == dy) {
for (i = 0; i <= dx; i++) {
*write_p = (byte) color;
write_p += x_vector + ds->buf_pitch;
}
return;
}
if (dx >= dy) {
min_run = dx / dy;
error_up = (dx % dy) * 2;
error_down = dy * 2;
error = (dx % dy) - (dy * 2);
init_run = (min_run / 2) + 1;
end_run = init_run;
if ((error_up == 0) && (min_run & 0x01) == 0) {
init_run--;
}
error += dy;
// Horiz. seg
for (k = 0; k < init_run; k++) {
*write_p = (byte) color;
write_p += x_vector;
}
write_p += ds->buf_pitch;
for (i = 0; i < (dy - 1); i++) {
run = min_run;
if ((error += error_up) > 0) {
run++;
error -= error_down;
}
// Horiz. seg
for (k = 0; k < run; k++) {
*write_p = (byte) color;
write_p += x_vector;
}
write_p += ds->buf_pitch;
}
// Horiz. seg
for (k = 0; k < end_run; k++) {
*write_p = (byte) color;
write_p += x_vector;
}
write_p += ds->buf_pitch;
return;
} else {
min_run = dy / dx;
error_up = (dy % dx) * 2;
error_down = dx * 2;
error = (dy % dx) - (dx * 2);
init_run = (min_run / 2) + 1;
end_run = init_run;
if ((error_up == 0) && ((min_run & 0x01) == 0)) {
init_run--;
}
if ((min_run & 0x01) != 0) {
error += dx;
}
// Vertical seg
for (k = 0; k < init_run; k++) {
*write_p = (byte) color;
write_p += ds->buf_pitch;
}
write_p += x_vector;
for (i = 0; i < (dx - 1); i++) {
run = min_run;
if ((error += error_up) > 0) {
run++;
error -= error_down;
}
// Vertical seg
for (k = 0; k < run; k++) {
*write_p = (byte) color;
write_p += ds->buf_pitch;
}
write_p += x_vector;
}
// Vertical seg
for (k = 0; k < end_run; k++) {
*write_p = (byte) color;
write_p += ds->buf_pitch;
}
write_p += x_vector;
return;
}
return;
}
R_SURFACE *Gfx::getBackBuffer() {
return &_back_buf;
}
int Gfx::getWhite(void) {
return _white_index;
}
int Gfx::getBlack(void) {
return _black_index;
}
int Gfx::matchColor(unsigned long colormask) {
int i;
int red = (colormask & 0x0FF0000UL) >> 16;
int green = (colormask & 0x000FF00UL) >> 8;
int blue = colormask & 0x00000FFUL;
int dr;
int dg;
int db;
long color_delta;
long best_delta = LONG_MAX;
int best_index = 0;
byte *ppal;
for (i = 0, ppal = _cur_pal; i < R_PAL_ENTRIES; i++, ppal += 4) {
dr = ppal[0] - red;
dr = ABS(dr);
dg = ppal[1] - green;
dg = ABS(dg);
db = ppal[2] - blue;
db = ABS(db);
ppal[3] = 0;
color_delta = (long)(dr * R_RED_WEIGHT + dg * R_GREEN_WEIGHT + db * R_BLUE_WEIGHT);
if (color_delta == 0) {
return i;
}
if (color_delta < best_delta) {
best_delta = color_delta;
best_index = i;
}
}
return best_index;
}
int Gfx::setPalette(R_SURFACE *surface, PALENTRY *pal) {
byte red;
byte green;
byte blue;
int color_delta;
int best_wdelta = 0;
int best_windex = 0;
int best_bindex = 0;
int best_bdelta = 1000;
int i;
byte *ppal;
for (i = 0, ppal = _cur_pal; i < R_PAL_ENTRIES; i++, ppal += 4) {
red = pal[i].red;
ppal[0] = red;
color_delta = red;
green = pal[i].green;
ppal[1] = green;
color_delta += green;
blue = pal[i].blue;
ppal[2] = blue;
color_delta += blue;
ppal[3] = 0;
if (color_delta < best_bdelta) {
best_bindex = i;
best_bdelta = color_delta;
}
if (color_delta > best_wdelta) {
best_windex = i;
best_wdelta = color_delta;
}
}
// When the palette changes, make sure the cursor colours are still
// correct. We may have to reconsider this code later, but for now
// there is only one cursor image.
if (_white_index != best_windex) {
setCursor(best_windex);
}
// Set whitest and blackest color indices
_white_index = best_windex;
_black_index = best_bindex;
_system->setPalette(_cur_pal, 0, R_PAL_ENTRIES);
return R_SUCCESS;
}
int Gfx::getCurrentPal(PALENTRY *src_pal) {
int i;
byte *ppal;
for (i = 0, ppal = _cur_pal; i < R_PAL_ENTRIES; i++, ppal += 4) {
src_pal[i].red = ppal[0];
src_pal[i].green = ppal[1];
src_pal[i].blue = ppal[2];
}
return R_SUCCESS;
}
int Gfx::palToBlack(R_SURFACE *surface, PALENTRY *src_pal, double percent) {
int i;
//int fade_max = 255;
int new_entry;
byte *ppal;
double fpercent;
if (percent > 1.0) {
percent = 1.0;
}
// Exponential fade
fpercent = percent * percent;
fpercent = 1.0 - fpercent;
// Use the correct percentage change per frame for each palette entry
for (i = 0, ppal = _cur_pal; i < R_PAL_ENTRIES; i++, ppal += 4) {
new_entry = (int)(src_pal[i].red * fpercent);
if (new_entry < 0) {
ppal[0] = 0;
} else {
ppal[0] = (byte) new_entry;
}
new_entry = (int)(src_pal[i].green * fpercent);
if (new_entry < 0) {
ppal[1] = 0;
} else {
ppal[1] = (byte) new_entry;
}
new_entry = (int)(src_pal[i].blue * fpercent);
if (new_entry < 0) {
ppal[2] = 0;
} else {
ppal[2] = (byte) new_entry;
}
ppal[3] = 0;
}
_system->setPalette(_cur_pal, 0, R_PAL_ENTRIES);
return R_SUCCESS;
}
int Gfx::blackToPal(R_SURFACE *surface, PALENTRY *src_pal, double percent) {
int new_entry;
double fpercent;
int color_delta;
int best_wdelta = 0;
int best_windex = 0;
int best_bindex = 0;
int best_bdelta = 1000;
byte *ppal;
int i;
if (percent > 1.0) {
percent = 1.0;
}
// Exponential fade
fpercent = percent * percent;
fpercent = 1.0 - fpercent;
// Use the correct percentage change per frame for each palette entry
for (i = 0, ppal = _cur_pal; i < R_PAL_ENTRIES; i++, ppal += 4) {
new_entry = (int)(src_pal[i].red - src_pal[i].red * fpercent);
if (new_entry < 0) {
ppal[0] = 0;
} else {
ppal[0] = (byte) new_entry;
}
new_entry = (int)(src_pal[i].green - src_pal[i].green * fpercent);
if (new_entry < 0) {
ppal[1] = 0;
} else {
ppal[1] = (byte) new_entry;
}
new_entry = (int)(src_pal[i].blue - src_pal[i].blue * fpercent);
if (new_entry < 0) {
ppal[2] = 0;
} else {
ppal[2] = (byte) new_entry;
}
ppal[3] = 0;
}
// Find the best white and black color indices again
if (percent >= 1.0) {
for (i = 0, ppal = _cur_pal; i < R_PAL_ENTRIES; i++, ppal += 4) {
color_delta = ppal[0];
color_delta += ppal[1];
color_delta += ppal[2];
if (color_delta < best_bdelta) {
best_bindex = i;
best_bdelta = color_delta;
}
if (color_delta > best_wdelta) {
best_windex = i;
best_wdelta = color_delta;
}
}
}
// When the palette changes, make sure the cursor colours are still
// correct. We may have to reconsider this code later, but for now
// there is only one cursor image.
if (_white_index != best_windex) {
setCursor(best_windex);
}
_system->setPalette(_cur_pal, 0, R_PAL_ENTRIES);
return R_SUCCESS;
}
void Gfx::setCursor(int best_white) {
int i;
byte keycolor = (best_white == 0) ? 1 : 0;
// Set up the mouse cursor
byte cursor_img[R_CURSOR_W * R_CURSOR_H] = {
0, 0, 0, 255, 0, 0, 0,
0, 0, 0, 255, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
255, 255, 0, 0, 0, 255, 255,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 255, 0, 0, 0,
0, 0, 0, 255, 0, 0, 0,
};
for (i = 0; i < R_CURSOR_W * R_CURSOR_H; i++) {
if (cursor_img[i] != 0)
cursor_img[i] = best_white;
else
cursor_img[i] = keycolor;
}
_system->setMouseCursor(cursor_img, R_CURSOR_W, R_CURSOR_H, 4, 4, keycolor);
}
bool Gfx::hitTestPoly(const Point *points, unsigned int npoints, const Point& test_point) {
int yflag0;
int yflag1;
bool inside_flag = false;
unsigned int pt;
const Point *vtx0 = &points[npoints - 1];
const Point *vtx1 = &points[0];
yflag0 = (vtx0->y >= test_point.y);
for (pt = 0; pt < npoints; pt++, vtx1++) {
yflag1 = (vtx1->y >= test_point.y);
if (yflag0 != yflag1) {
if (((vtx1->y - test_point.y) * (vtx0->x - vtx1->x) >=
(vtx1->x - test_point.x) * (vtx0->y - vtx1->y)) == yflag1) {
inside_flag = !inside_flag;
}
}
yflag0 = yflag1;
vtx0 = vtx1;
}
return inside_flag;
}
} // End of namespace Saga