scummvm/scumm/gfx.cpp
Max Horn 47280d9433 Updated copyright
svn-id: r16398
2005-01-01 16:09:25 +00:00

2697 lines
65 KiB
C++

/* ScummVM - Scumm Interpreter
* Copyright (C) 2001 Ludvig Strigeus
* Copyright (C) 2001-2005 The ScummVM project
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* $Header$
*
*/
#include "stdafx.h"
#include "common/system.h"
#include "scumm/scumm.h"
#include "scumm/actor.h"
#include "scumm/charset.h"
#include "scumm/intern.h"
#include "scumm/resource.h"
#include "scumm/usage_bits.h"
#include "scumm/wiz_he.h"
#if defined(__PALM_OS__)
#include "init_arm.h"
#include "arm/native.h"
#include "arm/macros.h"
#endif
namespace Scumm {
static void blit(byte *dst, int dstPitch, const byte *src, int srcPitch, int w, int h);
static void fill(byte *dst, int dstPitch, byte color, int w, int h);
static void copy8Col(byte *dst, int dstPitch, const byte *src, int height);
static void clear8Col(byte *dst, int dstPitch, int height);
struct StripTable {
int offsets[160];
int run[160];
int color[160];
int zoffsets[120]; // FIXME: Why only 120 here?
int zrun[120]; // FIXME: Why only 120 here?
};
enum {
kScrolltime = 500, // ms scrolling is supposed to take
kPictureDelay = 20
};
#define NUM_SHAKE_POSITIONS 8
static const int8 shake_positions[NUM_SHAKE_POSITIONS] = {
0, 1 * 2, 2 * 2, 1 * 2, 0 * 2, 2 * 2, 3 * 2, 1 * 2
};
/**
* The following structs define four basic fades/transitions used by
* transitionEffect(), each looking differently to the user.
* Note that the stripTables contain strip numbers, and they assume
* that the screen has 40 vertical strips (i.e. 320 pixel), and 25 horizontal
* strips (i.e. 200 pixel). There is a hack in transitionEffect that
* makes it work correctly in games which have a different screen height
* (for example, 240 pixel), but nothing is done regarding the width, so this
* code won't work correctly in COMI. Also, the number of iteration depends
* on min(vertStrips, horizStrips}. So the 13 is derived from 25/2, rounded up.
* And the 25 = min(25,40). Hence for Zak256 instead of 13 and 25, the values
* 15 and 30 should be used, and for COMI probably 30 and 60.
*/
struct TransitionEffect {
byte numOfIterations;
int8 deltaTable[16]; // four times l / t / r / b
byte stripTable[16]; // ditto
};
#ifdef __PALM_OS__
static const TransitionEffect *transitionEffects;
#else
static const TransitionEffect transitionEffects[5] = {
// Iris effect (looks like an opening/closing camera iris)
{
13, // Number of iterations
{
1, 1, -1, 1,
-1, 1, -1, -1,
1, -1, -1, -1,
1, 1, 1, -1
},
{
0, 0, 39, 0,
39, 0, 39, 24,
0, 24, 39, 24,
0, 0, 0, 24
}
},
// Box wipe (a box expands from the upper-left corner to the lower-right corner)
{
25, // Number of iterations
{
0, 1, 2, 1,
2, 0, 2, 1,
2, 0, 2, 1,
0, 0, 0, 0
},
{
0, 0, 0, 0,
0, 0, 0, 0,
1, 0, 1, 0,
255, 0, 0, 0
}
},
// Box wipe (a box expands from the lower-right corner to the upper-left corner)
{
25, // Number of iterations
{
-2, -1, 0, -1,
-2, -1, -2, 0,
-2, -1, -2, 0,
0, 0, 0, 0
},
{
39, 24, 39, 24,
39, 24, 39, 24,
38, 24, 38, 24,
255, 0, 0, 0
}
},
// Inverse box wipe
{
25, // Number of iterations
{
0, -1, -2, -1,
-2, 0, -2, -1,
-2, 0, -2, -1,
0, 0, 0, 0
},
{
0, 24, 39, 24,
39, 0, 39, 24,
38, 0, 38, 24,
255, 0, 0, 0
}
},
// Inverse iris effect, specially tailored for V1/V2 games
{
9, // Number of iterations
{
-1, -1, 1, -1,
-1, 1, 1, 1,
-1, -1, -1, 1,
1, -1, 1, 1
},
{
7, 7, 32, 7,
7, 8, 32, 8,
7, 8, 7, 8,
32, 7, 32, 8
}
}
};
#endif
#pragma mark -
#pragma mark --- Virtual Screens ---
#pragma mark -
#define CHARSET_MASK_TRANSPARENCY 253
Gdi::Gdi(ScummEngine *vm) {
memset(this, 0, sizeof(*this));
_vm = vm;
_roomPalette = vm->_roomPalette;
if ((vm->_features & GF_AMIGA) && (vm->_version >= 4))
_roomPalette += 16;
_compositeBuf = 0;
_textSurface.pixels = 0;
}
void ScummEngine::initScreens(int b, int h) {
int i;
for (i = 0; i < 3; i++) {
nukeResource(rtBuffer, i + 1);
nukeResource(rtBuffer, i + 5);
}
if (!getResourceAddress(rtBuffer, 4)) {
// Since the size of screen 3 is fixed, there is no need to reallocate
// it if its size changed.
// Not sure what it is good for, though. I think it may have been used
// in pre-V7 for the games messages (like 'Pause', Yes/No dialogs,
// version display, etc.). I don't know about V7, maybe the same is the
// case there. If so, we could probably just remove it completely.
if (_version >= 7) {
initVirtScreen(kUnkVirtScreen, 0, (_screenHeight / 2) - 10, _screenWidth, 13, false, false);
} else {
initVirtScreen(kUnkVirtScreen, 0, 80, _screenWidth, 13, false, false);
}
}
initVirtScreen(kMainVirtScreen, 0, b, _screenWidth, h - b, true, true);
initVirtScreen(kTextVirtScreen, 0, 0, _screenWidth, b, false, false);
initVirtScreen(kVerbVirtScreen, 0, h, _screenWidth, _screenHeight - h, false, false);
_screenB = b;
_screenH = h;
gdi.init();
}
void Gdi::init() {
const int size = _vm->_screenWidth * _vm->_screenHeight;
free(_compositeBuf);
free(_textSurface.pixels);
_compositeBuf = (byte *)malloc(size);
_textSurface.pixels = malloc(size);
memset(_compositeBuf, CHARSET_MASK_TRANSPARENCY, size);
memset(_textSurface.pixels, CHARSET_MASK_TRANSPARENCY, size);
_textSurface.w = _vm->_screenWidth;
_textSurface.h = _vm->_screenHeight;
_textSurface.pitch = _vm->_screenWidth;
_textSurface.bytesPerPixel = 1;
_numStrips = _vm->_screenWidth / 8;
// Increase the number of screen strips by one; needed for smooth scrolling
if (_vm->_version >= 7) {
// We now have mostly working smooth scrolling code in place for V7+ games
// (i.e. The Dig, Full Throttle and COMI). It seems to work very well so far.
// One area which still may need some work are the AKOS codecs (except for
// codec 1, which I already updated): their masking code may need adjustments,
// similar to the treatment codec 1 received.
//
// To understand how we achieve smooth scrolling, first note that with it, the
// virtual screen strips don't match the display screen strips anymore. To
// overcome that problem, we simply use a screen pitch that is 8 pixel wider
// than the actual screen width, and always draw one strip more than needed to
// the backbuf (of course we have to treat the right border seperately). This
_numStrips += 1;
}
}
void ScummEngine::initVirtScreen(VirtScreenNumber slot, int number, int top, int width, int height, bool twobufs,
bool scrollable) {
VirtScreen *vs = &virtscr[slot];
int size;
assert(height >= 0);
assert(slot >= 0 && slot < 4);
if (_version >= 7) {
if (slot == kMainVirtScreen && (_roomHeight != 0))
height = _roomHeight;
}
vs->number = slot;
vs->w = width;
vs->topline = top;
vs->h = height;
vs->hasTwoBuffers = twobufs;
vs->xstart = 0;
vs->backBuf = NULL;
vs->bytesPerPixel = 1;
vs->pitch = width;
if (_version >= 7) {
// Increase the pitch by one; needed to accomodate the extra
// screen strip which we use to implement smooth scrolling.
// See Gdi::init()
vs->pitch += 8;
}
size = vs->pitch * vs->h;
if (scrollable) {
// Allow enough spaces so that rooms can be up to 4 resp. 8 screens
// wide. To achieve (horizontal!) scrolling, we use a neat trick:
// only the offset into the screen buffer (xstart) is changed. That way
// very little of the screen has to be redrawn, and we have a very low
// memory overhead (namely for every pixel we want to scroll, we need
// one additional byte in the buffer).
if (_version >= 7) {
size += vs->pitch * 8;
} else {
size += vs->pitch * 4;
}
}
createResource(rtBuffer, slot + 1, size);
vs->pixels = getResourceAddress(rtBuffer, slot + 1);
memset(vs->pixels, 0, size); // reset background
if (twobufs) {
vs->backBuf = createResource(rtBuffer, slot + 5, size);
}
if (slot != 3) {
vs->setDirtyRange(0, height);
}
}
VirtScreen *ScummEngine::findVirtScreen(int y) {
VirtScreen *vs = virtscr;
int i;
for (i = 0; i < 3; i++, vs++) {
if (y >= vs->topline && y < vs->topline + vs->h) {
return vs;
}
}
return NULL;
}
void ScummEngine::markRectAsDirty(VirtScreenNumber virt, int left, int right, int top, int bottom, int dirtybit) {
VirtScreen *vs = &virtscr[virt];
int lp, rp;
if (left > right || top > bottom)
return;
if (top > vs->h || bottom < 0)
return;
if (top < 0)
top = 0;
if (bottom > vs->h)
bottom = vs->h;
if (virt == kMainVirtScreen && dirtybit) {
lp = left / 8 + _screenStartStrip;
if (lp < 0)
lp = 0;
rp = (right + vs->xstart) / 8;
if (_version >= 7) {
if (rp > 409)
rp = 409;
} else {
if (rp >= 200)
rp = 200;
}
for (; lp <= rp; lp++)
setGfxUsageBit(lp, dirtybit);
}
// The following code used to be in the separate method setVirtscreenDirty
lp = left / 8;
rp = right / 8;
if ((lp >= gdi._numStrips) || (rp < 0))
return;
if (lp < 0)
lp = 0;
if (rp >= gdi._numStrips)
rp = gdi._numStrips - 1;
while (lp <= rp) {
if (top < vs->tdirty[lp])
vs->tdirty[lp] = top;
if (bottom > vs->bdirty[lp])
vs->bdirty[lp] = bottom;
lp++;
}
}
/**
* Update all dirty screen areas. This method blits all of the internal engine
* graphics to the actual display, as needed. In addition, the 'shaking'
* code in the backend is controlled from here.
*/
void ScummEngine::drawDirtyScreenParts() {
// Update verbs
updateDirtyScreen(kVerbVirtScreen);
// Update the conversation area (at the top of the screen)
updateDirtyScreen(kTextVirtScreen);
// Update game area ("stage")
if (camera._last.x != camera._cur.x || (_features & GF_NEW_CAMERA && (camera._cur.y != camera._last.y))) {
// Camera moved: redraw everything
VirtScreen *vs = &virtscr[kMainVirtScreen];
gdi.drawStripToScreen(vs, 0, vs->w, 0, vs->h);
vs->setDirtyRange(vs->h, 0);
} else {
updateDirtyScreen(kMainVirtScreen);
}
// Handle shaking
if (_shakeEnabled) {
_shakeFrame = (_shakeFrame + 1) % NUM_SHAKE_POSITIONS;
_system->setShakePos(shake_positions[_shakeFrame]);
} else if (!_shakeEnabled &&_shakeFrame != 0) {
_shakeFrame = 0;
_system->setShakePos(0);
}
}
void ScummEngine::updateDirtyScreen(VirtScreenNumber slot) {
gdi.updateDirtyScreen(&virtscr[slot]);
}
/**
* Blit the dirty data from the given VirtScreen to the display. If the camera moved,
* a full blit is done, otherwise only the visible dirty areas are updated.
*/
void Gdi::updateDirtyScreen(VirtScreen *vs) {
// Do nothing for unused virtual screens
if (vs->h == 0)
return;
int i;
int w = 8;
int start = 0;
for (i = 0; i < _numStrips; i++) {
if (vs->bdirty[i]) {
const int top = vs->tdirty[i];
const int bottom = vs->bdirty[i];
vs->tdirty[i] = vs->h;
vs->bdirty[i] = 0;
if (i != (_numStrips - 1) && vs->bdirty[i + 1] == bottom && vs->tdirty[i + 1] == top) {
// Simple optimizations: if two or more neighbouring strips
// form one bigger rectangle, coalesce them.
w += 8;
continue;
}
drawStripToScreen(vs, start * 8, w, top, bottom);
w = 8;
}
start = i + 1;
}
}
/**
* Blit the specified rectangle from the given virtual screen to the display.
* Note: t and b are in *virtual screen* coordinates, while x is relative to
* the *real screen*. This is due to the way tdirty/vdirty work: they are
* arrays which map 'strips' (sections of the real screen) to dirty areas as
* specified by top/bottom coordinate in the virtual screen.
*/
void Gdi::drawStripToScreen(VirtScreen *vs, int x, int width, int top, int bottom) {
if (bottom <= top)
return;
if (top >= vs->h)
return;
assert(top >= 0 && bottom <= vs->h); // Paranoia checks
assert(x >= 0 && width <= vs->pitch);
assert(_textSurface.pixels);
assert(_compositeBuf);
if (width > vs->w - x)
width = vs->w - x;
// Clip to the visible part of the scene
if (top < _vm->_screenTop)
top = _vm->_screenTop;
if (bottom > _vm->_screenTop + _vm->_screenHeight)
bottom = _vm->_screenTop + _vm->_screenHeight;
// Convert the vertical coordinates to real screen coords
const int y = vs->topline + top - _vm->_screenTop;
const int height = bottom - top;
// Compute screen etc. buffer pointers
const byte *src = vs->getPixels(x, top);
byte *dst = _compositeBuf + x + y * _vm->_screenWidth;
const byte *text = (byte *)_textSurface.pixels + x + y * _textSurface.pitch;
#ifdef __PALM_OS__
ARM_START(DrawStripType)
ARM_INIT(SCUMM_DRAWSTRIP)
ARM_ADDM(width)
ARM_ADDM(height)
ARM_ADDM(src)
ARM_ADDM(dst)
ARM_ADDM(text)
ARM_ADDV(_vm_screenWidth, _vm->_screenWidth)
ARM_ADDV(vs_pitch, vs->pitch)
ARM_ADDV(_textSurface_pitch, _textSurface.pitch)
ARM_CALL(ARM_ENGINE, PNO_DATA())
ARM_CONTINUE()
#endif
// Compose the text over the game graphics
for (int h = 0; h < height; ++h) {
for (int w = 0; w < width; ++w) {
if (text[w] == CHARSET_MASK_TRANSPARENCY)
dst[w] = src[w];
else
dst[w] = text[w];
}
src += vs->pitch;
dst += _vm->_screenWidth;
text += _textSurface.pitch;
}
// Finally blit the whole thing to the screen
_vm->_system->copyRectToScreen(_compositeBuf + x + y * _vm->_screenWidth, _vm->_screenWidth, x, y, width, height);
}
#pragma mark -
#pragma mark --- Background buffers & charset mask ---
#pragma mark -
void ScummEngine::initBGBuffers(int height) {
const byte *ptr;
int size, itemsize, i;
byte *room;
if (_version >= 7) {
// Resize main virtual screen in V7 games. This is necessary
// because in V7, rooms may be higher than one screen, so we have
// to accomodate for that.
initVirtScreen(kMainVirtScreen, 0, virtscr[0].topline, _screenWidth, height, 1, 1);
}
if (_heversion >= 70)
room = getResourceAddress(rtRoomImage, _roomResource);
else
room = getResourceAddress(rtRoom, _roomResource);
if (_version <= 3) {
gdi._numZBuffer = 2;
} else if (_features & GF_SMALL_HEADER) {
int off;
ptr = findResourceData(MKID('SMAP'), room);
gdi._numZBuffer = 0;
if (_gameId == GID_MONKEY_EGA || _gameId == GID_PASS)
off = READ_LE_UINT16(ptr);
else
off = READ_LE_UINT32(ptr);
while (off && gdi._numZBuffer < 4) {
gdi._numZBuffer++;
ptr += off;
off = READ_LE_UINT16(ptr);
}
} else if (_version == 8) {
// in V8 there is no RMIH and num z buffers is in RMHD
ptr = findResource(MKID('RMHD'), room);
gdi._numZBuffer = READ_LE_UINT32(ptr + 24) + 1;
} else if (_heversion >= 70) {
ptr = findResource(MKID('RMIH'), room);
gdi._numZBuffer = READ_LE_UINT16(ptr + 8) + 1;
} else {
ptr = findResource(MKID('RMIH'), findResource(MKID('RMIM'), room));
gdi._numZBuffer = READ_LE_UINT16(ptr + 8) + 1;
}
assert(gdi._numZBuffer >= 1 && gdi._numZBuffer <= 8);
if (_version >= 7)
itemsize = (_roomHeight + 10) * gdi._numStrips;
else
itemsize = (_roomHeight + 4) * gdi._numStrips;
size = itemsize * gdi._numZBuffer;
memset(createResource(rtBuffer, 9, size), 0, size);
for (i = 0; i < (int)ARRAYSIZE(gdi._imgBufOffs); i++) {
if (i < gdi._numZBuffer)
gdi._imgBufOffs[i] = i * itemsize;
else
gdi._imgBufOffs[i] = (gdi._numZBuffer - 1) * itemsize;
}
}
/**
* Redraw background as needed, i.e. the left/right sides if scrolling took place etc.
* Note that this only updated the virtual screen, not the actual display.
*/
void ScummEngine::redrawBGAreas() {
int i;
int diff;
int val = 0;
if (!(_features & GF_NEW_CAMERA))
if (camera._cur.x != camera._last.x && _charset->_hasMask && (_version > 3 && _gameId != GID_PASS))
stopTalk();
// Redraw parts of the background which are marked as dirty.
if (!_fullRedraw && _bgNeedsRedraw) {
for (i = 0; i != gdi._numStrips; i++) {
if (testGfxUsageBit(_screenStartStrip + i, USAGE_BIT_DIRTY)) {
redrawBGStrip(i, 1);
}
}
}
if (_features & GF_NEW_CAMERA) {
diff = camera._cur.x / 8 - camera._last.x / 8;
if (_fullRedraw == 0 && diff == 1) {
val = 2;
redrawBGStrip(gdi._numStrips - 1, 1);
} else if (_fullRedraw == 0 && diff == -1) {
val = 1;
redrawBGStrip(0, 1);
} else if (_fullRedraw != 0 || diff != 0) {
_bgNeedsRedraw = false;
redrawBGStrip(0, gdi._numStrips);
}
} else {
if (_fullRedraw == 0 && camera._cur.x - camera._last.x == 8) {
val = 2;
redrawBGStrip(gdi._numStrips - 1, 1);
} else if (_fullRedraw == 0 && camera._cur.x - camera._last.x == -8) {
val = 1;
redrawBGStrip(0, 1);
} else if (_fullRedraw != 0 || camera._cur.x != camera._last.x) {
_bgNeedsRedraw = false;
_flashlight.isDrawn = false;
redrawBGStrip(0, gdi._numStrips);
}
}
drawRoomObjects(val);
_bgNeedsRedraw = false;
}
void ScummEngine_v70he::redrawBGAreas() {
if (_heversion == 70) {
ScummEngine::redrawBGAreas();
return;
}
int val = 0;
if (camera._cur.x != camera._last.x && _charset->_hasMask)
stopTalk();
byte *room = getResourceAddress(rtRoomImage, _roomResource) + _IM00_offs;
if (findResource(MKID('BMAP'), room) != NULL) {
if (_fullRedraw) {
_bgNeedsRedraw = false;
gdi.drawBMAPBg(room, &virtscr[0], _screenStartStrip);
}
} else if (findResource(MKID('SMAP'), room) == NULL) {
warning("redrawBGAreas(): Both SMAP and BMAP are missing...");
}
drawRoomObjects(val);
_bgNeedsRedraw = false;
}
void ScummEngine_v72he::redrawBGAreas() {
ScummEngine_v70he::redrawBGAreas();
flushWizBuffer();
}
void ScummEngine::redrawBGStrip(int start, int num) {
byte *room;
int s = _screenStartStrip + start;
assert(s >= 0 && (size_t) s < sizeof(gfxUsageBits) / (3 * sizeof(gfxUsageBits[0])));
for (int i = 0; i < num; i++)
setGfxUsageBit(s + i, USAGE_BIT_DIRTY);
if (_version == 1) {
gdi._C64ObjectMode = false;
}
if (_heversion >= 70)
room = getResourceAddress(rtRoomImage, _roomResource);
else
room = getResourceAddress(rtRoom, _roomResource);
gdi.drawBitmap(room + _IM00_offs,
&virtscr[0], s, 0, _roomWidth, virtscr[0].h, s, num, 0, _roomStrips);
}
void ScummEngine::restoreBG(Common::Rect rect, byte backColor) {
VirtScreen *vs;
byte *screenBuf;
if (rect.top < 0)
rect.top = 0;
if (rect.left >= rect.right || rect.top >= rect.bottom)
return;
if ((vs = findVirtScreen(rect.top)) == NULL)
return;
if (rect.left > vs->w)
return;
// Convert 'rect' to local (virtual screen) coordinates
rect.top -= vs->topline;
rect.bottom -= vs->topline;
rect.clip(vs->w, vs->h);
markRectAsDirty(vs->number, rect, USAGE_BIT_RESTORED);
screenBuf = vs->getPixels(rect.left, rect.top);
const int height = rect.height();
const int width = rect.width();
if (!height)
return;
if (vs->hasTwoBuffers && _currentRoom != 0 && isLightOn()) {
blit(screenBuf, vs->pitch, vs->getBackPixels(rect.left, rect.top), vs->pitch, width, height);
if (vs->number == kMainVirtScreen && _charset->_hasMask) {
byte *mask = (byte *)gdi._textSurface.pixels + gdi._textSurface.pitch * (rect.top - _screenTop) + rect.left;
fill(mask, gdi._textSurface.pitch, CHARSET_MASK_TRANSPARENCY, width, height);
}
} else {
fill(screenBuf, vs->pitch, backColor, width, height);
}
}
void CharsetRenderer::restoreCharsetBg() {
_nextLeft = _vm->_string[0].xpos;
_nextTop = _vm->_string[0].ypos + _vm->_screenTop;
if (_hasMask) {
_hasMask = false;
_str.left = -1;
_left = -1;
// Restore background on the whole text area. This code is based on
// restoreBG(), but was changed to only restore those parts which are
// currently covered by the charset mask.
VirtScreen *vs = &_vm->virtscr[_textScreenID];
if (!vs->h)
return;
_vm->markRectAsDirty(vs->number, Common::Rect(vs->w, vs->h), USAGE_BIT_RESTORED);
byte *screenBuf = vs->getPixels(0, 0);
if (vs->hasTwoBuffers && _vm->_currentRoom != 0 && _vm->isLightOn()) {
if (vs->number != kMainVirtScreen) {
// Restore from back buffer
const byte *backBuf = vs->getBackPixels(0, 0);
blit(screenBuf, vs->pitch, backBuf, vs->pitch, vs->w, vs->h);
}
} else {
// Clear area
memset(screenBuf, 0, vs->h * vs->pitch);
}
if (vs->hasTwoBuffers) {
// Clean out the charset mask
memset(_vm->gdi._textSurface.pixels, CHARSET_MASK_TRANSPARENCY, _vm->gdi._textSurface.pitch * _vm->gdi._textSurface.h);
}
}
}
void CharsetRenderer::clearCharsetMask() {
memset(_vm->getResourceAddress(rtBuffer, 9), 0, _vm->gdi._imgBufOffs[1]);
}
byte *ScummEngine::getMaskBuffer(int x, int y, int z) {
return gdi.getMaskBuffer((x + virtscr[0].xstart) / 8, y, z);
}
byte *Gdi::getMaskBuffer(int x, int y, int z) {
return _vm->getResourceAddress(rtBuffer, 9)
+ x + y * _numStrips + _imgBufOffs[z];
}
#pragma mark -
#pragma mark --- Misc ---
#pragma mark -
static void blit(byte *dst, int dstPitch, const byte *src, int srcPitch, int w, int h) {
assert(w > 0);
assert(h > 0);
assert(src != NULL);
assert(dst != NULL);
if (w == srcPitch && w == dstPitch) {
memcpy(dst, src, w*h);
} else {
do {
memcpy(dst, src, w);
dst += dstPitch;
src += srcPitch;
} while (--h);
}
}
static void fill(byte *dst, int dstPitch, byte color, int w, int h) {
assert(h > 0);
assert(dst != NULL);
if (w == dstPitch) {
memset(dst, color, w*h);
} else {
do {
memset(dst, color, w);
dst += dstPitch;
} while (--h);
}
}
static void copy8Col(byte *dst, int dstPitch, const byte *src, int height) {
do {
#if defined(SCUMM_NEED_ALIGNMENT)
memcpy(dst, src, 8);
#else
((uint32 *)dst)[0] = ((const uint32 *)src)[0];
((uint32 *)dst)[1] = ((const uint32 *)src)[1];
#endif
dst += dstPitch;
src += dstPitch;
} while (--height);
}
static void clear8Col(byte *dst, int dstPitch, int height) {
do {
#if defined(SCUMM_NEED_ALIGNMENT)
memset(dst, 0, 8);
#else
((uint32 *)dst)[0] = 0;
((uint32 *)dst)[1] = 0;
#endif
dst += dstPitch;
} while (--height);
}
void ScummEngine::drawBox(int x, int y, int x2, int y2, int color) {
int width, height;
VirtScreen *vs;
byte *backbuff, *bgbuff;
if ((vs = findVirtScreen(y)) == NULL)
return;
if (x > x2)
SWAP(x, x2);
if (y > y2)
SWAP(y, y2);
x2++;
y2++;
// Adjust for the topline of the VirtScreen
y -= vs->topline;
y2 -= vs->topline;
// Clip the coordinates
if (x < 0)
x = 0;
else if (x >= vs->w)
return;
if (x2 < 0)
return;
else if (x2 > vs->w)
x2 = vs->w;
if (y < 0)
y = 0;
else if (y > vs->h)
return;
if (y2 < 0)
return;
else if (y2 > vs->h)
y2 = vs->h;
width = x2 - x;
height = y2 - y;
// This will happen in the Sam & Max intro - see bug #1039162 - where
// it would trigger an assertion in blit().
if (width <= 0 || height <= 0)
return;
markRectAsDirty(vs->number, x, x2, y, y2);
backbuff = vs->getPixels(x, y);
if (color == -1) {
if (vs->number != kMainVirtScreen)
error("can only copy bg to main window");
bgbuff = vs->getBackPixels(x, y);
blit(backbuff, vs->pitch, bgbuff, vs->pitch, width, height);
} else {
fill(backbuff, vs->pitch, color, width, height);
}
}
void ScummEngine::drawFlashlight() {
int i, j, x, y;
VirtScreen *vs = &virtscr[kMainVirtScreen];
// Remove the flash light first if it was previously drawn
if (_flashlight.isDrawn) {
markRectAsDirty(kMainVirtScreen, _flashlight.x, _flashlight.x + _flashlight.w,
_flashlight.y, _flashlight.y + _flashlight.h, USAGE_BIT_DIRTY);
if (_flashlight.buffer) {
fill(_flashlight.buffer, vs->pitch, 0, _flashlight.w, _flashlight.h);
}
_flashlight.isDrawn = false;
}
if (_flashlight.xStrips == 0 || _flashlight.yStrips == 0)
return;
// Calculate the area of the flashlight
if (_gameId == GID_ZAK256 || _version <= 2) {
x = _mouse.x + vs->xstart;
y = _mouse.y - vs->topline;
} else {
Actor *a = derefActor(VAR(VAR_EGO), "drawFlashlight");
x = a->_pos.x;
y = a->_pos.y;
}
_flashlight.w = _flashlight.xStrips * 8;
_flashlight.h = _flashlight.yStrips * 8;
_flashlight.x = x - _flashlight.w / 2 - _screenStartStrip * 8;
_flashlight.y = y - _flashlight.h / 2;
if (_gameId == GID_LOOM || _gameId == GID_LOOM256)
_flashlight.y -= 12;
// Clip the flashlight at the borders
if (_flashlight.x < 0)
_flashlight.x = 0;
else if (_flashlight.x + _flashlight.w > gdi._numStrips * 8)
_flashlight.x = gdi._numStrips * 8 - _flashlight.w;
if (_flashlight.y < 0)
_flashlight.y = 0;
else if (_flashlight.y + _flashlight.h> vs->h)
_flashlight.y = vs->h - _flashlight.h;
// Redraw any actors "under" the flashlight
for (i = _flashlight.x / 8; i < (_flashlight.x + _flashlight.w) / 8; i++) {
assert(0 <= i && i < gdi._numStrips);
setGfxUsageBit(_screenStartStrip + i, USAGE_BIT_DIRTY);
vs->tdirty[i] = 0;
vs->bdirty[i] = vs->h;
}
byte *bgbak;
_flashlight.buffer = vs->getPixels(_flashlight.x, _flashlight.y);
bgbak = vs->getBackPixels(_flashlight.x, _flashlight.y);
blit(_flashlight.buffer, vs->pitch, bgbak, vs->pitch, _flashlight.w, _flashlight.h);
// Round the corners. To do so, we simply hard-code a set of nicely
// rounded corners.
static const int corner_data[] = { 8, 6, 4, 3, 2, 2, 1, 1 };
int minrow = 0;
int maxcol = _flashlight.w - 1;
int maxrow = (_flashlight.h - 1) * vs->pitch;
for (i = 0; i < 8; i++, minrow += vs->pitch, maxrow -= vs->pitch) {
int d = corner_data[i];
for (j = 0; j < d; j++) {
_flashlight.buffer[minrow + j] = 0;
_flashlight.buffer[minrow + maxcol - j] = 0;
_flashlight.buffer[maxrow + j] = 0;
_flashlight.buffer[maxrow + maxcol - j] = 0;
}
}
_flashlight.isDrawn = true;
}
bool ScummEngine::isLightOn() const {
return (VAR_CURRENT_LIGHTS == 0xFF) || (VAR(VAR_CURRENT_LIGHTS) & LIGHTMODE_screen);
}
void ScummEngine::setShake(int mode) {
if (_shakeEnabled != (mode != 0))
_fullRedraw = true;
_shakeEnabled = mode != 0;
_shakeFrame = 0;
_system->setShakePos(0);
}
#pragma mark -
#pragma mark --- Image drawing ---
#pragma mark -
void Gdi::drawBitmapV2Helper(const byte *ptr, VirtScreen *vs, int x, int y, const int width, const int height, int stripnr, int numstrip, StripTable *table) {
const int left = (stripnr * 8);
const int right = left + (numstrip * 8);
byte *dst;
byte *mask_ptr;
const byte *src;
byte color, data = 0;
int run;
bool dither = false;
byte dither_table[128];
byte *ptr_dither_table;
int theX, theY, maxX;
memset(dither_table, 0, sizeof(dither_table));
if (vs->hasTwoBuffers)
dst = vs->backBuf + y * vs->pitch + x * 8;
else
dst = (byte *)vs->pixels + y * vs->pitch + x * 8;
mask_ptr = getMaskBuffer(x, y, 1);
if (table) {
run = table->run[stripnr];
color = table->color[stripnr];
src = ptr + table->offsets[stripnr];
theX = left;
maxX = right;
} else {
run = 1;
color = 0;
src = ptr;
theX = 0;
maxX = width;
}
// Decode and draw the image data.
assert(height <= 128);
for (; theX < maxX; theX++) {
ptr_dither_table = dither_table;
for (theY = 0; theY < height; theY++) {
if (--run == 0) {
data = *src++;
if (data & 0x80) {
run = data & 0x7f;
dither = true;
} else {
run = data >> 4;
dither = false;
}
color = _roomPalette[data & 0x0f];
if (run == 0) {
run = *src++;
}
}
if (!dither) {
*ptr_dither_table = color;
}
if (left <= theX && theX < right) {
*dst = *ptr_dither_table++;
dst += vs->pitch;
}
}
if (left <= theX && theX < right) {
dst -= _vertStripNextInc;
}
}
// Draw mask (zplane) data
theY = 0;
if (table) {
src = ptr + table->zoffsets[stripnr];
run = table->zrun[stripnr];
theX = left;
} else {
run = *src++;
theX = 0;
}
while (theX < right) {
const byte runFlag = run & 0x80;
if (runFlag) {
run &= 0x7f;
data = *src++;
}
do {
if (!runFlag)
data = *src++;
if (left <= theX) {
*mask_ptr = data;
mask_ptr += _numStrips;
}
theY++;
if (theY >= height) {
if (left <= theX) {
mask_ptr -= _numStrips * height - 1;
}
theY = 0;
theX += 8;
if (theX >= right)
break;
}
} while (--run);
run = *src++;
}
}
int Gdi::getZPlanes(const byte *ptr, const byte *zplane_list[9], bool bmapImage) const {
int numzbuf;
int i;
if ((_vm->_features & GF_SMALL_HEADER) || _vm->_version == 8)
zplane_list[0] = ptr;
else if (bmapImage)
zplane_list[0] = _vm->findResource(MKID('BMAP'), ptr);
else
zplane_list[0] = _vm->findResource(MKID('SMAP'), ptr);
if (_zbufferDisabled)
numzbuf = 0;
else if (_numZBuffer <= 1 || (_vm->_version <= 2))
numzbuf = _numZBuffer;
else {
numzbuf = _numZBuffer;
assert(numzbuf <= 9);
if (_vm->_features & GF_SMALL_HEADER) {
if (_vm->_features & GF_16COLOR)
zplane_list[1] = ptr + READ_LE_UINT16(ptr);
else
zplane_list[1] = ptr + READ_LE_UINT32(ptr);
if (_vm->_features & GF_OLD256) {
if (0 == READ_LE_UINT32(zplane_list[1]))
zplane_list[1] = 0;
}
for (i = 2; i < numzbuf; i++) {
zplane_list[i] = zplane_list[i-1] + READ_LE_UINT16(zplane_list[i-1]);
}
} else if (_vm->_version == 8) {
// Find the OFFS chunk of the ZPLN chunk
const byte *zplnOffsChunkStart = ptr + 24 + READ_BE_UINT32(ptr + 12);
// Each ZPLN contains a WRAP chunk, which has (as always) an OFFS subchunk pointing
// at ZSTR chunks. These once more contain a WRAP chunk which contains nothing but
// an OFFS chunk. The content of this OFFS chunk contains the offsets to the
// Z-planes.
// We do not directly make use of this, but rather hard code offsets (like we do
// for all other Scumm-versions, too). Clearly this is a bit hackish, but works
// well enough, and there is no reason to assume that there are any cases where it
// might fail. Still, doing this properly would have the advantage of catching
// invalid/damaged data files, and allow us to exit gracefully instead of segfaulting.
for (i = 1; i < numzbuf; i++) {
zplane_list[i] = zplnOffsChunkStart + READ_LE_UINT32(zplnOffsChunkStart + 4 + i*4) + 16;
}
} else {
const uint32 zplane_tags[] = {
MKID('ZP00'),
MKID('ZP01'),
MKID('ZP02'),
MKID('ZP03'),
MKID('ZP04')
};
for (i = 1; i < numzbuf; i++) {
zplane_list[i] = _vm->findResource(zplane_tags[i], ptr);
}
}
}
return numzbuf;
}
/**
* Draw a bitmap onto a virtual screen. This is main drawing method for room backgrounds
* and objects, used throughout all SCUMM versions.
*/
void Gdi::drawBitmap(const byte *ptr, VirtScreen *vs, int x, int y, const int width, const int height,
int stripnr, int numstrip, byte flag, StripTable *table) {
assert(ptr);
assert(height > 0);
byte *dstPtr;
const byte *smap_ptr;
const byte *z_plane_ptr;
byte *mask_ptr;
int i;
const byte *zplane_list[9];
int bottom;
int numzbuf;
int sx;
bool useOrDecompress = false;
// Check whether lights are turned on or not
const bool lightsOn = _vm->isLightOn();
CHECK_HEAP;
if (_vm->_features & GF_SMALL_HEADER) {
smap_ptr = ptr;
} else if (_vm->_version == 8) {
// Skip to the BSTR->WRAP->OFFS chunk
smap_ptr = ptr + 24;
} else
smap_ptr = _vm->findResource(MKID('SMAP'), ptr);
assert(smap_ptr);
numzbuf = getZPlanes(ptr, zplane_list, false);
bottom = y + height;
if (bottom > vs->h) {
warning("Gdi::drawBitmap, strip drawn to %d below window bottom %d", bottom, vs->h);
}
_vertStripNextInc = height * vs->pitch - 1;
//
// Since V3, all graphics data was encoded in strips, which is very efficient
// for redrawing only parts of the screen. However, V2 is different: here
// the whole graphics are encoded as one big chunk. That makes it rather
// dificult to draw only parts of a room/object. We handle the V2 graphics
// differently from all other (newer) graphic formats for this reason.
//
if (_vm->_version == 2)
drawBitmapV2Helper(ptr, vs, x, y, width, height, stripnr, numstrip, table);
sx = x - vs->xstart / 8;
if (sx < 0) {
numstrip -= -sx;
x += -sx;
stripnr += -sx;
sx = 0;
}
// FIXME Still not been calculated correctly
while (numstrip > 0 && sx < _numStrips && x * 8 < MAX(_vm->_roomWidth, (int) vs->w)) {
CHECK_HEAP;
if (y < vs->tdirty[sx])
vs->tdirty[sx] = y;
if (bottom > vs->bdirty[sx])
vs->bdirty[sx] = bottom;
// In the case of a double buffered virtual screen, we draw to
// the backbuffer, otherwise to the primary surface memory.
if (vs->hasTwoBuffers)
dstPtr = vs->backBuf + y * vs->pitch + x * 8;
else
dstPtr = (byte *)vs->pixels + y * vs->pitch + x * 8;
if (_vm->_version == 1) {
if (_C64ObjectMode)
drawStripC64Object(dstPtr, vs->pitch, stripnr, width, height);
else
drawStripC64Background(dstPtr, vs->pitch, stripnr, height);
} else if (_vm->_version == 2) {
// Do nothing here for V2 games - drawing was already handled.
} else {
if (_vm->_features & GF_16COLOR) {
drawStripEGA(dstPtr, vs->pitch, smap_ptr + READ_LE_UINT16(smap_ptr + stripnr * 2 + 2), height);
} else if (_vm->_features & GF_SMALL_HEADER) {
useOrDecompress = decompressBitmap(dstPtr, vs->pitch, smap_ptr + READ_LE_UINT32(smap_ptr + stripnr * 4 + 4), height);
} else {
useOrDecompress = decompressBitmap(dstPtr, vs->pitch, smap_ptr + READ_LE_UINT32(smap_ptr + stripnr * 4 + 8), height);
}
}
CHECK_HEAP;
if (vs->hasTwoBuffers) {
byte *frontBuf = (byte *)vs->pixels + y * vs->pitch + x * 8;
if (lightsOn)
copy8Col(frontBuf, vs->pitch, dstPtr, height);
else
clear8Col(frontBuf, vs->pitch, height);
}
CHECK_HEAP;
// COMI and HE games only uses flag value
if (_vm->_version == 8 || (_vm->_features & GF_HUMONGOUS))
useOrDecompress = true;
if (_vm->_version == 1) {
mask_ptr = getMaskBuffer(x, y, 1);
drawStripC64Mask(mask_ptr, stripnr, width, height);
} else if (_vm->_version == 2) {
// Do nothing here for V2 games - zplane was already handled.
} else if (flag & dbDrawMaskOnAll) {
// Sam & Max uses dbDrawMaskOnAll for things like the inventory
// box and the speech icons. While these objects only have one
// mask, it should be applied to all the Z-planes in the room,
// i.e. they should mask every actor.
//
// This flag used to be called dbDrawMaskOnBoth, and all it
// would do was to mask Z-plane 0. (Z-plane 1 would also be
// masked, because what is now the else-clause used to be run
// always.) While this seems to be the only way there is to
// mask Z-plane 0, this wasn't good enough since actors in
// Z-planes >= 2 would not be masked.
//
// The flag is also used by The Dig and Full Throttle, but I
// don't know what for. At the time of writing, these games
// are still too unstable for me to investigate.
if (_vm->_version == 8)
z_plane_ptr = zplane_list[1] + READ_LE_UINT32(zplane_list[1] + stripnr * 4 + 8);
else
z_plane_ptr = zplane_list[1] + READ_LE_UINT16(zplane_list[1] + stripnr * 2 + 8);
for (i = 0; i < numzbuf; i++) {
mask_ptr = getMaskBuffer(x, y, i);
if (useOrDecompress && (flag & dbAllowMaskOr))
decompressMaskImgOr(mask_ptr, z_plane_ptr, height);
else
decompressMaskImg(mask_ptr, z_plane_ptr, height);
}
} else {
for (i = 1; i < numzbuf; i++) {
uint32 offs;
if (!zplane_list[i])
continue;
if (_vm->_features & GF_OLD_BUNDLE)
offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2);
else if (_vm->_features & GF_OLD256)
offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2 + 4);
else if (_vm->_features & GF_SMALL_HEADER)
offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2 + 2);
else if (_vm->_version == 8)
offs = READ_LE_UINT32(zplane_list[i] + stripnr * 4 + 8);
else
offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2 + 8);
mask_ptr = getMaskBuffer(x, y, i);
if (offs) {
z_plane_ptr = zplane_list[i] + offs;
if (useOrDecompress && (flag & dbAllowMaskOr)) {
decompressMaskImgOr(mask_ptr, z_plane_ptr, height);
} else {
decompressMaskImg(mask_ptr, z_plane_ptr, height);
}
} else {
if (!(useOrDecompress && (flag & dbAllowMaskOr)))
for (int h = 0; h < height; h++)
mask_ptr[h * _numStrips] = 0;
// FIXME: needs better abstraction
}
}
}
numstrip--;
x++;
sx++;
stripnr++;
}
}
/**
* Draw a bitmap onto a virtual screen. This is main drawing method for room backgrounds
* used throughout in 7.2+ HE versions.
*
* @note This function essentially is a stripped down & special cased version of
* the generic Gdi::drawBitmap() method.
*/
void Gdi::drawBMAPBg(const byte *ptr, VirtScreen *vs, int startstrip) {
assert(ptr);
const byte *bmap_ptr;
byte code;
const byte *z_plane_ptr;
byte *mask_ptr;
const byte *zplane_list[9];
bmap_ptr = _vm->findResourceData(MKID('BMAP'), ptr);
assert(bmap_ptr);
code = *bmap_ptr++;
// The following few lines more or less duplicate decompressBitmap(), only
// for an area spanning multiple strips. In particular, the codecs 13 & 14
// in decompressBitmap call drawStripHE()
_decomp_shr = code % 10;
_decomp_mask = 0xFF >> (8 - _decomp_shr);
code /= 10;
switch (code) {
case 13:
drawStripHE((byte *)vs->backBuf, vs->pitch, bmap_ptr, vs->w, vs->h, false);
break;
case 14:
drawStripHE((byte *)vs->backBuf, vs->pitch, bmap_ptr, vs->w, vs->h, true);
break;
case 15:
fill((byte *)vs->backBuf, vs->pitch, *bmap_ptr, vs->w, vs->h);
break;
default:
error("Gdi::drawBMAPBg: default case %d", code);
}
copyVirtScreenBuffers(Common::Rect(vs->w, vs->h));
int numzbuf = getZPlanes(ptr, zplane_list, true);
if (numzbuf <= 1)
return;
uint32 offs;
for (int stripnr = 0; stripnr < _numStrips; stripnr++)
for (int i = 1; i < numzbuf; i++) {
if (!zplane_list[i])
continue;
offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2 + 8);
mask_ptr = getMaskBuffer(stripnr, 0, i);
if (offs) {
z_plane_ptr = zplane_list[i] + offs;
decompressMaskImg(mask_ptr, z_plane_ptr, vs->h);
}
}
}
void Gdi::drawBMAPObject(const byte *ptr, VirtScreen *vs, int obj, int x, int y, int w, int h) {
const byte *bmap_ptr = _vm->findResourceData(MKID('BMAP'), ptr);
assert(bmap_ptr);
byte code = *bmap_ptr++;
int scrX = _vm->_screenStartStrip * 8;
if (code == 8 || code == 9) {
Common::Rect rScreen(0, 0, vs->w, vs->h);
byte *dst = (byte *)_vm->virtscr[0].backBuf + scrX;
Wiz::copyWizImage(dst, bmap_ptr, vs->w, vs->h, x - scrX, y, w, h, &rScreen);
}
Common::Rect rect1(x, y, x + w, y + h);
Common::Rect rect2(scrX, 0, vs->w + scrX, vs->h);
if (rect1.intersects(rect2)) {
rect1.left -= rect2.left;
rect1.right -= rect2.left;
rect1.top -= rect2.top;
rect1.bottom -= rect2.top;
copyVirtScreenBuffers(rect1);
}
}
void Gdi::copyVirtScreenBuffers(const Common::Rect &rect) {
const int rw = rect.width();
const int rh = rect.height();
byte *src, *dst;
src = _vm->virtscr[0].getBackPixels(rect.left, rect.top);
dst = _vm->virtscr[0].getPixels(rect.left, rect.top);
assert(rw <= _vm->_screenWidth && rw > 0);
assert(rh <= _vm->_screenHeight && rh > 0);
blit(dst, _vm->virtscr[0].pitch, src, _vm->virtscr[0].pitch, rw, rh);
_vm->markRectAsDirty(kMainVirtScreen, rect);
}
/**
* Reset the background behind an actor or blast object.
*/
void Gdi::resetBackground(int top, int bottom, int strip) {
VirtScreen *vs = &_vm->virtscr[0];
byte *backbuff_ptr, *bgbak_ptr;
int numLinesToProcess;
assert(0 <= strip && strip < _numStrips);
if (top < vs->tdirty[strip])
vs->tdirty[strip] = top;
if (bottom > vs->bdirty[strip])
vs->bdirty[strip] = bottom;
bgbak_ptr = (byte *)vs->backBuf + top * vs->pitch + (strip + vs->xstart/8) * 8;
backbuff_ptr = (byte *)vs->pixels + top * vs->pitch + (strip + vs->xstart/8) * 8;
numLinesToProcess = bottom - top;
if (numLinesToProcess) {
if (_vm->isLightOn()) {
copy8Col(backbuff_ptr, vs->pitch, bgbak_ptr, numLinesToProcess);
} else {
clear8Col(backbuff_ptr, vs->pitch, numLinesToProcess);
}
}
}
bool Gdi::decompressBitmap(byte *dst, int dstPitch, const byte *src, int numLinesToProcess) {
assert(numLinesToProcess);
byte code = *src++;
bool useOrDecompress = false;
if (code <= 10) {
switch (code) {
case 1:
unkDecode7(dst, dstPitch, src, numLinesToProcess);
break;
case 2:
unkDecode8(dst, dstPitch, src, numLinesToProcess); /* Ender - Zak256/Indy256 */
break;
case 3:
unkDecode9(dst, dstPitch, src, numLinesToProcess); /* Ender - Zak256/Indy256 */
break;
case 4:
unkDecode10(dst, dstPitch, src, numLinesToProcess); /* Ender - Zak256/Indy256 */
break;
case 7:
unkDecode11(dst, dstPitch, src, numLinesToProcess); /* Ender - Zak256/Indy256 */
break;
case 8:
// Used in 3DO versions of HE games
useOrDecompress = true;
drawStrip3DO(dst, dstPitch, src, numLinesToProcess, true);
break;
case 9:
drawStrip3DO(dst, dstPitch, src, numLinesToProcess, false);
break;
case 10:
// Used in Amiga version of Monkey Island 1
drawStripEGA(dst, dstPitch, src, numLinesToProcess);
break;
default:
error("Gdi::decompressBitmap: default case %d", code);
}
} else {
_decomp_shr = code % 10;
_decomp_mask = 0xFF >> (8 - _decomp_shr);
code /= 10;
switch (code) {
case 1:
drawStripBasicV(dst, dstPitch, src, numLinesToProcess, false);
break;
case 2:
drawStripBasicH(dst, dstPitch, src, numLinesToProcess, false);
break;
case 3:
useOrDecompress = true;
drawStripBasicV(dst, dstPitch, src, numLinesToProcess, true);
break;
case 4:
useOrDecompress = true;
drawStripBasicH(dst, dstPitch, src, numLinesToProcess, true);
break;
case 6:
case 10:
drawStripComplex(dst, dstPitch, src, numLinesToProcess, false);
break;
case 8:
case 12:
useOrDecompress = true;
drawStripComplex(dst, dstPitch, src, numLinesToProcess, true);
break;
case 13:
drawStripHE(dst, dstPitch, src, 8, numLinesToProcess, false);
break;
case 14:
useOrDecompress = true;
drawStripHE(dst, dstPitch, src, 8, numLinesToProcess, true);
break;
default:
error("Gdi::decompressBitmap: default case %d", code);
}
}
return useOrDecompress;
}
void Gdi::decompressMaskImg(byte *dst, const byte *src, int height) const {
byte b, c;
while (height) {
b = *src++;
if (b & 0x80) {
b &= 0x7F;
c = *src++;
do {
*dst = c;
dst += _numStrips;
--height;
} while (--b && height);
} else {
do {
*dst = *src++;
dst += _numStrips;
--height;
} while (--b && height);
}
}
}
void Gdi::decompressMaskImgOr(byte *dst, const byte *src, int height) const {
byte b, c;
while (height) {
b = *src++;
if (b & 0x80) {
b &= 0x7F;
c = *src++;
do {
*dst |= c;
dst += _numStrips;
--height;
} while (--b && height);
} else {
do {
*dst |= *src++;
dst += _numStrips;
--height;
} while (--b && height);
}
}
}
void Gdi::drawStripC64Background(byte *dst, int dstPitch, int stripnr, int height) {
int charIdx;
height /= 8;
for (int y = 0; y < height; y++) {
_C64Colors[3] = (_C64ColorMap[y + stripnr * height] & 7);
// Check for room color change in V1 zak
if (_roomPalette[0] == 255) {
_C64Colors[2] = _roomPalette[2];
_C64Colors[1] = _roomPalette[1];
}
charIdx = _C64PicMap[y + stripnr * height] * 8;
for (int i = 0; i < 8; i++) {
byte c = _C64CharMap[charIdx + i];
dst[0] = dst[1] = _C64Colors[(c >> 6) & 3];
dst[2] = dst[3] = _C64Colors[(c >> 4) & 3];
dst[4] = dst[5] = _C64Colors[(c >> 2) & 3];
dst[6] = dst[7] = _C64Colors[(c >> 0) & 3];
dst += dstPitch;
}
}
}
void Gdi::drawStripC64Object(byte *dst, int dstPitch, int stripnr, int width, int height) {
int charIdx;
height /= 8;
width /= 8;
for (int y = 0; y < height; y++) {
_C64Colors[3] = (_C64ObjectMap[(y + height) * width + stripnr] & 7);
charIdx = _C64ObjectMap[y * width + stripnr] * 8;
for (int i = 0; i < 8; i++) {
byte c = _C64CharMap[charIdx + i];
dst[0] = dst[1] = _C64Colors[(c >> 6) & 3];
dst[2] = dst[3] = _C64Colors[(c >> 4) & 3];
dst[4] = dst[5] = _C64Colors[(c >> 2) & 3];
dst[6] = dst[7] = _C64Colors[(c >> 0) & 3];
dst += dstPitch;
}
}
}
void Gdi::drawStripC64Mask(byte *dst, int stripnr, int width, int height) const {
int maskIdx;
height /= 8;
width /= 8;
for (int y = 0; y < height; y++) {
if (_C64ObjectMode)
maskIdx = _C64ObjectMap[(y + 2 * height) * width + stripnr] * 8;
else
maskIdx = _C64MaskMap[y + stripnr * height] * 8;
for (int i = 0; i < 8; i++) {
byte c = _C64MaskChar[maskIdx + i];
// V1/C64 masks are inverted compared to what ScummVM expects
*dst = c ^ 0xFF;
dst += _numStrips;
}
}
}
void Gdi::decodeC64Gfx(const byte *src, byte *dst, int size) const {
int x, z;
byte color, run, common[4];
for (z = 0; z < 4; z++) {
common[z] = *src++;
}
x = 0;
while (x < size) {
run = *src++;
if (run & 0x80) {
color = common[(run >> 5) & 3];
run &= 0x1F;
for (z = 0; z <= run; z++) {
dst[x++] = color;
}
} else if (run & 0x40) {
run &= 0x3F;
color = *src++;
for (z = 0; z <= run; z++) {
dst[x++] = color;
}
} else {
for (z = 0; z <= run; z++) {
dst[x++] = *src++;
}
}
}
}
/**
* Create and fill a table with offsets to the graphic and mask strips in the
* given V2 EGA bitmap.
* @param src the V2 EGA bitmap
* @param width the width of the bitmap
* @param height the height of the bitmap
* @param table the strip table to fill
* @return filled strip table
*/
StripTable *Gdi::generateStripTable(const byte *src, int width, int height, StripTable *table) const {
// If no strip table was given to use, allocate a new one
if (table == 0)
table = (StripTable *)calloc(1, sizeof(StripTable));
const byte *bitmapStart = src;
byte color = 0, data = 0;
int x, y, length = 0;
byte run = 1;
// Decode the graphics strips, and memorize the run/color values
// as well as the byte offset.
for (x = 0 ; x < width; x++) {
if ((x % 8) == 0) {
assert(x / 8 < 160);
table->run[x / 8] = run;
table->color[x / 8] = color;
table->offsets[x / 8] = src - bitmapStart;
}
for (y = 0; y < height; y++) {
if (--run == 0) {
data = *src++;
if (data & 0x80) {
run = data & 0x7f;
} else {
run = data >> 4;
}
if (run == 0) {
run = *src++;
}
color = data & 0x0f;
}
}
}
// The mask data follows immediately after the graphics.
x = 0;
y = height;
width /= 8;
for (;;) {
length = *src++;
const byte runFlag = length & 0x80;
if (runFlag) {
length &= 0x7f;
data = *src++;
}
do {
if (!runFlag)
data = *src++;
if (y == height) {
assert(x < 120);
table->zoffsets[x] = src - bitmapStart - 1;
table->zrun[x] = length | runFlag;
}
if (--y == 0) {
if (--width == 0)
return table;
x++;
y = height;
}
} while (--length);
}
return table;
}
void Gdi::drawStripEGA(byte *dst, int dstPitch, const byte *src, int height) const {
byte color = 0;
int run = 0, x = 0, y = 0, z;
while (x < 8) {
color = *src++;
if (color & 0x80) {
run = color & 0x3f;
if (color & 0x40) {
color = *src++;
if (run == 0) {
run = *src++;
}
for (z = 0; z < run; z++) {
*(dst + y * dstPitch + x) = (z & 1) ? _roomPalette[color & 0xf] : _roomPalette[color >> 4];
y++;
if (y >= height) {
y = 0;
x++;
}
}
} else {
if (run == 0) {
run = *src++;
}
for (z = 0; z < run; z++) {
*(dst + y * dstPitch + x) = *(dst + y * dstPitch + x - 1);
y++;
if (y >= height) {
y = 0;
x++;
}
}
}
} else {
run = color >> 4;
if (run == 0) {
run = *src++;
}
for (z = 0; z < run; z++) {
*(dst + y * dstPitch + x) = _roomPalette[color & 0xf];
y++;
if (y >= height) {
y = 0;
x++;
}
}
}
}
}
#define READ_BIT (shift--, dataBit = data & 1, data >>= 1, dataBit)
#define FILL_BITS(n) do { \
if (shift < n) { \
data |= *src++ << shift; \
shift += 8; \
} \
} while (0)
// NOTE: drawStripHE is actually very similar to drawStripComplex
void Gdi::drawStripHE(byte *dst, int dstPitch, const byte *src, int width, int height, const bool transpCheck) const {
static const int delta_color[] = { -4, -3, -2, -1, 1, 2, 3, 4 };
uint32 dataBit, data;
byte color;
int shift;
color = *src++;
data = READ_LE_UINT24(src);
src += 3;
shift = 24;
int x = width;
while (1) {
if (!transpCheck || color != _transparentColor)
*dst = _roomPalette[color];
dst++;
--x;
if (x == 0) {
x = width;
dst += dstPitch - width;
--height;
if (height == 0)
return;
}
FILL_BITS(1);
if (READ_BIT) {
FILL_BITS(1);
if (READ_BIT) {
FILL_BITS(3);
color += delta_color[data & 7];
shift -= 3;
data >>= 3;
} else {
FILL_BITS(_decomp_shr);
color = data & _decomp_mask;
shift -= _decomp_shr;
data >>= _decomp_shr;
}
}
}
}
#undef READ_BIT
#undef FILL_BITS
void Gdi::drawStrip3DO(byte *dst, int dstPitch, const byte *src, int height, const bool transpCheck) const {
if (height == 0)
return;
int decSize = height * 8;
int curSize = 0;
do {
uint8 data = *src++;
uint8 rle = data & 1;
int len = (data >> 1) + 1;
len = MIN(decSize, len);
decSize -= len;
if (!rle) {
for (; len > 0; len--, src++, dst++) {
if (!transpCheck || *src != _transparentColor)
*dst = _roomPalette[*src];
curSize++;
if (!(curSize & 7))
dst += dstPitch - 8; // Next row
}
} else {
byte color = *src++;
for (; len > 0; len--, dst++) {
if (!transpCheck || color != _transparentColor)
*dst = _roomPalette[color];
curSize++;
if (!(curSize & 7))
dst += dstPitch - 8; // Next row
}
}
} while (decSize > 0);
}
#define READ_BIT (cl--, bit = bits & 1, bits >>= 1, bit)
#define FILL_BITS do { \
if (cl <= 8) { \
bits |= (*src++ << cl); \
cl += 8; \
} \
} while (0)
void Gdi::drawStripComplex(byte *dst, int dstPitch, const byte *src, int height, const bool transpCheck) const {
byte color = *src++;
uint bits = *src++;
byte cl = 8;
byte bit;
byte incm, reps;
do {
int x = 8;
do {
FILL_BITS;
if (!transpCheck || color != _transparentColor)
*dst = _roomPalette[color];
dst++;
againPos:
if (!READ_BIT) {
} else if (!READ_BIT) {
FILL_BITS;
color = bits & _decomp_mask;
bits >>= _decomp_shr;
cl -= _decomp_shr;
} else {
incm = (bits & 7) - 4;
cl -= 3;
bits >>= 3;
if (incm) {
color += incm;
} else {
FILL_BITS;
reps = bits & 0xFF;
do {
if (!--x) {
x = 8;
dst += dstPitch - 8;
if (!--height)
return;
}
if (!transpCheck || color != _transparentColor)
*dst = _roomPalette[color];
dst++;
} while (--reps);
bits >>= 8;
bits |= (*src++) << (cl - 8);
goto againPos;
}
}
} while (--x);
dst += dstPitch - 8;
} while (--height);
}
void Gdi::drawStripBasicH(byte *dst, int dstPitch, const byte *src, int height, const bool transpCheck) const {
byte color = *src++;
uint bits = *src++;
byte cl = 8;
byte bit;
int8 inc = -1;
do {
int x = 8;
do {
FILL_BITS;
if (!transpCheck || color != _transparentColor)
*dst = _roomPalette[color];
dst++;
if (!READ_BIT) {
} else if (!READ_BIT) {
FILL_BITS;
color = bits & _decomp_mask;
bits >>= _decomp_shr;
cl -= _decomp_shr;
inc = -1;
} else if (!READ_BIT) {
color += inc;
} else {
inc = -inc;
color += inc;
}
} while (--x);
dst += dstPitch - 8;
} while (--height);
}
void Gdi::drawStripBasicV(byte *dst, int dstPitch, const byte *src, int height, const bool transpCheck) const {
byte color = *src++;
uint bits = *src++;
byte cl = 8;
byte bit;
int8 inc = -1;
int x = 8;
do {
int h = height;
do {
FILL_BITS;
if (!transpCheck || color != _transparentColor)
*dst = _roomPalette[color];
dst += dstPitch;
if (!READ_BIT) {
} else if (!READ_BIT) {
FILL_BITS;
color = bits & _decomp_mask;
bits >>= _decomp_shr;
cl -= _decomp_shr;
inc = -1;
} else if (!READ_BIT) {
color += inc;
} else {
inc = -inc;
color += inc;
}
} while (--h);
dst -= _vertStripNextInc;
} while (--x);
}
#undef READ_BIT
#undef FILL_BITS
/* Ender - Zak256/Indy256 decoders */
#define READ_BIT_256 \
do { \
if ((mask <<= 1) == 256) { \
buffer = *src++; \
mask = 1; \
} \
bits = ((buffer & mask) != 0); \
} while (0)
#define READ_N_BITS(n, c) \
do { \
c = 0; \
for (int b = 0; b < n; b++) { \
READ_BIT_256; \
c += (bits << b); \
} \
} while (0)
#define NEXT_ROW \
do { \
dst += dstPitch; \
if (--h == 0) { \
if (!--x) \
return; \
dst -= _vertStripNextInc; \
h = height; \
} \
} while (0)
void Gdi::unkDecode7(byte *dst, int dstPitch, const byte *src, int height) const {
if (_vm->_features & GF_OLD256) {
uint h = height;
int x = 8;
for (;;) {
*dst = *src++;
NEXT_ROW;
}
return;
}
do {
#if defined(SCUMM_NEED_ALIGNMENT)
memcpy(dst, src, 8);
#else
((uint32 *)dst)[0] = ((const uint32 *)src)[0];
((uint32 *)dst)[1] = ((const uint32 *)src)[1];
#endif
dst += dstPitch;
src += 8;
} while (--height);
}
void Gdi::unkDecode8(byte *dst, int dstPitch, const byte *src, int height) const {
uint h = height;
int x = 8;
for (;;) {
uint run = (*src++) + 1;
byte color = *src++;
do {
*dst = _roomPalette[color];
NEXT_ROW;
} while (--run);
}
}
void Gdi::unkDecode9(byte *dst, int dstPitch, const byte *src, int height) const {
byte c, bits, color, run;
int i;
uint buffer = 0, mask = 128;
int h = height;
i = run = 0;
int x = 8;
for (;;) {
READ_N_BITS(4, c);
switch (c >> 2) {
case 0:
READ_N_BITS(4, color);
for (i = 0; i < ((c & 3) + 2); i++) {
*dst = _roomPalette[run * 16 + color];
NEXT_ROW;
}
break;
case 1:
for (i = 0; i < ((c & 3) + 1); i++) {
READ_N_BITS(4, color);
*dst = _roomPalette[run * 16 + color];
NEXT_ROW;
}
break;
case 2:
READ_N_BITS(4, run);
break;
}
}
}
void Gdi::unkDecode10(byte *dst, int dstPitch, const byte *src, int height) const {
int i;
byte local_palette[256], numcolors = *src++;
uint h = height;
for (i = 0; i < numcolors; i++)
local_palette[i] = *src++;
int x = 8;
for (;;) {
byte color = *src++;
if (color < numcolors) {
*dst = _roomPalette[local_palette[color]];
NEXT_ROW;
} else {
uint run = color - numcolors + 1;
color = *src++;
do {
*dst = _roomPalette[color];
NEXT_ROW;
} while (--run);
}
}
}
void Gdi::unkDecode11(byte *dst, int dstPitch, const byte *src, int height) const {
int bits, i;
uint buffer = 0, mask = 128;
byte inc = 1, color = *src++;
int x = 8;
do {
int h = height;
do {
*dst = _roomPalette[color];
dst += dstPitch;
for (i = 0; i < 3; i++) {
READ_BIT_256;
if (!bits)
break;
}
switch (i) {
case 1:
inc = -inc;
color -= inc;
break;
case 2:
color -= inc;
break;
case 3:
inc = 1;
READ_N_BITS(8, color);
break;
}
} while (--h);
dst -= _vertStripNextInc;
} while (--x);
}
#undef NEXT_ROW
#undef READ_BIT_256
#pragma mark -
#pragma mark --- Transition effects ---
#pragma mark -
void ScummEngine::fadeIn(int effect) {
updatePalette();
switch (effect) {
case 0:
// seems to do nothing
break;
case 1:
case 2:
case 3:
case 4:
case 5:
// Some of the transition effects won't work properly unless
// the screen is marked as clean first. At first I thought I
// could safely do this every time fadeIn() was called, but
// that broke the FOA intro. Probably other things as well.
//
// Hopefully it's safe to do it at this point, at least.
virtscr[0].setDirtyRange(0, 0);
transitionEffect(effect - 1);
break;
case 128:
unkScreenEffect6();
break;
case 129:
break;
case 130:
case 131:
case 132:
case 133:
scrollEffect(133 - effect);
break;
case 134:
dissolveEffect(1, 1);
break;
case 135:
unkScreenEffect5(1);
break;
default:
warning("Unknown screen effect, %d", effect);
}
_screenEffectFlag = true;
}
void ScummEngine::fadeOut(int effect) {
VirtScreen *vs = &virtscr[0];
vs->setDirtyRange(0, 0);
if (!(_features & GF_NEW_CAMERA))
camera._last.x = camera._cur.x;
if (_switchRoomEffect >= 130 && _switchRoomEffect <= 133) {
// We're going to use scrollEffect(), so we'll need a copy of
// the current VirtScreen zero.
free(_scrollBuffer);
_scrollBuffer = (byte *) malloc(vs->h * vs->pitch);
memcpy(_scrollBuffer, vs->getPixels(0, 0), vs->h * vs->pitch);
}
if (_screenEffectFlag && effect != 0) {
// Fill screen 0 with black
memset(vs->getPixels(0, 0), 0, vs->pitch * vs->h);
// Fade to black with the specified effect, if any.
switch (effect) {
case 1:
case 2:
case 3:
case 4:
case 5:
transitionEffect(effect - 1);
break;
case 128:
unkScreenEffect6();
break;
case 129:
// Just blit screen 0 to the display (i.e. display will be black)
vs->setDirtyRange(0, vs->h);
updateDirtyScreen(kMainVirtScreen);
break;
case 134:
dissolveEffect(1, 1);
break;
case 135:
unkScreenEffect5(1);
break;
default:
warning("fadeOut: default case %d", effect);
}
}
// Update the palette at the end (once we faded to black) to avoid
// some nasty effects when the palette is changed
updatePalette();
_screenEffectFlag = false;
}
/**
* Perform a transition effect. There are four different effects possible:
* 0: Iris effect
* 1: Box wipe (a black box expands from the upper-left corner to the lower-right corner)
* 2: Box wipe (a black box expands from the lower-right corner to the upper-left corner)
* 3: Inverse box wipe
* All effects operate on 8x8 blocks of the screen. These blocks are updated
* in a certain order; the exact order determines how the effect appears to the user.
* @param a the transition effect to perform
*/
void ScummEngine::transitionEffect(int a) {
int delta[16]; // Offset applied during each iteration
int tab_2[16];
int i, j;
int bottom;
int l, t, r, b;
const int height = MIN((int)virtscr[0].h, _screenHeight);
for (i = 0; i < 16; i++) {
delta[i] = transitionEffects[a].deltaTable[i];
j = transitionEffects[a].stripTable[i];
if (j == 24)
j = height / 8 - 1;
tab_2[i] = j;
}
bottom = height / 8;
for (j = 0; j < transitionEffects[a].numOfIterations; j++) {
for (i = 0; i < 4; i++) {
l = tab_2[i * 4];
t = tab_2[i * 4 + 1];
r = tab_2[i * 4 + 2];
b = tab_2[i * 4 + 3];
if (t == b) {
while (l <= r) {
if (l >= 0 && l < gdi._numStrips && t < bottom) {
virtscr[0].tdirty[l] = _screenTop + t * 8;
virtscr[0].bdirty[l] = _screenTop + (b + 1) * 8;
}
l++;
}
} else {
if (l < 0 || l >= gdi._numStrips || b <= t)
continue;
if (b > bottom)
b = bottom;
if (t < 0)
t = 0;
virtscr[0].tdirty[l] = _screenTop + t * 8;
virtscr[0].bdirty[l] = _screenTop + (b + 1) * 8;
}
updateDirtyScreen(kMainVirtScreen);
}
for (i = 0; i < 16; i++)
tab_2[i] += delta[i];
// Draw the current state to the screen and wait half a sec so the user
// can watch the effect taking place.
_system->updateScreen();
waitForTimer(30);
}
}
/**
* Update width*height areas of the screen, in random order, until the whole
* screen has been updated. For instance:
*
* dissolveEffect(1, 1) produces a pixel-by-pixel dissolve
* dissolveEffect(8, 8) produces a square-by-square dissolve
* dissolveEffect(virtsrc[0].width, 1) produces a line-by-line dissolve
*/
void ScummEngine::dissolveEffect(int width, int height) {
#ifdef __PALM_OS__
// Remove this dissolve effect for now on PalmOS since it is a bit
// too slow using 68k emulation
if (width == 1 && height == 1) {
waitForTimer(30);
return;
}
#endif
VirtScreen *vs = &virtscr[0];
int *offsets;
int blits_before_refresh, blits;
int x, y;
int w, h;
int i;
// There's probably some less memory-hungry way of doing this. But
// since we're only dealing with relatively small images, it shouldn't
// be too bad.
w = vs->w / width;
h = vs->h / height;
// When used correctly, vs->width % width and vs->height % height
// should both be zero, but just to be safe...
if (vs->w % width)
w++;
if (vs->h % height)
h++;
offsets = (int *) malloc(w * h * sizeof(int));
if (offsets == NULL) {
warning("dissolveEffect: out of memory");
return;
}
// Create a permutation of offsets into the frame buffer
if (width == 1 && height == 1) {
// Optimized case for pixel-by-pixel dissolve
for (i = 0; i < vs->w * vs->h; i++)
offsets[i] = i;
for (i = 1; i < w * h; i++) {
int j;
j = _rnd.getRandomNumber(i - 1);
offsets[i] = offsets[j];
offsets[j] = i;
}
} else {
int *offsets2;
for (i = 0, x = 0; x < vs->w; x += width)
for (y = 0; y < vs->h; y += height)
offsets[i++] = y * vs->pitch + x;
offsets2 = (int *) malloc(w * h * sizeof(int));
if (offsets2 == NULL) {
warning("dissolveEffect: out of memory");
free(offsets);
return;
}
memcpy(offsets2, offsets, w * h * sizeof(int));
for (i = 1; i < w * h; i++) {
int j;
j = _rnd.getRandomNumber(i - 1);
offsets[i] = offsets[j];
offsets[j] = offsets2[i];
}
free(offsets2);
}
// Blit the image piece by piece to the screen. The idea here is that
// the whole update should take about a quarter of a second, assuming
// most of the time is spent in waitForTimer(). It looks good to me,
// but might still need some tuning.
blits = 0;
blits_before_refresh = (3 * w * h) / 25;
// Speed up the effect for CD Loom since it uses it so often. I don't
// think the original had any delay at all, so on modern hardware it
// wasn't even noticeable.
if (_gameId == GID_LOOM256)
blits_before_refresh *= 2;
for (i = 0; i < w * h; i++) {
x = offsets[i] % vs->pitch;
y = offsets[i] / vs->pitch;
_system->copyRectToScreen(vs->getPixels(x, y), vs->pitch, x, y + vs->topline, width, height);
if (++blits >= blits_before_refresh) {
blits = 0;
_system->updateScreen();
waitForTimer(30);
}
}
free(offsets);
if (blits != 0) {
_system->updateScreen();
waitForTimer(30);
}
}
void ScummEngine::scrollEffect(int dir) {
// It is at least technically possible that this function will be
// called without _scrollBuffer having been set up, but will it ever
// happen? I don't know.
if (!_scrollBuffer)
warning("scrollEffect: No scroll buffer. This may look bad");
VirtScreen *vs = &virtscr[0];
int x, y;
int step;
if ((dir == 0) || (dir == 1))
step = vs->h;
else
step = vs->w;
step = (step * kPictureDelay) / kScrolltime;
switch (dir) {
case 0:
//up
y = step;
while (y < vs->h) {
_system->copyRectToScreen(vs->getPixels(0, 0),
vs->pitch,
0, vs->h - y,
vs->w, y);
if (_scrollBuffer)
_system->copyRectToScreen(_scrollBuffer + y * vs->w,
vs->pitch,
0, 0,
vs->w, vs->h - y);
_system->updateScreen();
waitForTimer(kPictureDelay);
y += step;
}
break;
case 1:
// down
y = step;
while (y < vs->h) {
_system->copyRectToScreen(vs->getPixels(0, vs->h - y),
vs->pitch,
0, 0,
vs->w, y);
if (_scrollBuffer)
_system->copyRectToScreen(_scrollBuffer,
vs->pitch,
0, y,
vs->w, vs->h - y);
_system->updateScreen();
waitForTimer(kPictureDelay);
y += step;
}
break;
case 2:
// left
x = step;
while (x < vs->w) {
_system->copyRectToScreen(vs->getPixels(0, 0),
vs->pitch,
vs->w - x, 0,
x, vs->h);
if (_scrollBuffer)
_system->copyRectToScreen(_scrollBuffer + x,
vs->pitch,
0, 0,
vs->w - x, vs->h);
_system->updateScreen();
waitForTimer(kPictureDelay);
x += step;
}
break;
case 3:
// right
x = step;
while (x < vs->w) {
_system->copyRectToScreen(vs->getPixels(vs->w - x, 0),
vs->pitch,
0, 0,
x, vs->h);
if (_scrollBuffer)
_system->copyRectToScreen(_scrollBuffer,
vs->pitch,
x, 0,
vs->w - x, vs->h);
_system->updateScreen();
waitForTimer(kPictureDelay);
x += step;
}
break;
}
free(_scrollBuffer);
_scrollBuffer = NULL;
}
void ScummEngine::unkScreenEffect6() {
// CD Loom (but not EGA Loom!) uses a more fine-grained dissolve
if (_gameId == GID_LOOM256)
dissolveEffect(1, 1);
else
dissolveEffect(8, 4);
}
void ScummEngine::unkScreenEffect5(int a) {
// unkScreenEffect5(0), which is used by FOA during the opening
// cutscene when Indy opens the small statue, has been replaced by
// dissolveEffect(1, 1).
//
// I still don't know what unkScreenEffect5(1) is supposed to do.
// FIXME: not implemented
warning("stub unkScreenEffect(%d)", a);
}
} // End of namespace Scumm
#ifdef __PALM_OS__
#include "scumm_globals.h"
_GINIT(Gfx)
_GSETPTR(Scumm::transitionEffects, GBVARS_TRANSITIONEFFECTS_INDEX, Scumm::TransitionEffect, GBVARS_SCUMM)
_GEND
_GRELEASE(Gfx)
_GRELEASEPTR(GBVARS_TRANSITIONEFFECTS_INDEX, GBVARS_SCUMM)
_GEND
#endif