scummvm/engines/sword1/sound.cpp
Johannes Schickel 928cb5ab11 SWORD1: Made code conform a bit better to our formatting guidelines.
Most is automatically converted via astyle + some manual fixes, hopefully I
did not miss anything astyle messed up...
2011-09-07 23:54:34 +02:00

657 lines
20 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "common/endian.h"
#include "common/util.h"
#include "common/memstream.h"
#include "common/textconsole.h"
#include "sword1/sound.h"
#include "sword1/resman.h"
#include "sword1/logic.h"
#include "sword1/sword1.h"
#include "audio/audiostream.h"
#include "audio/decoders/flac.h"
#include "audio/decoders/mp3.h"
#include "audio/decoders/raw.h"
#include "audio/decoders/vorbis.h"
#include "audio/decoders/wave.h"
#include "audio/decoders/xa.h"
namespace Sword1 {
#define SOUND_SPEECH_ID 1
#define SPEECH_FLAGS (Audio::FLAG_16BITS | Audio::FLAG_LITTLE_ENDIAN)
Sound::Sound(const char *searchPath, Audio::Mixer *mixer, ResMan *pResMan)
: _rnd("sword1sound") {
strcpy(_filePath, searchPath);
_mixer = mixer;
_resMan = pResMan;
_bigEndianSpeech = false;
_cowHeader = NULL;
_endOfQueue = 0;
_currentCowFile = 0;
_speechVolL = _speechVolR = _sfxVolL = _sfxVolR = 192;
}
Sound::~Sound() {
// clean up fx queue
_mixer->stopAll();
for (uint8 cnt = 0; cnt < _endOfQueue; cnt++)
if (_fxQueue[cnt].delay == 0)
_resMan->resClose(_fxList[_fxQueue[cnt].id].sampleId);
_endOfQueue = 0;
closeCowSystem();
}
void Sound::checkSpeechFileEndianness() {
// Some mac versions (not all of them) use big endian wav, although
// the wav header doesn't indicate it.
// Use heuristic to determine endianness of speech.
// The heuristic consist in computing the sum of the absolute difference for
// every two consecutive samples. This is done both with a big endian and a
// little endian assumption. The one with the smallest sum should be the
// correct one (the sound wave is supposed to be relatively smooth).
// It needs at least 1000 samples to get stable result (the code below is
// using the first 2000 samples of the wav sound).
// Init speech file if not already done.
if (!_currentCowFile) {
// Open one of the speech files. It uses SwordEngine::_systemVars.currentCD
// to decide which file to open, therefore if it is currently set to zero
// we have to set it to either 1 or 2 (I decided to set it to 1 as this is
// more likely to be the first file that will be needed).
bool no_current_cd = false;
if (SwordEngine::_systemVars.currentCD == 0) {
SwordEngine::_systemVars.currentCD = 1;
no_current_cd = true;
}
initCowSystem();
if (no_current_cd) {
// In case it fails with CD1 retry with CD2
if (!_currentCowFile) {
SwordEngine::_systemVars.currentCD = 2;
initCowSystem();
}
// Reset currentCD flag
SwordEngine::_systemVars.currentCD = 0;
}
}
// Testing for endianness makes sense only if using the uncompressed files.
if (_cowHeader == NULL || (_cowMode != CowWave && _cowMode != CowDemo))
return;
// I picked the sample to use randomly (I just made sure it is long enough so that there is
// a fair change of the heuristic to have a stable result and work for every language).
int roomNo = _currentCowFile == 1 ? 1 : 129;
int localNo = _currentCowFile == 1 ? 2 : 933;
// Get the speech data and apply the heuristic
uint32 locIndex = _cowHeader[roomNo] >> 2;
uint32 sampleSize = _cowHeader[locIndex + (localNo * 2)];
uint32 index = _cowHeader[locIndex + (localNo * 2) - 1];
if (sampleSize) {
uint32 size;
double be_diff_sum = 0., le_diff_sum = 0.;
_bigEndianSpeech = false;
int16 *data = uncompressSpeech(index + _cowHeaderSize, sampleSize, &size);
// Compute average of difference between two consecutive samples for both BE and LE
if (data) {
if (size > 4000)
size = 2000;
else
size /= 2;
int16 prev_be_value = (int16)SWAP_BYTES_16(*((uint16 *)(data)));
for (uint32 i = 1; i < size; ++i) {
le_diff_sum += fabs((double)(data[i] - data[i - 1]));
int16 be_value = (int16)SWAP_BYTES_16(*((uint16 *)(data + i)));
be_diff_sum += fabs((double)(be_value - prev_be_value));
prev_be_value = be_value;
}
delete [] data;
}
// Set the big endian flag
_bigEndianSpeech = (be_diff_sum < le_diff_sum);
if (_bigEndianSpeech)
debug(6, "Mac version: using big endian speech file");
else
debug(6, "Mac version: using little endian speech file");
debug(8, "Speech endianness heuristic: average = %f for BE and %f for LE, computed on %d samples)", be_diff_sum / (size - 1), le_diff_sum / (size - 1), size);
}
}
int Sound::addToQueue(int32 fxNo) {
bool alreadyInQueue = false;
for (uint8 cnt = 0; (cnt < _endOfQueue) && (!alreadyInQueue); cnt++)
if (_fxQueue[cnt].id == (uint32)fxNo)
alreadyInQueue = true;
if (!alreadyInQueue) {
if (_endOfQueue == MAX_FXQ_LENGTH) {
warning("Sound queue overflow");
return 0;
}
_resMan->resOpen(_fxList[fxNo].sampleId);
_fxQueue[_endOfQueue].id = fxNo;
if (_fxList[fxNo].type == FX_SPOT)
_fxQueue[_endOfQueue].delay = _fxList[fxNo].delay + 1;
else
_fxQueue[_endOfQueue].delay = 1;
_endOfQueue++;
return 1;
}
return 0;
}
void Sound::engine() {
// first of all, add any random sfx to the queue...
for (uint16 cnt = 0; cnt < TOTAL_FX_PER_ROOM; cnt++) {
uint16 fxNo = _roomsFixedFx[Logic::_scriptVars[SCREEN]][cnt];
if (fxNo) {
if (_fxList[fxNo].type == FX_RANDOM) {
if (_rnd.getRandomNumber(_fxList[fxNo].delay) == 0)
addToQueue(fxNo);
}
} else
break;
}
// now process the queue
for (uint8 cnt2 = 0; cnt2 < _endOfQueue; cnt2++) {
if (_fxQueue[cnt2].delay > 0) {
_fxQueue[cnt2].delay--;
if (_fxQueue[cnt2].delay == 0)
playSample(&_fxQueue[cnt2]);
} else {
if (!_mixer->isSoundHandleActive(_fxQueue[cnt2].handle)) { // sound finished
_resMan->resClose(_fxList[_fxQueue[cnt2].id].sampleId);
if (cnt2 != _endOfQueue - 1)
_fxQueue[cnt2] = _fxQueue[_endOfQueue - 1];
_endOfQueue--;
}
}
}
}
void Sound::fnStopFx(int32 fxNo) {
_mixer->stopID(fxNo);
for (uint8 cnt = 0; cnt < _endOfQueue; cnt++)
if (_fxQueue[cnt].id == (uint32)fxNo) {
if (!_fxQueue[cnt].delay) // sound was started
_resMan->resClose(_fxList[_fxQueue[cnt].id].sampleId);
if (cnt != _endOfQueue - 1)
_fxQueue[cnt] = _fxQueue[_endOfQueue - 1];
_endOfQueue--;
return;
}
debug(8, "fnStopFx: id not found in queue");
}
bool Sound::amISpeaking() {
_waveVolPos++;
return _waveVolume[_waveVolPos - 1];
}
bool Sound::speechFinished() {
return !_mixer->isSoundHandleActive(_speechHandle);
}
void Sound::newScreen(uint32 screen) {
if (_currentCowFile != SwordEngine::_systemVars.currentCD) {
if (_cowFile.isOpen())
closeCowSystem();
initCowSystem();
}
// Start the room's looping sounds.
for (uint16 cnt = 0; cnt < TOTAL_FX_PER_ROOM; cnt++) {
uint16 fxNo = _roomsFixedFx[screen][cnt];
if (fxNo) {
if (_fxList[fxNo].type == FX_LOOP)
addToQueue(fxNo);
} else
break;
}
}
void Sound::quitScreen() {
// stop all running SFX
while (_endOfQueue)
fnStopFx(_fxQueue[0].id);
}
void Sound::playSample(QueueElement *elem) {
uint8 *sampleData = (uint8 *)_resMan->fetchRes(_fxList[elem->id].sampleId);
for (uint16 cnt = 0; cnt < MAX_ROOMS_PER_FX; cnt++) {
if (_fxList[elem->id].roomVolList[cnt].roomNo) {
if ((_fxList[elem->id].roomVolList[cnt].roomNo == (int)Logic::_scriptVars[SCREEN]) ||
(_fxList[elem->id].roomVolList[cnt].roomNo == -1)) {
uint8 volL = (_fxList[elem->id].roomVolList[cnt].leftVol * 10 * _sfxVolL) / 255;
uint8 volR = (_fxList[elem->id].roomVolList[cnt].rightVol * 10 * _sfxVolR) / 255;
int8 pan = (volR - volL) / 2;
uint8 volume = (volR + volL) / 2;
if (SwordEngine::isPsx()) {
// We ignore FX_LOOP as XA has its own looping mechanism
uint32 size = READ_LE_UINT32(sampleData);
Audio::AudioStream *audStream = Audio::makeXAStream(new Common::MemoryReadStream(sampleData + 4, size - 4), 11025);
_mixer->playStream(Audio::Mixer::kSFXSoundType, &elem->handle, audStream, elem->id, volume, pan);
} else {
uint32 size = READ_LE_UINT32(sampleData + 0x28);
uint8 flags;
if (READ_LE_UINT16(sampleData + 0x22) == 16)
flags = Audio::FLAG_16BITS | Audio::FLAG_LITTLE_ENDIAN;
else
flags = Audio::FLAG_UNSIGNED;
if (READ_LE_UINT16(sampleData + 0x16) == 2)
flags |= Audio::FLAG_STEREO;
Audio::AudioStream *stream = Audio::makeLoopingAudioStream(
Audio::makeRawStream(sampleData + 0x2C, size, 11025, flags, DisposeAfterUse::NO),
(_fxList[elem->id].type == FX_LOOP) ? 0 : 1);
_mixer->playStream(Audio::Mixer::kSFXSoundType, &elem->handle, stream, elem->id, volume, pan);
}
}
} else
break;
}
}
bool Sound::startSpeech(uint16 roomNo, uint16 localNo) {
if (_cowHeader == NULL) {
warning("Sound::startSpeech: COW file isn't open");
return false;
}
uint32 locIndex = 0xFFFFFFFF;
uint32 sampleSize = 0;
uint32 index = 0;
if (_cowMode == CowPSX) {
Common::File file;
uint16 i;
if (!file.open("speech.lis")) {
warning("Could not open speech.lis");
return false;
}
for (i = 0; !file.eos() && !file.err(); i++)
if (file.readUint16LE() == roomNo) {
locIndex = i;
break;
}
file.close();
if (locIndex == 0xFFFFFFFF) {
warning("Could not find room %d in speech.lis", roomNo);
return false;
}
if (!file.open("speech.inf")) {
warning("Could not open speech.inf");
return false;
}
uint16 numRooms = file.readUint16LE(); // Read number of rooms referenced in this file
file.seek(locIndex * 4 + 2); // 4 bytes per room, skip first 2 bytes
uint16 numLines = file.readUint16LE();
uint16 roomOffset = file.readUint16LE();
file.seek(2 + numRooms * 4 + roomOffset * 2); // The offset is in terms of uint16's, so multiply by 2. Skip the room indexes too.
locIndex = 0xFFFFFFFF;
for (i = 0; i < numLines; i++)
if (file.readUint16LE() == localNo) {
locIndex = i;
break;
}
if (locIndex == 0xFFFFFFFF) {
warning("Could not find local number %d in room %d in speech.inf", roomNo, localNo);
return false;
}
file.close();
index = _cowHeader[(roomOffset + locIndex) * 2];
sampleSize = _cowHeader[(roomOffset + locIndex) * 2 + 1];
} else {
locIndex = _cowHeader[roomNo] >> 2;
sampleSize = _cowHeader[locIndex + (localNo * 2)];
index = _cowHeader[locIndex + (localNo * 2) - 1];
}
debug(6, "startSpeech(%d, %d): locIndex %d, sampleSize %d, index %d", roomNo, localNo, locIndex, sampleSize, index);
Audio::AudioStream *stream = 0;
if (sampleSize) {
uint8 speechVol = (_speechVolR + _speechVolL) / 2;
int8 speechPan = (_speechVolR - _speechVolL) / 2;
if ((_cowMode == CowWave) || (_cowMode == CowDemo)) {
uint32 size;
int16 *data = uncompressSpeech(index + _cowHeaderSize, sampleSize, &size);
if (data) {
stream = Audio::makeRawStream((byte *)data, size, 11025, SPEECH_FLAGS);
_mixer->playStream(Audio::Mixer::kSpeechSoundType, &_speechHandle, stream, SOUND_SPEECH_ID, speechVol, speechPan);
}
} else if (_cowMode == CowPSX && sampleSize != 0xffffffff) {
_cowFile.seek(index * 2048);
Common::SeekableReadStream *tmp = _cowFile.readStream(sampleSize);
assert(tmp);
stream = Audio::makeXAStream(tmp, 11025);
_mixer->playStream(Audio::Mixer::kSpeechSoundType, &_speechHandle, stream, SOUND_SPEECH_ID, speechVol, speechPan);
// with compressed audio, we can't calculate the wave volume.
// so default to talking.
for (int cnt = 0; cnt < 480; cnt++)
_waveVolume[cnt] = true;
_waveVolPos = 0;
}
#ifdef USE_FLAC
else if (_cowMode == CowFLAC) {
_cowFile.seek(index);
Common::SeekableReadStream *tmp = _cowFile.readStream(sampleSize);
assert(tmp);
stream = Audio::makeFLACStream(tmp, DisposeAfterUse::YES);
_mixer->playStream(Audio::Mixer::kSpeechSoundType, &_speechHandle, stream, SOUND_SPEECH_ID, speechVol, speechPan);
// with compressed audio, we can't calculate the wave volume.
// so default to talking.
for (int cnt = 0; cnt < 480; cnt++)
_waveVolume[cnt] = true;
_waveVolPos = 0;
}
#endif
#ifdef USE_VORBIS
else if (_cowMode == CowVorbis) {
_cowFile.seek(index);
Common::SeekableReadStream *tmp = _cowFile.readStream(sampleSize);
assert(tmp);
stream = Audio::makeVorbisStream(tmp, DisposeAfterUse::YES);
_mixer->playStream(Audio::Mixer::kSpeechSoundType, &_speechHandle, stream, SOUND_SPEECH_ID, speechVol, speechPan);
// with compressed audio, we can't calculate the wave volume.
// so default to talking.
for (int cnt = 0; cnt < 480; cnt++)
_waveVolume[cnt] = true;
_waveVolPos = 0;
}
#endif
#ifdef USE_MAD
else if (_cowMode == CowMP3) {
_cowFile.seek(index);
Common::SeekableReadStream *tmp = _cowFile.readStream(sampleSize);
assert(tmp);
stream = Audio::makeMP3Stream(tmp, DisposeAfterUse::YES);
_mixer->playStream(Audio::Mixer::kSpeechSoundType, &_speechHandle, stream, SOUND_SPEECH_ID, speechVol, speechPan);
// with compressed audio, we can't calculate the wave volume.
// so default to talking.
for (int cnt = 0; cnt < 480; cnt++)
_waveVolume[cnt] = true;
_waveVolPos = 0;
}
#endif
return true;
} else
return false;
}
int16 *Sound::uncompressSpeech(uint32 index, uint32 cSize, uint32 *size) {
uint8 *fBuf = (uint8 *)malloc(cSize);
_cowFile.seek(index);
_cowFile.read(fBuf, cSize);
uint32 headerPos = 0;
while ((READ_BE_UINT32(fBuf + headerPos) != 'data') && (headerPos < 100))
headerPos++;
if (headerPos < 100) {
int32 resSize;
int16 *srcData;
uint32 srcPos;
int16 length;
cSize /= 2;
headerPos += 4; // skip 'data' tag
if (_cowMode != CowDemo) {
resSize = READ_LE_UINT32(fBuf + headerPos) >> 1;
headerPos += 4;
} else {
// the demo speech files have the uncompressed size
// embedded in the compressed stream *sigh*
//
// But not always, apparently. See bug #2182450. Is
// there any way to figure out the size other than
// decoding the sound in that case?
if (fBuf[headerPos + 1] == 0) {
if (READ_LE_UINT16(fBuf + headerPos) == 1) {
resSize = READ_LE_UINT16(fBuf + headerPos + 2);
resSize |= READ_LE_UINT16(fBuf + headerPos + 6) << 16;
} else
resSize = READ_LE_UINT32(fBuf + headerPos + 2);
resSize >>= 1;
} else {
resSize = 0;
srcData = (int16 *)fBuf;
srcPos = headerPos >> 1;
while (srcPos < cSize) {
length = (int16)READ_LE_UINT16(srcData + srcPos);
srcPos++;
if (length < 0) {
resSize -= length;
srcPos++;
} else {
resSize += length;
srcPos += length;
}
}
}
}
assert(!(headerPos & 1));
srcData = (int16 *)fBuf;
srcPos = headerPos >> 1;
uint32 dstPos = 0;
int16 *dstData = (int16 *)malloc(resSize * 2);
int32 samplesLeft = resSize;
while (srcPos < cSize && samplesLeft > 0) {
length = (int16)(_bigEndianSpeech ? READ_BE_UINT16(srcData + srcPos) : READ_LE_UINT16(srcData + srcPos));
srcPos++;
if (length < 0) {
length = -length;
if (length > samplesLeft)
length = samplesLeft;
int16 value;
if (_bigEndianSpeech) {
value = (int16)SWAP_BYTES_16(*((uint16 *)(srcData + srcPos)));
} else {
value = srcData[srcPos];
}
for (uint16 cnt = 0; cnt < (uint16)length; cnt++)
dstData[dstPos++] = value;
srcPos++;
} else {
if (length > samplesLeft)
length = samplesLeft;
if (_bigEndianSpeech) {
for (uint16 cnt = 0; cnt < (uint16)length; cnt++)
dstData[dstPos++] = (int16)SWAP_BYTES_16(*((uint16 *)(srcData + (srcPos++))));
} else {
memcpy(dstData + dstPos, srcData + srcPos, length * 2);
dstPos += length;
srcPos += length;
}
}
samplesLeft -= length;
}
if (samplesLeft > 0) {
memset(dstData + dstPos, 0, samplesLeft * 2);
}
if (_cowMode == CowDemo) // demo has wave output size embedded in the compressed data
*(uint32 *)dstData = 0;
free(fBuf);
*size = resSize * 2;
calcWaveVolume(dstData, resSize);
return dstData;
} else {
free(fBuf);
warning("Sound::uncompressSpeech(): DATA tag not found in wave header");
*size = 0;
return NULL;
}
}
void Sound::calcWaveVolume(int16 *data, uint32 length) {
int16 *blkPos = data + 918;
uint32 cnt;
for (cnt = 0; cnt < WAVE_VOL_TAB_LENGTH; cnt++)
_waveVolume[cnt] = false;
_waveVolPos = 0;
for (uint32 blkCnt = 1; blkCnt < length / 918; blkCnt++) {
if (blkCnt >= WAVE_VOL_TAB_LENGTH) {
warning("Wave vol tab too small");
return;
}
int32 average = 0;
for (cnt = 0; cnt < 918; cnt++)
average += blkPos[cnt];
average /= 918;
uint32 diff = 0;
for (cnt = 0; cnt < 918; cnt++) {
int16 smpDiff = *blkPos - average;
diff += (uint32)ABS(smpDiff);
blkPos++;
}
if (diff > WAVE_VOL_THRESHOLD)
_waveVolume[blkCnt - 1] = true;
}
}
void Sound::stopSpeech() {
_mixer->stopID(SOUND_SPEECH_ID);
}
void Sound::initCowSystem() {
if (SwordEngine::_systemVars.currentCD == 0)
return;
char cowName[25];
/* look for speech1/2.clu in the data dir
and speech/speech.clu (running from cd or using cd layout)
*/
#ifdef USE_FLAC
if (!_cowFile.isOpen()) {
sprintf(cowName, "SPEECH%d.CLF", SwordEngine::_systemVars.currentCD);
_cowFile.open(cowName);
if (_cowFile.isOpen()) {
debug(1, "Using FLAC compressed Speech Cluster");
_cowMode = CowFLAC;
}
}
#endif
#ifdef USE_VORBIS
if (!_cowFile.isOpen()) {
sprintf(cowName, "SPEECH%d.CLV", SwordEngine::_systemVars.currentCD);
_cowFile.open(cowName);
if (_cowFile.isOpen()) {
debug(1, "Using Vorbis compressed Speech Cluster");
_cowMode = CowVorbis;
}
}
#endif
#ifdef USE_MAD
if (!_cowFile.isOpen()) {
sprintf(cowName, "SPEECH%d.CL3", SwordEngine::_systemVars.currentCD);
_cowFile.open(cowName);
if (_cowFile.isOpen()) {
debug(1, "Using MP3 compressed Speech Cluster");
_cowMode = CowMP3;
}
}
#endif
if (!_cowFile.isOpen()) {
sprintf(cowName, "SPEECH%d.CLU", SwordEngine::_systemVars.currentCD);
_cowFile.open(cowName);
if (!_cowFile.isOpen()) {
_cowFile.open("speech.clu");
}
debug(1, "Using uncompressed Speech Cluster");
_cowMode = CowWave;
}
if (SwordEngine::isPsx()) {
// There's only one file on the PSX, so set it to the current disc.
_currentCowFile = SwordEngine::_systemVars.currentCD;
if (!_cowFile.isOpen()) {
if (!_cowFile.open("speech.dat"))
error("Could not open speech.dat");
_cowMode = CowPSX;
}
}
if (!_cowFile.isOpen())
_cowFile.open("speech.clu");
if (!_cowFile.isOpen()) {
_cowFile.open("cows.mad");
if (_cowFile.isOpen())
_cowMode = CowDemo;
}
if (_cowFile.isOpen()) {
if (SwordEngine::isPsx()) {
// Get data from the external table file
Common::File tableFile;
if (!tableFile.open("speech.tab"))
error("Could not open speech.tab");
_cowHeaderSize = tableFile.size();
_cowHeader = (uint32 *)malloc(_cowHeaderSize);
if (_cowHeaderSize & 3)
error("Unexpected cow header size %d", _cowHeaderSize);
for (uint32 cnt = 0; cnt < _cowHeaderSize / 4; cnt++)
_cowHeader[cnt] = tableFile.readUint32LE();
} else {
_cowHeaderSize = _cowFile.readUint32LE();
_cowHeader = (uint32 *)malloc(_cowHeaderSize);
if (_cowHeaderSize & 3)
error("Unexpected cow header size %d", _cowHeaderSize);
for (uint32 cnt = 0; cnt < (_cowHeaderSize / 4) - 1; cnt++)
_cowHeader[cnt] = _cowFile.readUint32LE();
_currentCowFile = SwordEngine::_systemVars.currentCD;
}
} else
warning("Sound::initCowSystem: Can't open SPEECH%d.CLU", SwordEngine::_systemVars.currentCD);
}
void Sound::closeCowSystem() {
_cowFile.close();
free(_cowHeader);
_cowHeader = NULL;
_currentCowFile = 0;
}
} // End of namespace Sword1