scummvm/graphics/tinygl/light.cpp
Hubert Maier 535f93cba4
GRAPHICS: Correct spelling mistake
lightening -> lightning
2022-10-27 15:56:06 +02:00

319 lines
7.8 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/*
* This file is based on, or a modified version of code from TinyGL (C) 1997-2022 Fabrice Bellard,
* which is licensed under the MIT license (see LICENSE).
* It also has modifications by the ResidualVM-team, which are covered under the GPLv2 (or later).
*/
#include "graphics/tinygl/zgl.h"
namespace TinyGL {
void GLContext::glopMaterial(GLParam *p) {
int mode = p[1].i;
int type = p[2].i;
Vector4 v(p[3].f, p[4].f, p[5].f, p[6].f);
GLMaterial *m;
if (mode == TGL_FRONT_AND_BACK) {
p[1].i = TGL_FRONT;
glopMaterial(p);
mode = TGL_BACK;
}
if (mode == TGL_FRONT)
m = &materials[0];
else
m = &materials[1];
switch (type) {
case TGL_EMISSION:
m->emission = v;
break;
case TGL_AMBIENT:
m->ambient = v;
break;
case TGL_DIFFUSE:
m->diffuse = v;
break;
case TGL_SPECULAR:
m->specular = v;
m->has_specular = v.X != 0 || v.Y != 0 || v.Z != 0 || v.W != 1;
break;
case TGL_SHININESS:
m->shininess = v.X;
m->shininess_i = (int)(v.X / 128.0f) * SPECULAR_BUFFER_RESOLUTION;
break;
case TGL_AMBIENT_AND_DIFFUSE:
m->diffuse = v;
m->ambient = v;
break;
default:
assert(0);
}
}
void GLContext::glopColorMaterial(GLParam *p) {
int mode = p[1].i;
int type = p[2].i;
current_color_material_mode = mode;
current_color_material_type = type;
}
void GLContext::glopLight(GLParam *p) {
int light = p[1].i;
int type = p[2].i;
Vector4 v(p[3].f, p[4].f, p[5].f, p[6].f);
GLLight *l;
assert(light >= TGL_LIGHT0 && light < TGL_LIGHT0 + T_MAX_LIGHTS);
l = &lights[light - TGL_LIGHT0];
switch (type) {
case TGL_AMBIENT:
l->ambient = v;
break;
case TGL_DIFFUSE:
l->diffuse = v;
break;
case TGL_SPECULAR:
l->specular = v;
l->has_specular = v.X != 0 || v.Y != 0 || v.Z != 0 || v.W != 1;
break;
case TGL_POSITION: {
Vector4 pos;
matrix_stack_ptr[0]->transform(v, pos);
l->position = pos;
if (l->position.W == 0) {
l->norm_position.X = pos.X;
l->norm_position.Y = pos.Y;
l->norm_position.Z = pos.Z;
l->norm_position.normalize();
}
}
break;
case TGL_SPOT_DIRECTION:
l->spot_direction.X = v.X;
l->spot_direction.Y = v.Y;
l->spot_direction.Z = v.Z;
matrix_stack_ptr[0]->transform3x3(l->spot_direction, l->norm_spot_direction);
l->norm_spot_direction.normalize();
break;
case TGL_SPOT_EXPONENT:
l->spot_exponent = v.X;
break;
case TGL_SPOT_CUTOFF: {
float a = v.X;
assert(a == 180 || (a >= 0 && a <= 90));
l->spot_cutoff = a;
if (a != 180)
l->cos_spot_cutoff = (float)(cos(a * (float)M_PI / 180.0));
}
break;
case TGL_CONSTANT_ATTENUATION:
l->attenuation[0] = v.X;
break;
case TGL_LINEAR_ATTENUATION:
l->attenuation[1] = v.X;
break;
case TGL_QUADRATIC_ATTENUATION:
l->attenuation[2] = v.X;
break;
default:
assert(0);
}
}
void GLContext::glopLightModel(GLParam *p) {
int pname = p[1].i;
switch (pname) {
case TGL_LIGHT_MODEL_AMBIENT:
ambient_light_model = Vector4(p[2].f, p[3].f, p[4].f, p[5].f);
break;
case TGL_LIGHT_MODEL_LOCAL_VIEWER:
local_light_model = (int)p[2].f;
break;
case TGL_LIGHT_MODEL_TWO_SIDE:
light_model_two_side = (int)p[2].f;
break;
default:
warning("glopLightModel: illegal pname: 0x%x", pname);
break;
}
}
void GLContext::gl_enable_disable_light(int light, int v) {
GLLight *l = &lights[light];
if (v && !l->enabled) {
l->enabled = 1;
if (first_light != l) {
l->next = first_light;
if (first_light)
first_light->prev = l;
first_light = l;
l->prev = nullptr;
}
} else if (!v && l->enabled) {
l->enabled = 0;
if (!l->prev)
first_light = l->next;
else
l->prev->next = l->next;
if (l->next)
l->next->prev = l->prev;
}
}
// non optimized lightning model
void GLContext::gl_shade_vertex(GLVertex *v) {
float R, G, B, A;
GLMaterial *m;
GLLight *l;
Vector3 n, s, d;
float dist, tmp, att, dot, dot_spot, dot_spec;
int twoside = light_model_two_side;
m = &materials[0];
n = v->normal;
R = m->emission.X + m->ambient.X * ambient_light_model.X;
G = m->emission.Y + m->ambient.Y * ambient_light_model.Y;
B = m->emission.Z + m->ambient.Z * ambient_light_model.Z;
A = clampf(m->diffuse.W, 0, 1);
for (l = first_light; l != nullptr; l = l->next) {
float lR, lB, lG;
// ambient
lR = l->ambient.X * m->ambient.X;
lG = l->ambient.Y * m->ambient.Y;
lB = l->ambient.Z * m->ambient.Z;
if (l->position.W == 0) {
// light at infinity
d.X = l->norm_position.X;
d.Y = l->norm_position.Y;
d.Z = l->norm_position.Z;
dist = 1;
att = 1;
} else {
// distance attenuation
d.X = l->position.X - v->ec.X;
d.Y = l->position.Y - v->ec.Y;
d.Z = l->position.Z - v->ec.Z;
dist = sqrt(d.X * d.X + d.Y * d.Y + d.Z * d.Z);
att = 1.0f / (l->attenuation[0] +
dist * (l->attenuation[1] +
dist * l->attenuation[2]));
}
dot = d.X * n.X + d.Y * n.Y + d.Z * n.Z;
if (twoside && dot < 0)
dot = -dot;
if (dot > 0) {
tmp = 1 / dist;
d *= tmp;
dot *= tmp;
// diffuse light
lR += dot * l->diffuse.X * m->diffuse.X;
lG += dot * l->diffuse.Y * m->diffuse.Y;
lB += dot * l->diffuse.Z * m->diffuse.Z;
const bool is_spotlight = l->spot_cutoff != 180;
const bool has_specular = l->has_specular && m->has_specular;
if (is_spotlight || has_specular) {
if (is_spotlight) {
dot_spot = -(d.X * l->norm_spot_direction.X +
d.Y * l->norm_spot_direction.Y +
d.Z * l->norm_spot_direction.Z);
if (twoside && dot_spot < 0)
dot_spot = -dot_spot;
if (dot_spot < l->cos_spot_cutoff) {
// no contribution
continue;
} else {
// TODO: optimize
if (l->spot_exponent > 0) {
att = att * pow(dot_spot, l->spot_exponent);
}
}
}
if (has_specular) {
if (local_light_model) {
Vector3 vcoord;
vcoord.X = v->ec.X;
vcoord.Y = v->ec.Y;
vcoord.Z = v->ec.Z;
vcoord.normalize();
s.X = d.X - vcoord.X;
s.Y = d.Y - vcoord.Y;
s.Z = d.Z - vcoord.Z;
} else {
s.X = d.X;
s.Y = d.Y;
s.Z = (float)(d.Z + 1.0);
}
dot_spec = n.X * s.X + n.Y * s.Y + n.Z * s.Z;
if (twoside && dot_spec < 0)
dot_spec = -dot_spec;
if (dot_spec > 0) {
GLSpecBuf *specbuf;
int idx;
dot_spec = dot_spec / sqrt(s.X * s.X + s.Y * s.Y + s.Z * s.Z);
// TODO: optimize
// testing specular buffer code
// dot_spec= pow(dot_spec,m->shininess)
specbuf = specbuf_get_buffer(m->shininess_i, m->shininess);
tmp = dot_spec * SPECULAR_BUFFER_SIZE;
if (tmp > SPECULAR_BUFFER_SIZE)
idx = SPECULAR_BUFFER_SIZE;
else
idx = (int)tmp;
dot_spec = specbuf->buf[idx];
lR += dot_spec * l->specular.X * m->specular.X;
lG += dot_spec * l->specular.Y * m->specular.Y;
lB += dot_spec * l->specular.Z * m->specular.Z;
}
}
}
}
R += att * lR;
G += att * lG;
B += att * lB;
}
v->color.X = clampf(current_color.X * R, 0, 1);
v->color.Y = clampf(current_color.Y * G, 0, 1);
v->color.Z = clampf(current_color.Z * B, 0, 1);
v->color.W = current_color.W * A;
}
} // end of namespace TinyGL