scummvm/engines/supernova/resman.cpp
2019-07-28 15:09:14 +01:00

566 lines
17 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "audio/audiostream.h"
#include "audio/decoders/raw.h"
#include "audio/mixer.h"
#include "audio/mods/protracker.h"
#include "common/memstream.h"
#include "common/system.h"
#include "graphics/cursorman.h"
#include "graphics/palette.h"
#include "supernova/graphics.h"
#include "supernova/resman.h"
#include "supernova/screen.h"
#include "supernova/supernova.h"
namespace Supernova {
struct AudioInfo {
int _filenumber;
int _offsetStart;
int _offsetEnd;
};
static Common::MemoryReadStream *convertToMod(const char *filename, int version = 1);
static const AudioInfo audioInfo1[] = {
{44, 0, -1},
{45, 0, -1},
{46, 0, 2510},
{46, 2510, 4020},
{46, 4020, -1},
{47, 0, 24010},
{47, 24010, -1},
{48, 0, 2510},
{48, 2510, 10520},
{48, 10520, 13530},
{48, 13530, -1},
{50, 0, 12786},
{50, 12786, -1},
{51, 0, -1},
{53, 0, -1},
{54, 0, 8010},
{54, 8010, 24020},
{54, 24020, 30030},
{54, 30030, 31040},
{54, 31040, -1},
};
static const AudioInfo audioInfo2[] = {
{55, 18230, -1},
{47, 0, 16010},
{47, 16010, 17020},
{49, 8010, -1},
{49, 0, 8010},
{53, 30020, -1},
{55, 7010, 17020},
{55, 0, 7010},
{53, 5010, 30020},
{55, 18230, -1},
{55, 17020, 18230},
{53, 0, 5010},
{47, 17020, -1},
{51, 9020, -1},
{51, 0, 6010},
{50, 0, -1},
{51, 6010, 9020},
{54, 0, -1},
{48, 0, -1}
};
static const byte mouseNormal[64] = {
0xff,0x3f,0xff,0x1f,0xff,0x0f,0xff,0x07,
0xff,0x03,0xff,0x01,0xff,0x00,0x7f,0x00,
0x3f,0x00,0x1f,0x00,0x0f,0x00,0x0f,0x00,
0xff,0x00,0x7f,0x18,0x7f,0x38,0x7f,0xfc,
0x00,0x00,0x00,0x40,0x00,0x60,0x00,0x70,
0x00,0x78,0x00,0x7c,0x00,0x7e,0x00,0x7f,
0x80,0x7f,0xc0,0x7f,0xe0,0x7f,0x00,0x7e,
0x00,0x66,0x00,0x43,0x00,0x03,0x00,0x00
};
static const byte mouseWait[64] = {
0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x80,
0x01,0x80,0x01,0x80,0x11,0x88,0x31,0x8c,
0x31,0x8c,0x11,0x88,0x01,0x80,0x01,0x80,
0x01,0x80,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0xfe,0x7f,0xf4,0x2f,0xf4,0x2f,
0x14,0x28,0x24,0x24,0x44,0x22,0x84,0x21,
0x84,0x21,0xc4,0x23,0xe4,0x27,0x74,0x2e,
0x34,0x2c,0x14,0x28,0xfe,0x7f,0x00,0x00
};
ResourceManager::ResourceManager(SupernovaEngine *vm)
: _audioRate(11931)
, _vm(vm) {
if (_vm->_MSPart == 1)
_soundSamples = new Common::ScopedPtr<Audio::SeekableAudioStream>[kAudioNumSamples1];
else if (_vm->_MSPart == 2)
_soundSamples = new Common::ScopedPtr<Audio::SeekableAudioStream>[kAudioNumSamples2];
initGraphics();
}
ResourceManager::~ResourceManager() {
if (_vm->_MSPart == 1) {
for (int i = 0; i < 44; i++)
delete _images[i];
}
if (_vm->_MSPart == 2) {
for (int i = 0; i < 47; i++)
delete _images[i];
}
delete[] _soundSamples;
delete[] _images;
}
void ResourceManager::initGraphics() {
Screen::initPalette();
initCursorGraphics();
if (_vm->_MSPart == 1)
initImages1();
else if (_vm->_MSPart == 2)
initImages2();
}
void ResourceManager::initCursorGraphics() {
const uint16 *bufferNormal = reinterpret_cast<const uint16 *>(mouseNormal);
const uint16 *bufferWait = reinterpret_cast<const uint16 *>(mouseWait);
for (uint i = 0; i < sizeof(mouseNormal) / 4; ++i) {
for (uint bit = 0; bit < 16; ++bit) {
uint mask = 0x8000 >> bit;
uint bitIndex = i * 16 + bit;
_cursorNormal[bitIndex] = (READ_LE_UINT16(bufferNormal + i) & mask) ?
kColorCursorTransparent : kColorBlack;
if (READ_LE_UINT16(bufferNormal + i + 16) & mask)
_cursorNormal[bitIndex] = kColorLightRed;
_cursorWait[bitIndex] = (READ_LE_UINT16(bufferWait + i) & mask) ?
kColorCursorTransparent : kColorBlack;
if (READ_LE_UINT16(bufferWait + i + 16) & mask)
_cursorWait[bitIndex] = kColorLightRed;
}
}
}
void ResourceManager::initImages1() {
_images = new MSNImage *[kNumImageFiles1];
for (int i = 0; i < kNumImageFiles1; ++i) {
_images[i] = nullptr;
}
}
void ResourceManager::initImages2() {
_images = new MSNImage *[kNumImageFiles2];
for (int i = 0; i < kNumImageFiles2; ++i) {
_images[i] = nullptr;
}
}
// Sound
// Note:
// - samples start with a header of 6 bytes: 01 SS SS 00 AD 00
// where SS SS (LE uint16) is the size of the sound sample + 2
// - samples end with a footer of 4 bytes: 00 00
// Skip those in the buffer
void ResourceManager::loadSound1(AudioId id) {
Common::File file;
if (!file.open(Common::String::format("msn_data.%03d", audioInfo1[id]._filenumber))) {
error("File %s could not be read!", file.getName());
}
int length = 0;
byte *buffer = nullptr;
if (audioInfo1[id]._offsetEnd == -1) {
file.seek(0, SEEK_END);
length = file.pos() - audioInfo1[id]._offsetStart - 10;
} else {
length = audioInfo1[id]._offsetEnd - audioInfo1[id]._offsetStart - 10;
}
buffer = new byte[length];
file.seek(audioInfo1[id]._offsetStart + 6);
file.read(buffer, length);
file.close();
byte streamFlag = Audio::FLAG_UNSIGNED | Audio::FLAG_LITTLE_ENDIAN;
_soundSamples[id].reset(Audio::makeRawStream(buffer, length, _audioRate,
streamFlag, DisposeAfterUse::YES));
}
void ResourceManager::loadSound2(AudioId id) {
Common::File file;
if (!file.open(Common::String::format("ms2_data.%03d", audioInfo2[id]._filenumber))) {
error("File %s could not be read!", file.getName());
}
int length = 0;
byte *buffer = nullptr;
if (audioInfo2[id]._offsetEnd == -1) {
file.seek(0, SEEK_END);
length = file.pos() - audioInfo2[id]._offsetStart - 10;
} else {
length = audioInfo2[id]._offsetEnd - audioInfo2[id]._offsetStart - 10;
}
buffer = new byte[length];
file.seek(audioInfo2[id]._offsetStart + 6);
file.read(buffer, length);
file.close();
byte streamFlag = Audio::FLAG_UNSIGNED | Audio::FLAG_LITTLE_ENDIAN;
_soundSamples[id].reset(Audio::makeRawStream(buffer, length, _audioRate,
streamFlag, DisposeAfterUse::YES));
}
void ResourceManager::loadImage(int filenumber) {
if (_vm->_MSPart == 1) {
if (filenumber < 44) {
_images[filenumber] = new MSNImage(_vm);
if (!_images[filenumber]->init(filenumber))
error("Failed reading image file msn_data.%03d", filenumber);
} else {
_images[44] = new MSNImage(_vm);
if (!_images[44]->init(filenumber))
error("Failed reading image file msn_data.%03d", filenumber);
}
} else if (_vm->_MSPart == 2) {
_images[filenumber] = new MSNImage(_vm);
if (!_images[filenumber]->init(filenumber))
error("Failed reading image file ms2_data.%03d", filenumber);
}
}
Audio::SeekableAudioStream *ResourceManager::getSoundStream(AudioId index) {
if (!_soundSamples[index]) {
if (_vm->_MSPart == 1)
loadSound1(index);
else if (_vm->_MSPart == 2)
loadSound2(index);
}
Audio::SeekableAudioStream *stream;
stream = _soundSamples[index].get();
stream->rewind();
return stream;
}
Audio::AudioStream *ResourceManager::getSoundStream(MusicId index) {
switch (index) {
case kMusicIntro:
if (!_musicIntroBuffer) {
if (_vm->_MSPart == 1)
_musicIntroBuffer.reset(convertToMod("msn_data.052", 1));
else if (_vm->_MSPart == 2)
_musicIntroBuffer.reset(convertToMod("ms2_data.052", 2));
}
_musicIntro.reset(Audio::makeProtrackerStream(_musicIntroBuffer.get()));
return _musicIntro.get();
case kMusicMadMonkeys:
// fall through
case kMusicOutro:
if (!_musicOutroBuffer) {
if (_vm->_MSPart == 1)
_musicOutroBuffer.reset(convertToMod("msn_data.049", 1));
else if (_vm->_MSPart == 2)
_musicOutroBuffer.reset(convertToMod("ms2_data.056", 2));
}
_musicOutro.reset(Audio::makeProtrackerStream(_musicOutroBuffer.get()));
return _musicOutro.get();
default:
error("Invalid music constant in playAudio()");
}
}
Audio::AudioStream *ResourceManager::getSirenStream() {
if (!_sirenStream)
initSiren();
return _sirenStream.get();
}
MSNImage *ResourceManager::getImage(int filenumber) {
//check array boundaries
if (_vm->_MSPart == 1 && filenumber > 43 && filenumber != 55)
return nullptr;
if (_vm->_MSPart == 2 && filenumber > 46)
return nullptr;
if (filenumber == 55) {
if (!_images[44])
loadImage(filenumber);
return _images[44];
} else {
if (!_images[filenumber])
loadImage(filenumber);
return _images[filenumber];
}
}
// Generate a tone which minimal length is the length and ends at the end
// of sine period
// NOTE: Size of the SineTable has to be the same as audioRate and a multiple of 4
byte *ResourceManager::generateTone(byte *buffer, int frequency, int length, int audioRate, Common::SineTable &table) {
int i = 0;
// Make sure length is a multiple of audioRate / frequency to end on a full sine wave and not in the middle.
// Also the length we have is a minimum length, so only increase it.
int r = 1 + (length - 1) * frequency / audioRate;
length = (1 + 2 * r * audioRate / frequency) / 2;
for(; i < length; i++) {
buffer[i] = (byte)
((table.at((i * frequency) % audioRate) * 127) + 127);
}
return buffer + length;
}
// Tones with frequencies between 1500 Hz and 1800 Hz, frequencies go up and down
// with a step of 10 Hz.
void ResourceManager::initSiren() {
int audioRate = 44000;
int length = audioRate / 90; // minimal length of each tone
// * 60 for the minimal length, another 20 * length as a spare, for longer tones
byte *buffer = new byte[length * 80];
byte *pBuffer = buffer;
Common::SineTable table(audioRate);
for (int i = 0; i < 30; i++)
pBuffer = generateTone(pBuffer, 1800 - i * 10, length, audioRate, table);
for (int i = 0; i < 30; i++)
pBuffer = generateTone(pBuffer, 1500 + i * 10, length, audioRate, table);
byte streamFlag = Audio::FLAG_UNSIGNED;
_sirenStream.reset(Audio::makeLoopingAudioStream(
Audio::makeRawStream(buffer, pBuffer - buffer, audioRate,
streamFlag, DisposeAfterUse::YES), 0));
}
static Common::MemoryReadStream *convertToMod(const char *filename, int version) {
// MSN format
struct {
uint16 seg;
uint16 start;
uint16 end;
uint16 loopStart;
uint16 loopEnd;
char volume;
char dummy[5];
} instr2[22];
int nbInstr2; // 22 for version1, 15 for version 2
int16 songLength;
char arrangement[128];
int16 patternNumber;
int32 note2[28][64][4];
nbInstr2 = ((version == 1) ? 22 : 15);
Common::File msnFile;
msnFile.open(filename);
if (!msnFile.isOpen()) {
warning("Data file '%s' not found", msnFile.getName());
return nullptr;
}
for (int i = 0 ; i < nbInstr2 ; ++i) {
instr2[i].seg = msnFile.readUint16LE();
instr2[i].start = msnFile.readUint16LE();
instr2[i].end = msnFile.readUint16LE();
instr2[i].loopStart = msnFile.readUint16LE();
instr2[i].loopEnd = msnFile.readUint16LE();
instr2[i].volume = msnFile.readByte();
msnFile.read(instr2[i].dummy, 5);
}
songLength = msnFile.readSint16LE();
msnFile.read(arrangement, 128);
patternNumber = msnFile.readSint16LE();
for (int p = 0 ; p < patternNumber ; ++p) {
for (int n = 0 ; n < 64 ; ++n) {
for (int k = 0 ; k < 4 ; ++k) {
note2[p][n][k] = msnFile.readSint32LE();
}
}
}
/* MOD format */
struct {
char iname[22];
uint16 length;
char finetune;
char volume;
uint16 loopStart;
uint16 loopLength;
} instr[31];
int32 note[28][64][4];
// We can't recover some MOD effects since several of them are mapped to 0.
// Assume the MSN effect of value 0 is Arpeggio (MOD effect of value 0).
const char invConvEff[8] = {0, 1, 2, 3, 10, 12, 13 ,15};
// Reminder from convertToMsn
// 31 30 29 28 27 26 25 24 - 23 22 21 20 19 18 17 16 - 15 14 13 12 11 10 09 08 - 07 06 05 04 03 02 01 00
// h h h h g g g g f f f f e e e e d d d d c c c c b b b b a a a a
//
// MSN:
// hhhh (4 bits) Cleared to 0
// dddd c (5 bits) Sample index | after mapping through convInstr
// ccc (3 bits) Effect type | after mapping through convEff
// bbbb aaaa (8 bits) Effect value | unmodified
// gggg ffff eeee (12 bits) Sample period | unmodified
//
// MS2:
// hhhh (4 bits) Cleared to 0
// dddd (4 bits) Sample index | after mapping through convInstr
// cccc (4 bits) Effect type | unmodified
// bbbb aaaa (8 bits) Effect value | unmodified
// gggg ffff eeee (12 bits) Sample period | transformed (0xE000 / p) - 256
//
// MOD:
// hhhh dddd (8 bits) Sample index
// cccc (4 bits) Effect type for this channel/division
// bbbb aaaa (8 bits) Effect value
// gggg ffff eeee (12 bits) Sample period
// Can we recover the instruments mapping? I don't think so as part of the original instrument index is cleared.
// And it doesn't really matter as long as we are consistent.
// However we need to make sure 31 (or 15 in MS2) is mapped to 0 in MOD.
// We just add 1 to all other values, and this means a 1 <-> 1 mapping for the instruments
for (int p = 0; p < patternNumber; ++p) {
for (int n = 0; n < 64; ++n) {
for (int k = 0; k < 4; ++k) {
int32* l = &(note[p][n][k]);
*l = note2[p][n][k];
int32 i = 0;
if (nbInstr2 == 22) { // version 1
i = ((*l & 0xF800) >> 11);
int32 e = ((*l & 0x0700) >> 8);
int32 e1 = invConvEff[e];
*l &= 0x0FFF00FF;
*l |= (e1 << 8);
} else { // version 2
int32 h = (*l >> 16);
i = ((*l & 0xF000) >> 12);
*l &= 0x00000FFF;
if (h)
h = 0xE000 / (h + 256);
*l |= (h << 16);
if (i == 15)
i = 31;
}
// Add back index in note
if (i != 31) {
++i;
*l |= ((i & 0x0F) << 12);
*l |= ((i & 0xF0) << 24);
}
}
}
}
for (int i = 0; i < 31; ++i) {
// iname is not stored in the mod file. Just set it to 'instrument#'
// finetune is not stored either. Assume 0.
memset(instr[i].iname, 0, 22);
sprintf(instr[i].iname, "instrument%d", i+1);
instr[i].length = 0;
instr[i].finetune = 0;
instr[i].volume = 0;
instr[i].loopStart = 0;
instr[i].loopLength = 0;
if (i < nbInstr2) {
instr[i].length = ((instr2[i].end - instr2[i].start) >> 1);
instr[i].loopStart = ((instr2[i].loopStart - instr2[i].start) >> 1);
instr[i].loopLength = (( instr2[i].loopEnd - instr2[i].loopStart) >> 1);
instr[i].volume = instr2[i].volume;
}
}
// The ciaaSpeed is kind of useless and not present in the MSN file.
// Traditionally 0x78 in SoundTracker. Was used in NoiseTracker as a restart point.
// ProTracker uses 0x7F. FastTracker uses it as a restart point, whereas ScreamTracker 3 uses 0x7F like ProTracker.
// You can use this to roughly detect which tracker made a MOD, and detection gets more accurate for more obscure MOD types.
char ciaaSpeed = 0x7F;
// The mark cannot be recovered either. Since we have 4 channels and 31 instrument it can be either ID='M.K.' or ID='4CHN'.
// Assume 'M.K.'
const char mark[4] = { 'M', '.', 'K', '.' };
Common::MemoryWriteStreamDynamic buffer(DisposeAfterUse::NO);
buffer.write(msnFile.getName(), 19);
buffer.writeByte(0);
for (int i = 0 ; i < 31 ; ++i) {
buffer.write(instr[i].iname, 22);
buffer.writeUint16BE(instr[i].length);
buffer.writeByte(instr[i].finetune);
buffer.writeByte(instr[i].volume);
buffer.writeUint16BE(instr[i].loopStart);
buffer.writeUint16BE(instr[i].loopLength);
}
buffer.writeByte((char)songLength);
buffer.writeByte(ciaaSpeed);
buffer.write(arrangement, 128);
buffer.write(mark, 4);
for (int p = 0 ; p < patternNumber ; ++p) {
for (int n = 0 ; n < 64 ; ++n) {
for (int k = 0 ; k < 4 ; ++k) {
// buffer.writeUint32BE(*((uint32*)(note[p][n]+k)));
buffer.writeSint32BE(note[p][n][k]);
}
}
}
uint nb;
char buf[4096];
while ((nb = msnFile.read(buf, 4096)) > 0)
buffer.write(buf, nb);
return new Common::MemoryReadStream(buffer.getData(), buffer.size(), DisposeAfterUse::YES);
}
int ResourceManager::getAudioRate() {
return _audioRate;
}
const byte *ResourceManager::getCursor(CursorId id) const {
switch (id) {
case kCursorNormal:
return _cursorNormal;
case kCursorWait:
return _cursorWait;
default:
return nullptr;
}
}
}