scummvm/engines/sci/engine/kpathing.cpp
2012-01-29 16:34:41 +01:00

1832 lines
51 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "sci/sci.h"
#include "sci/engine/state.h"
#include "sci/engine/selector.h"
#include "sci/engine/kernel.h"
#include "sci/graphics/paint16.h"
#include "sci/graphics/palette.h"
#include "sci/graphics/screen.h"
#include "common/debug-channels.h"
#include "common/list.h"
#include "common/system.h"
namespace Sci {
// TODO: Code cleanup
#define AVOIDPATH_DYNMEM_STRING "AvoidPath polyline"
#define POLY_LAST_POINT 0x7777
#define POLY_POINT_SIZE 4
// SCI-defined polygon types
enum {
POLY_TOTAL_ACCESS = 0,
POLY_NEAREST_ACCESS = 1,
POLY_BARRED_ACCESS = 2,
POLY_CONTAINED_ACCESS = 3
};
// Polygon containment types
enum {
CONT_OUTSIDE = 0,
CONT_ON_EDGE = 1,
CONT_INSIDE = 2
};
#define HUGE_DISTANCE 0xFFFFFFFF
#define VERTEX_HAS_EDGES(V) ((V) != CLIST_NEXT(V))
// Error codes
enum {
PF_OK = 0,
PF_ERROR = -1,
PF_FATAL = -2
};
// Floating point struct
struct FloatPoint {
FloatPoint() : x(0), y(0) {}
FloatPoint(float x_, float y_) : x(x_), y(y_) {}
Common::Point toPoint() {
return Common::Point((int16)(x + 0.5), (int16)(y + 0.5));
}
float x, y;
};
struct Vertex {
// Location
Common::Point v;
// Vertex circular list entry
Vertex *_next; // next element
Vertex *_prev; // previous element
// A* cost variables
uint32 costF;
uint32 costG;
// Previous vertex in shortest path
Vertex *path_prev;
public:
Vertex(const Common::Point &p) : v(p) {
costG = HUGE_DISTANCE;
path_prev = NULL;
}
};
class VertexList: public Common::List<Vertex *> {
public:
bool contains(Vertex *v) {
for (iterator it = begin(); it != end(); ++it) {
if (v == *it)
return true;
}
return false;
}
};
/* Circular list definitions. */
#define CLIST_FOREACH(var, head) \
for ((var) = (head)->first(); \
(var); \
(var) = ((var)->_next == (head)->first() ? \
NULL : (var)->_next))
/* Circular list access methods. */
#define CLIST_NEXT(elm) ((elm)->_next)
#define CLIST_PREV(elm) ((elm)->_prev)
class CircularVertexList {
public:
Vertex *_head;
public:
CircularVertexList() : _head(0) {}
Vertex *first() const {
return _head;
}
void insertHead(Vertex *elm) {
if (_head == NULL) {
elm->_next = elm->_prev = elm;
} else {
elm->_next = _head;
elm->_prev = _head->_prev;
_head->_prev = elm;
elm->_prev->_next = elm;
}
_head = elm;
}
static void insertAfter(Vertex *listelm, Vertex *elm) {
elm->_prev = listelm;
elm->_next = listelm->_next;
listelm->_next->_prev = elm;
listelm->_next = elm;
}
void remove(Vertex *elm) {
if (elm->_next == elm) {
_head = NULL;
} else {
if (_head == elm)
_head = elm->_next;
elm->_prev->_next = elm->_next;
elm->_next->_prev = elm->_prev;
}
}
bool empty() const {
return _head == NULL;
}
uint size() const {
int n = 0;
Vertex *v;
CLIST_FOREACH(v, this)
++n;
return n;
}
/**
* Reverse the order of the elements in this circular list.
*/
void reverse() {
if (!_head)
return;
Vertex *elm = _head;
do {
SWAP(elm->_prev, elm->_next);
elm = elm->_next;
} while (elm != _head);
}
};
struct Polygon {
// SCI polygon type
int type;
// Circular list of vertices
CircularVertexList vertices;
public:
Polygon(int t) : type(t) {
}
~Polygon() {
while (!vertices.empty()) {
Vertex *vertex = vertices.first();
vertices.remove(vertex);
delete vertex;
}
}
};
typedef Common::List<Polygon *> PolygonList;
// Pathfinding state
struct PathfindingState {
// List of all polygons
PolygonList polygons;
// Start and end points for pathfinding
Vertex *vertex_start, *vertex_end;
// Array of all vertices, used for sorting
Vertex **vertex_index;
// Total number of vertices
int vertices;
// Point to prepend and append to final path
Common::Point *_prependPoint;
Common::Point *_appendPoint;
// Screen size
int _width, _height;
PathfindingState(int width, int height) : _width(width), _height(height) {
vertex_start = NULL;
vertex_end = NULL;
vertex_index = NULL;
_prependPoint = NULL;
_appendPoint = NULL;
vertices = 0;
}
~PathfindingState() {
free(vertex_index);
delete _prependPoint;
delete _appendPoint;
for (PolygonList::iterator it = polygons.begin(); it != polygons.end(); ++it) {
delete *it;
}
}
bool pointOnScreenBorder(const Common::Point &p);
bool edgeOnScreenBorder(const Common::Point &p, const Common::Point &q);
int findNearPoint(const Common::Point &p, Polygon *polygon, Common::Point *ret);
};
static Common::Point readPoint(SegmentRef list_r, int offset) {
Common::Point point;
if (list_r.isRaw) { // dynmem blocks are raw
point.x = (int16)READ_SCIENDIAN_UINT16(list_r.raw + offset * POLY_POINT_SIZE);
point.y = (int16)READ_SCIENDIAN_UINT16(list_r.raw + offset * POLY_POINT_SIZE + 2);
} else {
point.x = list_r.reg[offset * 2].toUint16();
point.y = list_r.reg[offset * 2 + 1].toUint16();
}
return point;
}
static void writePoint(SegmentRef ref, int offset, const Common::Point &point) {
if (ref.isRaw) { // dynmem blocks are raw
WRITE_SCIENDIAN_UINT16(ref.raw + offset * POLY_POINT_SIZE, point.x);
WRITE_SCIENDIAN_UINT16(ref.raw + offset * POLY_POINT_SIZE + 2, point.y);
} else {
ref.reg[offset * 2] = make_reg(0, point.x);
ref.reg[offset * 2 + 1] = make_reg(0, point.y);
}
}
static void draw_line(EngineState *s, Common::Point p1, Common::Point p2, int type, int width, int height) {
// Colors for polygon debugging.
// Green: Total access
// Blue: Near-point access
// Red : Barred access
// Yellow: Contained access
int poly_colors[4] = {
g_sci->_gfxPalette->kernelFindColor(0, 255, 0), // green
g_sci->_gfxPalette->kernelFindColor(0, 0, 255), // blue
g_sci->_gfxPalette->kernelFindColor(255, 0, 0), // red
g_sci->_gfxPalette->kernelFindColor(255, 255, 0) // yellow
};
// Clip
// FIXME: Do proper line clipping
p1.x = CLIP<int16>(p1.x, 0, width - 1);
p1.y = CLIP<int16>(p1.y, 0, height - 1);
p2.x = CLIP<int16>(p2.x, 0, width - 1);
p2.y = CLIP<int16>(p2.y, 0, height - 1);
assert(type >= 0 && type <= 3);
g_sci->_gfxPaint->kernelGraphDrawLine(p1, p2, poly_colors[type], 255, 255);
}
static void draw_point(EngineState *s, Common::Point p, int start, int width, int height) {
// Colors for starting and end point
// Green: End point
// Blue: Starting point
int point_colors[2] = {
g_sci->_gfxPalette->kernelFindColor(0, 255, 0), // green
g_sci->_gfxPalette->kernelFindColor(0, 0, 255) // blue
};
Common::Rect rect = Common::Rect(p.x - 1, p.y - 1, p.x - 1 + 3, p.y - 1 + 3);
// Clip
rect.top = CLIP<int16>(rect.top, 0, height - 1);
rect.bottom = CLIP<int16>(rect.bottom, 0, height - 1);
rect.left = CLIP<int16>(rect.left, 0, width - 1);
rect.right = CLIP<int16>(rect.right, 0, width - 1);
assert(start >= 0 && start <= 1);
if (g_sci->_gfxPaint16)
g_sci->_gfxPaint16->kernelGraphFrameBox(rect, point_colors[start]);
}
static void draw_polygon(EngineState *s, reg_t polygon, int width, int height) {
SegManager *segMan = s->_segMan;
reg_t points = readSelector(segMan, polygon, SELECTOR(points));
#ifdef ENABLE_SCI32
if (segMan->isHeapObject(points))
points = readSelector(segMan, points, SELECTOR(data));
#endif
int size = readSelectorValue(segMan, polygon, SELECTOR(size));
int type = readSelectorValue(segMan, polygon, SELECTOR(type));
Common::Point first, prev;
int i;
SegmentRef pointList = segMan->dereference(points);
if (!pointList.isValid() || pointList.skipByte) {
warning("draw_polygon: Polygon data pointer is invalid, skipping polygon");
return;
}
prev = first = readPoint(pointList, 0);
for (i = 1; i < size; i++) {
Common::Point point = readPoint(pointList, i);
draw_line(s, prev, point, type, width, height);
prev = point;
}
draw_line(s, prev, first, type % 3, width, height);
}
static void draw_input(EngineState *s, reg_t poly_list, Common::Point start, Common::Point end, int opt, int width, int height) {
List *list;
Node *node;
draw_point(s, start, 1, width, height);
draw_point(s, end, 0, width, height);
if (!poly_list.segment)
return;
list = s->_segMan->lookupList(poly_list);
if (!list) {
warning("[avoidpath] Could not obtain polygon list");
return;
}
node = s->_segMan->lookupNode(list->first);
while (node) {
draw_polygon(s, node->value, width, height);
node = s->_segMan->lookupNode(node->succ);
}
}
static void print_polygon(SegManager *segMan, reg_t polygon) {
reg_t points = readSelector(segMan, polygon, SELECTOR(points));
#ifdef ENABLE_SCI32
if (segMan->isHeapObject(points))
points = readSelector(segMan, points, SELECTOR(data));
#endif
int size = readSelectorValue(segMan, polygon, SELECTOR(size));
int type = readSelectorValue(segMan, polygon, SELECTOR(type));
int i;
Common::Point point;
debugN(-1, "%i:", type);
SegmentRef pointList = segMan->dereference(points);
if (!pointList.isValid() || pointList.skipByte) {
warning("print_polygon: Polygon data pointer is invalid, skipping polygon");
return;
}
for (i = 0; i < size; i++) {
point = readPoint(pointList, i);
debugN(-1, " (%i, %i)", point.x, point.y);
}
point = readPoint(pointList, 0);
debug(" (%i, %i);", point.x, point.y);
}
static void print_input(EngineState *s, reg_t poly_list, Common::Point start, Common::Point end, int opt) {
List *list;
Node *node;
debug("Start point: (%i, %i)", start.x, start.y);
debug("End point: (%i, %i)", end.x, end.y);
debug("Optimization level: %i", opt);
if (!poly_list.segment)
return;
list = s->_segMan->lookupList(poly_list);
if (!list) {
warning("[avoidpath] Could not obtain polygon list");
return;
}
debug("Polygons:");
node = s->_segMan->lookupNode(list->first);
while (node) {
print_polygon(s->_segMan, node->value);
node = s->_segMan->lookupNode(node->succ);
}
}
/**
* Computes the area of a triangle
* Parameters: (const Common::Point &) a, b, c: The points of the triangle
* Returns : (int) The area multiplied by two
*/
static int area(const Common::Point &a, const Common::Point &b, const Common::Point &c) {
return (b.x - a.x) * (a.y - c.y) - (c.x - a.x) * (a.y - b.y);
}
/**
* Determines whether or not a point is to the left of a directed line
* Parameters: (const Common::Point &) a, b: The directed line (a, b)
* (const Common::Point &) c: The query point
* Returns : (int) true if c is to the left of (a, b), false otherwise
*/
static bool left(const Common::Point &a, const Common::Point &b, const Common::Point &c) {
return area(a, b, c) > 0;
}
/**
* Determines whether or not three points are collinear
* Parameters: (const Common::Point &) a, b, c: The three points
* Returns : (int) true if a, b, and c are collinear, false otherwise
*/
static bool collinear(const Common::Point &a, const Common::Point &b, const Common::Point &c) {
return area(a, b, c) == 0;
}
/**
* Determines whether or not a point lies on a line segment
* Parameters: (const Common::Point &) a, b: The line segment (a, b)
* (const Common::Point &) c: The query point
* Returns : (int) true if c lies on (a, b), false otherwise
*/
static bool between(const Common::Point &a, const Common::Point &b, const Common::Point &c) {
if (!collinear(a, b, c))
return false;
// Assumes a != b.
if (a.x != b.x)
return ((a.x <= c.x) && (c.x <= b.x)) || ((a.x >= c.x) && (c.x >= b.x));
else
return ((a.y <= c.y) && (c.y <= b.y)) || ((a.y >= c.y) && (c.y >= b.y));
}
/**
* Determines whether or not two line segments properly intersect
* Parameters: (const Common::Point &) a, b: The line segment (a, b)
* (const Common::Point &) c, d: The line segment (c, d)
* Returns : (int) true if (a, b) properly intersects (c, d), false otherwise
*/
static bool intersect_proper(const Common::Point &a, const Common::Point &b, const Common::Point &c, const Common::Point &d) {
int ab = (left(a, b, c) && left(b, a, d)) || (left(a, b, d) && left(b, a, c));
int cd = (left(c, d, a) && left(d, c, b)) || (left(c, d, b) && left(d, c, a));
return ab && cd;
}
/**
* Polygon containment test
* Parameters: (const Common::Point &) p: The point
* (Polygon *) polygon: The polygon
* Returns : (int) CONT_INSIDE if p is strictly contained in polygon,
* CONT_ON_EDGE if p lies on an edge of polygon,
* CONT_OUTSIDE otherwise
* Number of ray crossing left and right
*/
static int contained(const Common::Point &p, Polygon *polygon) {
int lcross = 0, rcross = 0;
Vertex *vertex;
// Iterate over edges
CLIST_FOREACH(vertex, &polygon->vertices) {
const Common::Point &v1 = vertex->v;
const Common::Point &v2 = CLIST_NEXT(vertex)->v;
// Flags for ray straddling left and right
int rstrad, lstrad;
// Check if p is a vertex
if (p == v1)
return CONT_ON_EDGE;
// Check if edge straddles the ray
rstrad = (v1.y < p.y) != (v2.y < p.y);
lstrad = (v1.y > p.y) != (v2.y > p.y);
if (lstrad || rstrad) {
// Compute intersection point x / xq
int x = v2.x * v1.y - v1.x * v2.y + (v1.x - v2.x) * p.y;
int xq = v1.y - v2.y;
// Multiply by -1 if xq is negative (for comparison that follows)
if (xq < 0) {
x = -x;
xq = -xq;
}
// Avoid floats by multiplying instead of dividing
if (rstrad && (x > xq * p.x))
rcross++;
else if (lstrad && (x < xq * p.x))
lcross++;
}
}
// If we counted an odd number of total crossings the point is on an edge
if ((lcross + rcross) % 2 == 1)
return CONT_ON_EDGE;
// If there are an odd number of crossings to one side the point is contained in the polygon
if (rcross % 2 == 1) {
// Invert result for contained access polygons.
if (polygon->type == POLY_CONTAINED_ACCESS)
return CONT_OUTSIDE;
return CONT_INSIDE;
}
// Point is outside polygon. Invert result for contained access polygons
if (polygon->type == POLY_CONTAINED_ACCESS)
return CONT_INSIDE;
return CONT_OUTSIDE;
}
/**
* Computes polygon area
* Parameters: (Polygon *) polygon: The polygon
* Returns : (int) The area multiplied by two
*/
static int polygon_area(Polygon *polygon) {
Vertex *first = polygon->vertices.first();
Vertex *v;
int size = 0;
v = CLIST_NEXT(first);
while (CLIST_NEXT(v) != first) {
size += area(first->v, v->v, CLIST_NEXT(v)->v);
v = CLIST_NEXT(v);
}
return size;
}
/**
* Fixes the vertex order of a polygon if incorrect. Contained access
* polygons should have their vertices ordered clockwise, all other types
* anti-clockwise
* Parameters: (Polygon *) polygon: The polygon
*/
static void fix_vertex_order(Polygon *polygon) {
int area = polygon_area(polygon);
// When the polygon area is positive the vertices are ordered
// anti-clockwise. When the area is negative the vertices are ordered
// clockwise
if (((area > 0) && (polygon->type == POLY_CONTAINED_ACCESS))
|| ((area < 0) && (polygon->type != POLY_CONTAINED_ACCESS))) {
polygon->vertices.reverse();
}
}
/**
* Determines whether or not a line from a point to a vertex intersects the
* interior of the polygon, locally at that vertex
* Parameters: (Common::Point) p: The point
* (Vertex *) vertex: The vertex
* Returns : (int) 1 if the line (p, vertex->v) intersects the interior of
* the polygon, locally at the vertex. 0 otherwise
*/
static int inside(const Common::Point &p, Vertex *vertex) {
// Check that it's not a single-vertex polygon
if (VERTEX_HAS_EDGES(vertex)) {
const Common::Point &prev = CLIST_PREV(vertex)->v;
const Common::Point &next = CLIST_NEXT(vertex)->v;
const Common::Point &cur = vertex->v;
if (left(prev, cur, next)) {
// Convex vertex, line (p, cur) intersects the inside
// if p is located left of both edges
if (left(cur, next, p) && left(prev, cur, p))
return 1;
} else {
// Non-convex vertex, line (p, cur) intersects the
// inside if p is located left of either edge
if (left(cur, next, p) || left(prev, cur, p))
return 1;
}
}
return 0;
}
/**
* Returns a list of all vertices that are visible from a particular vertex.
* @param s the pathfinding state
* @param vertex_cur the vertex
* @return list of vertices that are visible from vert
*/
static VertexList *visible_vertices(PathfindingState *s, Vertex *vertex_cur) {
VertexList *visVerts = new VertexList();
for (int i = 0; i < s->vertices; i++) {
Vertex *vertex = s->vertex_index[i];
// Make sure we don't intersect a polygon locally at the vertices
if ((vertex == vertex_cur) || (inside(vertex->v, vertex_cur)) || (inside(vertex_cur->v, vertex)))
continue;
// Check for intersecting edges
int j;
for (j = 0; j < s->vertices; j++) {
Vertex *edge = s->vertex_index[j];
if (VERTEX_HAS_EDGES(edge)) {
if (between(vertex_cur->v, vertex->v, edge->v)) {
// If we hit a vertex, make sure we can pass through it without intersecting its polygon
if ((inside(vertex_cur->v, edge)) || (inside(vertex->v, edge)))
break;
// This edge won't properly intersect, so we continue
continue;
}
if (intersect_proper(vertex_cur->v, vertex->v, edge->v, CLIST_NEXT(edge)->v))
break;
}
}
if (j == s->vertices)
visVerts->push_front(vertex);
}
return visVerts;
}
/**
* Determines if a point lies on the screen border
* Parameters: (const Common::Point &) p: The point
* Returns : (int) true if p lies on the screen border, false otherwise
*/
bool PathfindingState::pointOnScreenBorder(const Common::Point &p) {
return (p.x == 0) || (p.x == _width - 1) || (p.y == 0) || (p.y == _height - 1);
}
/**
* Determines if an edge lies on the screen border
* Parameters: (const Common::Point &) p, q: The edge (p, q)
* Returns : (int) true if (p, q) lies on the screen border, false otherwise
*/
bool PathfindingState::edgeOnScreenBorder(const Common::Point &p, const Common::Point &q) {
return ((p.x == 0 && q.x == 0) || (p.y == 0 && q.y == 0)
|| ((p.x == _width - 1) && (q.x == _width - 1))
|| ((p.y == _height - 1) && (q.y == _height - 1)));
}
/**
* Searches for a nearby point that is not contained in a polygon
* Parameters: (FloatPoint) f: The pointf to search nearby
* (Polygon *) polygon: The polygon
* Returns : (int) PF_OK on success, PF_FATAL otherwise
* (Common::Point) *ret: The non-contained point on success
*/
static int find_free_point(FloatPoint f, Polygon *polygon, Common::Point *ret) {
Common::Point p;
// Try nearest point first
p = Common::Point((int)floor(f.x + 0.5), (int)floor(f.y + 0.5));
if (contained(p, polygon) != CONT_INSIDE) {
*ret = p;
return PF_OK;
}
p = Common::Point((int)floor(f.x), (int)floor(f.y));
// Try (x, y), (x + 1, y), (x , y + 1) and (x + 1, y + 1)
if (contained(p, polygon) == CONT_INSIDE) {
p.x++;
if (contained(p, polygon) == CONT_INSIDE) {
p.y++;
if (contained(p, polygon) == CONT_INSIDE) {
p.x--;
if (contained(p, polygon) == CONT_INSIDE)
return PF_FATAL;
}
}
}
*ret = p;
return PF_OK;
}
/**
* Computes the near point of a point contained in a polygon
* Parameters: (const Common::Point &) p: The point
* (Polygon *) polygon: The polygon
* Returns : (int) PF_OK on success, PF_FATAL otherwise
* (Common::Point) *ret: The near point of p in polygon on success
*/
int PathfindingState::findNearPoint(const Common::Point &p, Polygon *polygon, Common::Point *ret) {
Vertex *vertex;
FloatPoint near_p;
uint32 dist = HUGE_DISTANCE;
CLIST_FOREACH(vertex, &polygon->vertices) {
const Common::Point &p1 = vertex->v;
const Common::Point &p2 = CLIST_NEXT(vertex)->v;
float u;
FloatPoint new_point;
uint32 new_dist;
// Ignore edges on the screen border, except for contained access polygons
if ((polygon->type != POLY_CONTAINED_ACCESS) && (edgeOnScreenBorder(p1, p2)))
continue;
// Compute near point
u = ((p.x - p1.x) * (p2.x - p1.x) + (p.y - p1.y) * (p2.y - p1.y)) / (float)p1.sqrDist(p2);
// Clip to edge
if (u < 0.0f)
u = 0.0f;
if (u > 1.0f)
u = 1.0f;
new_point.x = p1.x + u * (p2.x - p1.x);
new_point.y = p1.y + u * (p2.y - p1.y);
new_dist = p.sqrDist(new_point.toPoint());
if (new_dist < dist) {
near_p = new_point;
dist = new_dist;
}
}
// Find point not contained in polygon
return find_free_point(near_p, polygon, ret);
}
/**
* Computes the intersection point of a line segment and an edge (not
* including the vertices themselves)
* Parameters: (const Common::Point &) a, b: The line segment (a, b)
* (Vertex *) vertex: The first vertex of the edge
* Returns : (int) FP_OK on success, PF_ERROR otherwise
* (FloatPoint) *ret: The intersection point
*/
static int intersection(const Common::Point &a, const Common::Point &b, Vertex *vertex, FloatPoint *ret) {
// Parameters of parametric equations
float s, t;
// Numerator and denominator of equations
float num, denom;
const Common::Point &c = vertex->v;
const Common::Point &d = CLIST_NEXT(vertex)->v;
denom = a.x * (float)(d.y - c.y) + b.x * (float)(c.y - d.y) +
d.x * (float)(b.y - a.y) + c.x * (float)(a.y - b.y);
if (denom == 0.0)
// Segments are parallel, no intersection
return PF_ERROR;
num = a.x * (float)(d.y - c.y) + c.x * (float)(a.y - d.y) + d.x * (float)(c.y - a.y);
s = num / denom;
num = -(a.x * (float)(c.y - b.y) + b.x * (float)(a.y - c.y) + c.x * (float)(b.y - a.y));
t = num / denom;
if ((0.0 <= s) && (s <= 1.0) && (0.0 < t) && (t < 1.0)) {
// Intersection found
ret->x = a.x + s * (b.x - a.x);
ret->y = a.y + s * (b.y - a.y);
return PF_OK;
}
return PF_ERROR;
}
/**
* Computes the nearest intersection point of a line segment and the polygon
* set. Intersection points that are reached from the inside of a polygon
* are ignored as are improper intersections which do not obstruct
* visibility
* Parameters: (PathfindingState *) s: The pathfinding state
* (const Common::Point &) p, q: The line segment (p, q)
* Returns : (int) PF_OK on success, PF_ERROR when no intersections were
* found, PF_FATAL otherwise
* (Common::Point) *ret: On success, the closest intersection point
*/
static int nearest_intersection(PathfindingState *s, const Common::Point &p, const Common::Point &q, Common::Point *ret) {
Polygon *polygon = 0;
FloatPoint isec;
Polygon *ipolygon = 0;
uint32 dist = HUGE_DISTANCE;
for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) {
polygon = *it;
Vertex *vertex;
CLIST_FOREACH(vertex, &polygon->vertices) {
uint32 new_dist;
FloatPoint new_isec;
// Check for intersection with vertex
if (between(p, q, vertex->v)) {
// Skip this vertex if we hit it from the
// inside of the polygon
if (inside(q, vertex)) {
new_isec.x = vertex->v.x;
new_isec.y = vertex->v.y;
} else
continue;
} else {
// Check for intersection with edges
// Skip this edge if we hit it from the
// inside of the polygon
if (!left(vertex->v, CLIST_NEXT(vertex)->v, q))
continue;
if (intersection(p, q, vertex, &new_isec) != PF_OK)
continue;
}
new_dist = p.sqrDist(new_isec.toPoint());
if (new_dist < dist) {
ipolygon = polygon;
isec = new_isec;
dist = new_dist;
}
}
}
if (dist == HUGE_DISTANCE)
return PF_ERROR;
// Find point not contained in polygon
return find_free_point(isec, ipolygon, ret);
}
/**
* Checks whether a point is nearby a contained-access polygon (distance 1 pixel)
* @param point the point
* @param polygon the contained-access polygon
* @return true when point is nearby polygon, false otherwise
*/
static bool nearbyPolygon(const Common::Point &point, Polygon *polygon) {
assert(polygon->type == POLY_CONTAINED_ACCESS);
return ((contained(Common::Point(point.x, point.y + 1), polygon) != CONT_INSIDE)
|| (contained(Common::Point(point.x, point.y - 1), polygon) != CONT_INSIDE)
|| (contained(Common::Point(point.x + 1, point.y), polygon) != CONT_INSIDE)
|| (contained(Common::Point(point.x - 1, point.y), polygon) != CONT_INSIDE));
}
/**
* Checks that the start point is in a valid position, and takes appropriate action if it's not.
* @param s the pathfinding state
* @param start the start point
* @return a valid start point on success, NULL otherwise
*/
static Common::Point *fixup_start_point(PathfindingState *s, const Common::Point &start) {
PolygonList::iterator it = s->polygons.begin();
Common::Point *new_start = new Common::Point(start);
while (it != s->polygons.end()) {
int cont = contained(start, *it);
int type = (*it)->type;
switch (type) {
case POLY_TOTAL_ACCESS:
// Remove totally accessible polygons that contain the start point
if (cont != CONT_OUTSIDE) {
delete *it;
it = s->polygons.erase(it);
continue;
}
break;
case POLY_CONTAINED_ACCESS:
// Remove contained access polygons that do not contain
// the start point (containment test is inverted here).
// SSCI appears to be using a small margin of error here,
// so we do the same.
if ((cont == CONT_INSIDE) && !nearbyPolygon(start, *it)) {
delete *it;
it = s->polygons.erase(it);
continue;
}
// Fall through
case POLY_BARRED_ACCESS:
case POLY_NEAREST_ACCESS:
if (cont != CONT_OUTSIDE) {
if (s->_prependPoint != NULL) {
// We shouldn't get here twice.
// We need to break in this case, otherwise we'll end in an infinite
// loop.
warning("AvoidPath: start point is contained in multiple polygons");
break;
}
if (s->findNearPoint(start, (*it), new_start) != PF_OK) {
delete new_start;
return NULL;
}
if ((type == POLY_BARRED_ACCESS) || (type == POLY_CONTAINED_ACCESS))
debugC(kDebugLevelAvoidPath, "AvoidPath: start position at unreachable location");
// The original start position is in an invalid location, so we
// use the moved point and add the original one to the final path
// later on.
if (start != *new_start)
s->_prependPoint = new Common::Point(start);
}
}
++it;
}
return new_start;
}
/**
* Checks that the end point is in a valid position, and takes appropriate action if it's not.
* @param s the pathfinding state
* @param end the end point
* @return a valid end point on success, NULL otherwise
*/
static Common::Point *fixup_end_point(PathfindingState *s, const Common::Point &end) {
PolygonList::iterator it = s->polygons.begin();
Common::Point *new_end = new Common::Point(end);
while (it != s->polygons.end()) {
int cont = contained(end, *it);
int type = (*it)->type;
switch (type) {
case POLY_TOTAL_ACCESS:
// Remove totally accessible polygons that contain the end point
if (cont != CONT_OUTSIDE) {
delete *it;
it = s->polygons.erase(it);
continue;
}
break;
case POLY_CONTAINED_ACCESS:
case POLY_BARRED_ACCESS:
case POLY_NEAREST_ACCESS:
if (cont != CONT_OUTSIDE) {
if (s->_appendPoint != NULL) {
// We shouldn't get here twice.
// Happens in LB2CD, inside the speakeasy when walking from the
// speakeasy (room 310) into the bathroom (room 320), after having
// consulted the notebook (bug #3036299).
// We need to break in this case, otherwise we'll end in an infinite
// loop.
warning("AvoidPath: end point is contained in multiple polygons");
break;
}
// The original end position is in an invalid location, so we move the point
if (s->findNearPoint(end, (*it), new_end) != PF_OK) {
delete new_end;
return NULL;
}
// For near-point access polygons we need to add the original end point
// to the path after pathfinding.
if ((type == POLY_NEAREST_ACCESS) && (end != *new_end))
s->_appendPoint = new Common::Point(end);
}
}
++it;
}
return new_end;
}
/**
* Merges a point into the polygon set. A new vertex is allocated for this
* point, unless a matching vertex already exists. If the point is on an
* already existing edge that edge is split up into two edges connected by
* the new vertex
* Parameters: (PathfindingState *) s: The pathfinding state
* (const Common::Point &) v: The point to merge
* Returns : (Vertex *) The vertex corresponding to v
*/
static Vertex *merge_point(PathfindingState *s, const Common::Point &v) {
Vertex *vertex;
Vertex *v_new;
Polygon *polygon;
// Check for already existing vertex
for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) {
polygon = *it;
CLIST_FOREACH(vertex, &polygon->vertices) {
if (vertex->v == v)
return vertex;
}
}
v_new = new Vertex(v);
// Check for point being on an edge
for (PolygonList::iterator it = s->polygons.begin(); it != s->polygons.end(); ++it) {
polygon = *it;
// Skip single-vertex polygons
if (VERTEX_HAS_EDGES(polygon->vertices.first())) {
CLIST_FOREACH(vertex, &polygon->vertices) {
Vertex *next = CLIST_NEXT(vertex);
if (between(vertex->v, next->v, v)) {
// Split edge by adding vertex
polygon->vertices.insertAfter(vertex, v_new);
return v_new;
}
}
}
}
// Add point as single-vertex polygon
polygon = new Polygon(POLY_BARRED_ACCESS);
polygon->vertices.insertHead(v_new);
s->polygons.push_front(polygon);
return v_new;
}
/**
* Converts an SCI polygon into a Polygon
* Parameters: (EngineState *) s: The game state
* (reg_t) polygon: The SCI polygon to convert
* Returns : (Polygon *) The converted polygon, or NULL on error
*/
static Polygon *convert_polygon(EngineState *s, reg_t polygon) {
SegManager *segMan = s->_segMan;
int i;
reg_t points = readSelector(segMan, polygon, SELECTOR(points));
int size = readSelectorValue(segMan, polygon, SELECTOR(size));
#ifdef ENABLE_SCI32
// SCI32 stores the actual points in the data property of points (in a new array)
if (segMan->isHeapObject(points))
points = readSelector(segMan, points, SELECTOR(data));
#endif
if (size == 0) {
// If the polygon has no vertices, we skip it
return NULL;
}
SegmentRef pointList = segMan->dereference(points);
// Check if the target polygon is still valid. It may have been released
// in the meantime (e.g. in LSL6, room 700, when using the elevator).
// Refer to bug #3034501.
if (!pointList.isValid() || pointList.skipByte) {
warning("convert_polygon: Polygon data pointer is invalid, skipping polygon");
return NULL;
}
// Make sure that we have enough points
if (pointList.maxSize < size * POLY_POINT_SIZE) {
warning("convert_polygon: Not enough memory allocated for polygon points. "
"Expected %d, got %d. Skipping polygon",
size * POLY_POINT_SIZE, pointList.maxSize);
return NULL;
}
int skip = 0;
// WORKAROUND: broken polygon in lsl1sci, room 350, after opening elevator
// Polygon has 17 points but size is set to 19
if ((size == 19) && g_sci->getGameId() == GID_LSL1) {
if ((s->currentRoomNumber() == 350)
&& (readPoint(pointList, 18) == Common::Point(108, 137))) {
debug(1, "Applying fix for broken polygon in lsl1sci, room 350");
size = 17;
}
}
Polygon *poly = new Polygon(readSelectorValue(segMan, polygon, SELECTOR(type)));
for (i = skip; i < size; i++) {
Vertex *vertex = new Vertex(readPoint(pointList, i));
poly->vertices.insertHead(vertex);
}
fix_vertex_order(poly);
return poly;
}
/**
* Changes the polygon list for optimization level 0 (used for keyboard
* support). Totally accessible polygons are removed and near-point
* accessible polygons are changed into totally accessible polygons.
* Parameters: (PathfindingState *) s: The pathfinding state
*/
static void change_polygons_opt_0(PathfindingState *s) {
PolygonList::iterator it = s->polygons.begin();
while (it != s->polygons.end()) {
Polygon *polygon = *it;
assert(polygon);
if (polygon->type == POLY_TOTAL_ACCESS) {
delete polygon;
it = s->polygons.erase(it);
} else {
if (polygon->type == POLY_NEAREST_ACCESS)
polygon->type = POLY_TOTAL_ACCESS;
++it;
}
}
}
/**
* Converts the SCI input data for pathfinding
* Parameters: (EngineState *) s: The game state
* (reg_t) poly_list: Polygon list
* (Common::Point) start: The start point
* (Common::Point) end: The end point
* (int) opt: Optimization level (0, 1 or 2)
* Returns : (PathfindingState *) On success a newly allocated pathfinding state,
* NULL otherwise
*/
static PathfindingState *convert_polygon_set(EngineState *s, reg_t poly_list, Common::Point start, Common::Point end, int width, int height, int opt) {
SegManager *segMan = s->_segMan;
Polygon *polygon;
int count = 0;
PathfindingState *pf_s = new PathfindingState(width, height);
// Convert all polygons
if (poly_list.segment) {
List *list = s->_segMan->lookupList(poly_list);
Node *node = s->_segMan->lookupNode(list->first);
while (node) {
// The node value might be null, in which case there's no polygon to parse.
// Happens in LB2 floppy - refer to bug #3041232
polygon = !node->value.isNull() ? convert_polygon(s, node->value) : NULL;
if (polygon) {
pf_s->polygons.push_back(polygon);
count += readSelectorValue(segMan, node->value, SELECTOR(size));
}
node = s->_segMan->lookupNode(node->succ);
}
}
if (opt == 0)
change_polygons_opt_0(pf_s);
Common::Point *new_start = fixup_start_point(pf_s, start);
if (!new_start) {
warning("AvoidPath: Couldn't fixup start position for pathfinding");
delete pf_s;
return NULL;
}
Common::Point *new_end = fixup_end_point(pf_s, end);
if (!new_end) {
warning("AvoidPath: Couldn't fixup end position for pathfinding");
delete new_start;
delete pf_s;
return NULL;
}
if (opt == 0) {
// Keyboard support. Only the first edge of the path we compute
// here matches the path returned by SSCI. This is assumed to be
// sufficient as all known use cases only use the first two
// vertices of the returned path.
// Pharkas uses this mode for a secondary polygon set containing
// rectangular polygons used to block an actor's path.
// If we have a prepended point, we do nothing here as the
// actor is in barred territory and should be moved outside of
// it ASAP. This matches the behavior of SSCI.
if (!pf_s->_prependPoint) {
// Actor position is OK, find nearest obstacle.
int err = nearest_intersection(pf_s, start, *new_end, new_start);
if (err == PF_FATAL) {
warning("AvoidPath: error finding nearest intersection");
delete new_start;
delete new_end;
delete pf_s;
return NULL;
}
if (err == PF_OK)
pf_s->_prependPoint = new Common::Point(start);
}
} else {
// WORKAROUND LSL5 room 660. Priority glitch due to us choosing a different path
// than SSCI. Happens when Patti walks to the control room.
if (g_sci->getGameId() == GID_LSL5 && (s->currentRoomNumber() == 660) && (Common::Point(67, 131) == *new_start) && (Common::Point(229, 101) == *new_end)) {
debug(1, "[avoidpath] Applying fix for priority problem in LSL5, room 660");
pf_s->_prependPoint = new_start;
new_start = new Common::Point(77, 107);
}
}
// Merge start and end points into polygon set
pf_s->vertex_start = merge_point(pf_s, *new_start);
pf_s->vertex_end = merge_point(pf_s, *new_end);
delete new_start;
delete new_end;
// Allocate and build vertex index
pf_s->vertex_index = (Vertex**)malloc(sizeof(Vertex *) * (count + 2));
count = 0;
for (PolygonList::iterator it = pf_s->polygons.begin(); it != pf_s->polygons.end(); ++it) {
polygon = *it;
Vertex *vertex;
CLIST_FOREACH(vertex, &polygon->vertices) {
pf_s->vertex_index[count++] = vertex;
}
}
pf_s->vertices = count;
return pf_s;
}
/**
* Computes a shortest path from vertex_start to vertex_end. The caller can
* construct the resulting path by following the path_prev links from
* vertex_end back to vertex_start. If no path exists vertex_end->path_prev
* will be NULL
* Parameters: (PathfindingState *) s: The pathfinding state
*/
static void AStar(PathfindingState *s) {
// Vertices of which the shortest path is known
VertexList closedSet;
// The remaining vertices
VertexList openSet;
openSet.push_front(s->vertex_start);
s->vertex_start->costG = 0;
s->vertex_start->costF = (uint32)sqrt((float)s->vertex_start->v.sqrDist(s->vertex_end->v));
while (!openSet.empty()) {
// Find vertex in open set with lowest F cost
VertexList::iterator vertex_min_it = openSet.end();
Vertex *vertex_min = 0;
uint32 min = HUGE_DISTANCE;
for (VertexList::iterator it = openSet.begin(); it != openSet.end(); ++it) {
Vertex *vertex = *it;
if (vertex->costF < min) {
vertex_min_it = it;
vertex_min = *vertex_min_it;
min = vertex->costF;
}
}
assert(vertex_min != 0); // the vertex cost should never be bigger than HUGE_DISTANCE
// Check if we are done
if (vertex_min == s->vertex_end)
break;
// Move vertex from set open to set closed
closedSet.push_front(vertex_min);
openSet.erase(vertex_min_it);
VertexList *visVerts = visible_vertices(s, vertex_min);
for (VertexList::iterator it = visVerts->begin(); it != visVerts->end(); ++it) {
uint32 new_dist;
Vertex *vertex = *it;
if (closedSet.contains(vertex))
continue;
if (!openSet.contains(vertex))
openSet.push_front(vertex);
new_dist = vertex_min->costG + (uint32)sqrt((float)vertex_min->v.sqrDist(vertex->v));
// When travelling to a vertex on the screen edge, we
// add a penalty score to make this path less appealing.
// NOTE: If an obstacle has only one vertex on a screen edge,
// later SSCI pathfinders will treat that vertex like any
// other, while we apply a penalty to paths traversing it.
// This difference might lead to problems, but none are
// known at the time of writing.
if (s->pointOnScreenBorder(vertex->v))
new_dist += 10000;
if (new_dist < vertex->costG) {
vertex->costG = new_dist;
vertex->costF = vertex->costG + (uint32)sqrt((float)vertex->v.sqrDist(s->vertex_end->v));
vertex->path_prev = vertex_min;
}
}
delete visVerts;
}
if (openSet.empty())
debugC(kDebugLevelAvoidPath, "AvoidPath: End point (%i, %i) is unreachable", s->vertex_end->v.x, s->vertex_end->v.y);
}
static reg_t allocateOutputArray(SegManager *segMan, int size) {
reg_t addr;
#ifdef ENABLE_SCI32
if (getSciVersion() >= SCI_VERSION_2) {
SciArray<reg_t> *array = segMan->allocateArray(&addr);
assert(array);
array->setType(0);
array->setSize(size * 2);
return addr;
}
#endif
segMan->allocDynmem(POLY_POINT_SIZE * size, AVOIDPATH_DYNMEM_STRING, &addr);
return addr;
}
/**
* Stores the final path in newly allocated dynmem
* Parameters: (PathfindingState *) p: The pathfinding state
* (EngineState *) s: The game state
* Returns : (reg_t) Pointer to dynmem containing path
*/
static reg_t output_path(PathfindingState *p, EngineState *s) {
int path_len = 0;
reg_t output;
Vertex *vertex = p->vertex_end;
int unreachable = vertex->path_prev == NULL;
if (!unreachable) {
while (vertex) {
// Compute path length
path_len++;
vertex = vertex->path_prev;
}
}
// Allocate memory for path, plus 3 extra for appended point, prepended point and sentinel
output = allocateOutputArray(s->_segMan, path_len + 3);
SegmentRef arrayRef = s->_segMan->dereference(output);
assert(arrayRef.isValid() && !arrayRef.skipByte);
if (unreachable) {
// If pathfinding failed we only return the path up to vertex_start
if (p->_prependPoint)
writePoint(arrayRef, 0, *p->_prependPoint);
else
writePoint(arrayRef, 0, p->vertex_start->v);
writePoint(arrayRef, 1, p->vertex_start->v);
writePoint(arrayRef, 2, Common::Point(POLY_LAST_POINT, POLY_LAST_POINT));
return output;
}
int offset = 0;
if (p->_prependPoint)
writePoint(arrayRef, offset++, *p->_prependPoint);
vertex = p->vertex_end;
for (int i = path_len - 1; i >= 0; i--) {
writePoint(arrayRef, offset + i, vertex->v);
vertex = vertex->path_prev;
}
offset += path_len;
if (p->_appendPoint)
writePoint(arrayRef, offset++, *p->_appendPoint);
// Sentinel
writePoint(arrayRef, offset, Common::Point(POLY_LAST_POINT, POLY_LAST_POINT));
if (DebugMan.isDebugChannelEnabled(kDebugLevelAvoidPath)) {
debug("\nReturning path:");
SegmentRef outputList = s->_segMan->dereference(output);
if (!outputList.isValid() || outputList.skipByte) {
warning("output_path: Polygon data pointer is invalid, skipping polygon");
return output;
}
for (int i = 0; i < offset; i++) {
Common::Point pt = readPoint(outputList, i);
debugN(-1, " (%i, %i)", pt.x, pt.y);
}
debug(";\n");
}
return output;
}
reg_t kAvoidPath(EngineState *s, int argc, reg_t *argv) {
Common::Point start = Common::Point(argv[0].toSint16(), argv[1].toSint16());
switch (argc) {
case 3 : {
reg_t retval;
Polygon *polygon = convert_polygon(s, argv[2]);
if (!polygon)
return NULL_REG;
// Override polygon type to prevent inverted result for contained access polygons
polygon->type = POLY_BARRED_ACCESS;
retval = make_reg(0, contained(start, polygon) != CONT_OUTSIDE);
delete polygon;
return retval;
}
case 6 :
case 7 :
case 8 : {
Common::Point end = Common::Point(argv[2].toSint16(), argv[3].toSint16());
reg_t poly_list, output;
int width, height, opt = 1;
if (getSciVersion() >= SCI_VERSION_2) {
if (argc < 7)
error("[avoidpath] Not enough arguments");
poly_list = (!argv[4].isNull() ? readSelector(s->_segMan, argv[4], SELECTOR(elements)) : NULL_REG);
width = argv[5].toUint16();
height = argv[6].toUint16();
if (argc > 7)
opt = argv[7].toUint16();
} else {
// SCI1.1 and older games always ran with an internal resolution of 320x200
poly_list = argv[4];
width = 320;
height = 190;
if (argc > 6)
opt = argv[6].toUint16();
}
if (DebugMan.isDebugChannelEnabled(kDebugLevelAvoidPath)) {
debug("[avoidpath] Pathfinding input:");
draw_point(s, start, 1, width, height);
draw_point(s, end, 0, width, height);
if (poly_list.segment) {
print_input(s, poly_list, start, end, opt);
draw_input(s, poly_list, start, end, opt, width, height);
}
// Update the whole screen
g_sci->_gfxScreen->copyToScreen();
g_system->updateScreen();
if (!g_sci->_gfxPaint16)
g_system->delayMillis(2500);
}
PathfindingState *p = convert_polygon_set(s, poly_list, start, end, width, height, opt);
if (!p) {
warning("[avoidpath] Error: pathfinding failed for following input:\n");
print_input(s, poly_list, start, end, opt);
warning("[avoidpath] Returning direct path from start point to end point\n");
output = allocateOutputArray(s->_segMan, 3);
SegmentRef arrayRef = s->_segMan->dereference(output);
assert(arrayRef.isValid() && !arrayRef.skipByte);
writePoint(arrayRef, 0, start);
writePoint(arrayRef, 1, end);
writePoint(arrayRef, 2, Common::Point(POLY_LAST_POINT, POLY_LAST_POINT));
return output;
}
// Apply Dijkstra
AStar(p);
output = output_path(p, s);
delete p;
// Memory is freed by explicit calls to Memory
return output;
}
default:
warning("Unknown AvoidPath subfunction %d", argc);
return NULL_REG;
}
}
static bool PointInRect(const Common::Point &point, int16 rectX1, int16 rectY1, int16 rectX2, int16 rectY2) {
int16 top = MIN<int16>(rectY1, rectY2);
int16 left = MIN<int16>(rectX1, rectX2);
int16 bottom = MAX<int16>(rectY1, rectY2) + 1;
int16 right = MAX<int16>(rectX1, rectX2) + 1;
Common::Rect rect = Common::Rect(left, top, right, bottom);
// Add a one pixel margin of error
rect.grow(1);
return rect.contains(point);
}
reg_t kIntersections(EngineState *s, int argc, reg_t *argv) {
// This function computes intersection points for the "freeway pathing" in MUMG CD.
int32 qSourceX = argv[0].toSint16();
int32 qSourceY = argv[1].toSint16();
int32 qDestX = argv[2].toSint16();
int32 qDestY = argv[3].toSint16();
uint16 startIndex = argv[5].toUint16();
uint16 endIndex = argv[6].toUint16();
uint16 stepSize = argv[7].toUint16();
bool backtrack = argv[9].toUint16();
const int32 kVertical = 0x7fffffff;
uint16 curIndex = startIndex;
reg_t *inpBuf = s->_segMan->derefRegPtr(argv[4], endIndex + 2);
if (!inpBuf) {
warning("Intersections: input buffer invalid");
return NULL_REG;
}
reg_t *outBuf = s->_segMan->derefRegPtr(argv[8], (endIndex - startIndex + 2) / stepSize * 3);
if (!outBuf) {
warning("Intersections: output buffer invalid");
return NULL_REG;
}
// Slope and y-intercept of the query line in centipixels
int32 qIntercept;
int32 qSlope;
if (qSourceX != qDestX) {
// Compute slope of the line and round to nearest centipixel
qSlope = (1000 * (qSourceY - qDestY)) / (qSourceX - qDestX);
if (qSlope >= 0)
qSlope += 5;
else
qSlope -= 5;
qSlope /= 10;
// Compute y-intercept in centipixels
qIntercept = (100 * qDestY) - (qSlope * qDestX);
if (backtrack) {
// If backtrack is set we extend the line from dest to source
// until we hit a screen edge and place the source point there
// First we try to place the source point on the left or right
// screen edge
if (qSourceX >= qDestX)
qSourceX = 319;
else
qSourceX = 0;
// Compute the y-coordinate
qSourceY = ((qSlope * qSourceX) + qIntercept) / 100;
// If the y-coordinate is off-screen, the point we want is on the
// top or bottom edge of the screen instead
if (qSourceY < 0 || qSourceY > 189) {
if (qSourceY < 0)
qSourceY = 0;
else if (qSourceY > 189)
qSourceY = 189;
// Compute the x-coordinate
qSourceX = (((((qSourceY * 100) - qIntercept) * 10) / qSlope) + 5) / 10;
}
}
} else {
// The query line is vertical
qIntercept = qSlope = kVertical;
if (backtrack) {
// If backtrack is set, extend to screen edge
if (qSourceY >= qDestY)
qSourceY = 189;
else
qSourceY = 0;
}
}
int32 pSourceX = inpBuf[curIndex].toSint16();
int32 pSourceY = inpBuf[curIndex + 1].toSint16();
// If it's a polygon, we include the first point again at the end
int16 doneIndex;
if (pSourceX & (1 << 13))
doneIndex = startIndex;
else
doneIndex = endIndex;
pSourceX &= 0x1ff;
debugCN(kDebugLevelAvoidPath, "%s: (%i, %i)[%i]",
(doneIndex == startIndex ? "Polygon" : "Polyline"), pSourceX, pSourceY, curIndex);
curIndex += stepSize;
uint16 outCount = 0;
while (1) {
int32 pDestX = inpBuf[curIndex].toSint16() & 0x1ff;
int32 pDestY = inpBuf[curIndex + 1].toSint16();
if (DebugMan.isDebugChannelEnabled(kDebugLevelAvoidPath)) {
draw_line(s, Common::Point(pSourceX, pSourceY),
Common::Point(pDestX, pDestY), 2, 320, 190);
debugN(-1, " (%i, %i)[%i]", pDestX, pDestY, curIndex);
}
// Slope and y-intercept of the polygon edge in centipixels
int32 pIntercept;
int32 pSlope;
if (pSourceX != pDestX) {
// Compute slope and y-intercept (as above)
pSlope = ((pDestY - pSourceY) * 1000) / (pDestX - pSourceX);
if (pSlope >= 0)
pSlope += 5;
else
pSlope -= 5;
pSlope /= 10;
pIntercept = (pDestY * 100) - (pSlope * pDestX);
} else {
// Polygon edge is vertical
pSlope = pIntercept = kVertical;
}
bool foundIntersection = true;
int32 intersectionX = 0;
int32 intersectionY = 0;
if (qSlope == pSlope) {
// If the lines overlap, we test the source and destination points
// against the poly segment
if ((pIntercept == qIntercept) && (PointInRect(Common::Point(pSourceX, pSourceY), qSourceX, qSourceY, qDestX, qDestY))) {
intersectionX = pSourceX * 100;
intersectionY = pSourceY * 100;
} else if ((pIntercept == qIntercept) && PointInRect(Common::Point(qDestX, qDestY), pSourceX, pSourceY, pDestX, pDestY)) {
intersectionX = qDestX * 100;
intersectionY = qDestY * 100;
} else {
// Lines are parallel or segments don't overlap, no intersection
foundIntersection = false;
}
} else {
// Lines are not parallel
if (qSlope == kVertical) {
// Query segment is vertical, polygon segment is not vertical
intersectionX = qSourceX * 100;
intersectionY = pSlope * qSourceX + pIntercept;
} else if (pSlope == kVertical) {
// Polygon segment is vertical, query segment is not vertical
intersectionX = pDestX * 100;
intersectionY = qSlope * pDestX + qIntercept;
} else {
// Neither line is vertical
intersectionX = ((pIntercept - qIntercept) * 100) / (qSlope - pSlope);
intersectionY = ((intersectionX * pSlope) + (pIntercept * 100)) / 100;
}
}
if (foundIntersection) {
// Round back to pixels
intersectionX = (intersectionX + 50) / 100;
intersectionY = (intersectionY + 50) / 100;
// If intersection point lies on both the query line segment and the poly
// line segment, add it to the output
if (((PointInRect(Common::Point(intersectionX, intersectionY), pSourceX, pSourceY, pDestX, pDestY))
&& PointInRect(Common::Point(intersectionX, intersectionY), qSourceX, qSourceY, qDestX, qDestY))) {
outBuf[outCount * 3] = make_reg(0, intersectionX);
outBuf[outCount * 3 + 1] = make_reg(0, intersectionY);
outBuf[outCount * 3 + 2] = make_reg(0, curIndex);
outCount++;
}
}
if (curIndex == doneIndex) {
// End of polyline/polygon reached
if (DebugMan.isDebugChannelEnabled(kDebugLevelAvoidPath)) {
debug(";");
debugN(-1, "Found %i intersections", outCount);
if (outCount) {
debugN(-1, ":");
for (int i = 0; i < outCount; i++) {
Common::Point p = Common::Point(outBuf[i * 3].toSint16(), outBuf[i * 3 + 1].toSint16());
draw_point(s, p, 0, 320, 190);
debugN(-1, " (%i, %i)[%i]", p.x, p.y, outBuf[i * 3 + 2].toSint16());
}
}
debug(";");
g_sci->_gfxScreen->copyToScreen();
g_system->updateScreen();
}
return make_reg(0, outCount);
}
if (curIndex != endIndex) {
// Go to next point in polyline/polygon
curIndex += stepSize;
} else {
// Wrap-around for polygon case
curIndex = startIndex;
}
// Current destination point is source for the next line segment
pSourceX = pDestX;
pSourceY = pDestY;
}
}
/**
* This is a quite rare kernel function. An example of when it's called
* is in QFG1VGA, after killing any monster.
*/
reg_t kMergePoly(EngineState *s, int argc, reg_t *argv) {
#if 0
// 3 parameters: raw polygon data, polygon list, list size
reg_t polygonData = argv[0];
List *list = s->_segMan->lookupList(argv[1]);
Node *node = s->_segMan->lookupNode(list->first);
// List size is not needed
Polygon *polygon;
int count = 0;
while (node) {
polygon = convert_polygon(s, node->value);
if (polygon) {
count += readSelectorValue(s->_segMan, node->value, SELECTOR(size));
}
node = s->_segMan->lookupNode(node->succ);
}
#endif
// TODO: actually merge the polygon. We return an empty polygon for now.
// In QFG1VGA, you can walk over enemy bodies after killing them, since
// this is a stub.
reg_t output = allocateOutputArray(s->_segMan, 1);
SegmentRef arrayRef = s->_segMan->dereference(output);
writePoint(arrayRef, 0, Common::Point(POLY_LAST_POINT, POLY_LAST_POINT));
warning("Stub: kMergePoly");
return output;
}
#ifdef ENABLE_SCI32
reg_t kInPolygon(EngineState *s, int argc, reg_t *argv) {
// kAvoidPath already implements this
return kAvoidPath(s, argc, argv);
}
#endif
} // End of namespace Sci