scummvm/engines/sci/engine/seg_manager.cpp
2009-04-28 16:00:59 +00:00

1968 lines
53 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "sci/engine/seg_manager.h"
#include "sci/engine/state.h"
#include "sci/engine/intmap.h"
namespace Sci {
#define DEFAULT_SCRIPTS 32
#define DEFAULT_OBJECTS 8 // default # of objects per script
#define DEFAULT_OBJECTS_INCREMENT 4 // Number of additional objects to instantiate if we're running out of them
//#define GC_DEBUG // Debug garbage collection
//#define GC_DEBUG_VERBOSE // Debug garbage verbosely
#undef DEBUG_SEG_MANAGER // Define to turn on debugging
#define GET_SEGID() \
if (flag == SCRIPT_ID) \
id = segGet(id); \
VERIFY(check(id), "invalid seg id");
#if 0
// Unreferenced - removed
#define VERIFY_MEM(mem_ptr, ret) \
if (!(mem_ptr)) {\
sciprintf( "%s, *d, no enough memory", __FILE__, __LINE__ ); \
return ret; \
}
#endif
#define INVALID_SCRIPT_ID -1
int SegManager::findFreeId(int *id) {
bool was_added = false;
int retval = 0;
while (!was_added) {
retval = id_seg_map->checkKey(reserved_id, true, &was_added);
*id = reserved_id--;
if (reserved_id < -1000000)
reserved_id = -10;
// Make sure we don't underflow
}
return retval;
}
MemObject *SegManager::allocNonscriptSegment(memObjType type, SegmentId *segid) {
// Allocates a non-script segment
int id;
*segid = findFreeId(&id);
return memObjAllocate(*segid, id, type);
}
SegManager::SegManager(bool sci1_1) {
int i;
// Initialise memory count
mem_allocated = 0;
id_seg_map = new IntMapper();
reserved_id = INVALID_SCRIPT_ID;
id_seg_map->checkKey(reserved_id, true); // reserve 0 for seg_id
reserved_id--; // reserved_id runs in the reversed direction to make sure no one will use it.
heap_size = DEFAULT_SCRIPTS;
heap = (MemObject **)sci_calloc(heap_size, sizeof(MemObject *));
Clones_seg_id = 0;
Lists_seg_id = 0;
Nodes_seg_id = 0;
Hunks_seg_id = 0;
exports_wide = 0;
isSci1_1 = sci1_1;
// initialize the heap pointers
for (i = 0; i < heap_size; i++) {
heap[i] = NULL;
}
// gc initialisation
gc_mark_bits = 0;
}
// Destroy the object, free the memorys if allocated before
SegManager::~SegManager() {
int i;
// Free memory
for (i = 0; i < heap_size; i++) {
if (heap[i])
deallocate(i, false);
}
delete id_seg_map;
free(heap);
}
// allocate a memory for script from heap
// Parameters: (EngineState *) s: The state to operate on
// (int) script_nr: The script number to load
// Returns : 0 - allocation failure
// 1 - allocated successfully
// seg_id - allocated segment id
MemObject *SegManager::allocateScript(EngineState *s, int script_nr, int* seg_id) {
int seg;
bool was_added;
MemObject* mem;
seg = id_seg_map->checkKey(script_nr, true, &was_added);
if (!was_added) {
*seg_id = seg;
return heap[*seg_id];
}
// allocate the MemObject
mem = memObjAllocate(seg, script_nr, MEM_OBJ_SCRIPT);
if (!mem) {
sciprintf("%s, %d, Not enough memory, ", __FILE__, __LINE__);
return NULL;
}
*seg_id = seg;
return mem;
}
void SegManager::setScriptSize(MemObject *mem, EngineState *s, int script_nr) {
Resource *script = s->resmgr->findResource(kResourceTypeScript, script_nr, 0);
Resource *heap = s->resmgr->findResource(kResourceTypeHeap, script_nr, 0);
mem->data.script.script_size = script->size;
mem->data.script.heap_size = 0; // Set later
if (!script || (s->version >= SCI_VERSION(1, 001, 000) && !heap)) {
sciprintf("%s: failed to load %s\n", __FUNCTION__, !script ? "script" : "heap");
return;
}
if (s->version < SCI_VERSION_FTU_NEW_SCRIPT_HEADER) {
mem->data.script.buf_size = script->size + READ_LE_UINT16(script->data) * 2;
//locals_size = READ_LE_UINT16(script->data) * 2;
} else if (s->version < SCI_VERSION(1, 001, 000)) {
mem->data.script.buf_size = script->size;
} else {
mem->data.script.buf_size = script->size + heap->size;
mem->data.script.heap_size = heap->size;
// Ensure that the start of the heap resource can be word-aligned.
if (script->size & 2) {
mem->data.script.buf_size++;
mem->data.script.script_size++;
}
if (mem->data.script.buf_size > 65535) {
sciprintf("Script and heap sizes combined exceed 64K.\n"
"This means a fundamental design bug was made in SCI\n"
"regarding SCI1.1 games.\nPlease report this so it can be"
"fixed in the next major version!\n");
return;
}
}
}
int SegManager::initialiseScript(MemObject *mem, EngineState *s, int script_nr) {
// allocate the script.buf
Script *scr;
setScriptSize(mem, s, script_nr);
mem->data.script.buf = (byte*) sci_malloc(mem->data.script.buf_size);
dbgPrint("mem->data.script.buf ", mem->data.script.buf);
if (!mem->data.script.buf) {
freeScript(mem);
sciprintf("SegManager: Not enough memory space for script size");
mem->data.script.buf_size = 0;
return 0;
}
// Initialize objects
scr = &(mem->data.script);
scr->objects = NULL;
scr->objects_allocated = 0;
scr->objects_nr = 0; // No objects recorded yet
scr->locals_offset = 0;
scr->locals_block = NULL;
scr->code = NULL;
scr->code_blocks_nr = 0;
scr->code_blocks_allocated = 0;
scr->nr = script_nr;
scr->marked_as_deleted = 0;
scr->relocated = 0;
scr->obj_indices = new IntMapper();
if (s->version >= SCI_VERSION(1, 001, 000))
scr->heap_start = scr->buf + scr->script_size;
else
scr->heap_start = scr->buf;
return 1;
}
int SegManager::deallocate(int seg, bool recursive) {
MemObject *mobj;
VERIFY(check(seg), "invalid seg id");
int i;
mobj = heap[seg];
id_seg_map->removeKey(mobj->segmgr_id);
switch (mobj->type) {
case MEM_OBJ_SCRIPT:
freeScript(mobj);
mobj->data.script.buf = NULL;
if (recursive && mobj->data.script.locals_segment)
deallocate(mobj->data.script.locals_segment, recursive);
break;
case MEM_OBJ_LOCALS:
free(mobj->data.locals.locals);
mobj->data.locals.locals = NULL;
break;
case MEM_OBJ_DYNMEM:
free(mobj->data.dynmem.description);
mobj->data.dynmem.description = NULL;
free(mobj->data.dynmem.buf);
mobj->data.dynmem.buf = NULL;
break;
case MEM_OBJ_SYS_STRINGS:
for (i = 0; i < SYS_STRINGS_MAX; i++) {
SystemString *str = &mobj->data.sys_strings.strings[i];
if (str->name) {
free(str->name);
str->name = NULL;
free(str->value);
str->value = NULL;
str->max_size = 0;
}
}
break;
case MEM_OBJ_STACK:
free(mobj->data.stack.entries);
mobj->data.stack.entries = NULL;
break;
case MEM_OBJ_LISTS:
free(mobj->data.lists.table);
mobj->data.lists.table = NULL;
mobj->data.lists.entries_nr = mobj->data.lists.max_entry = 0;
break;
case MEM_OBJ_NODES:
free(mobj->data.nodes.table);
mobj->data.nodes.table = NULL;
mobj->data.nodes.entries_nr = mobj->data.nodes.max_entry = 0;
break;
case MEM_OBJ_CLONES:
free(mobj->data.clones.table);
mobj->data.clones.table = NULL;
mobj->data.clones.entries_nr = mobj->data.clones.max_entry = 0;
break;
case MEM_OBJ_HUNK:
free(mobj->data.hunks.table);
mobj->data.hunks.table = NULL;
mobj->data.hunks.entries_nr = mobj->data.hunks.max_entry = 0;
break;
case MEM_OBJ_RESERVED:
free(mobj->data.reserved);
break;
case MEM_OBJ_STRING_FRAG:
break;
default:
fprintf(stderr, "Deallocating segment type %d not supported!\n",
mobj->type);
BREAKPOINT();
}
free(mobj);
heap[seg] = NULL;
return 1;
}
int SegManager::scriptMarkedDeleted(int script_nr) {
Script *scr;
int seg = segGet(script_nr);
VERIFY(check(seg), "invalid seg id");
scr = &(heap[seg]->data.script);
return scr->marked_as_deleted;
}
void SegManager::markScriptDeleted(int script_nr) {
Script *scr;
int seg = segGet(script_nr);
VERIFY(check(seg), "invalid seg id");
scr = &(heap[seg]->data.script);
scr->marked_as_deleted = 1;
}
void SegManager::unmarkScriptDeleted(int script_nr) {
Script *scr;
int seg = segGet(script_nr);
VERIFY(check(seg), "invalid seg id");
scr = &(heap[seg]->data.script);
scr->marked_as_deleted = 0;
}
int SegManager::scriptIsMarkedAsDeleted(SegmentId seg) {
Script *scr;
if (!check(seg))
return 0;
if (heap[seg]->type != MEM_OBJ_SCRIPT)
return 0;
scr = &(heap[seg]->data.script);
return scr->marked_as_deleted;
}
int SegManager::deallocateScript(int script_nr) {
int seg = segGet(script_nr);
deallocate(seg, true);
return 1;
}
MemObject *SegManager::memObjAllocate(SegmentId segid, int hash_id, memObjType type) {
MemObject *mem = (MemObject *)sci_calloc(sizeof(MemObject), 1);
if (!mem) {
sciprintf("SegManager: invalid mem_obj ");
return NULL;
}
if (segid >= heap_size) {
void *temp;
int oldhs = heap_size;
if (segid >= heap_size * 2) {
sciprintf("SegManager: hash_map error or others??");
return NULL;
}
heap_size *= 2;
temp = sci_realloc((void *)heap, heap_size * sizeof(MemObject *));
if (!temp) {
sciprintf("SegManager: Not enough memory space for script size");
return NULL;
}
heap = (MemObject **)temp;
// Clear pointers
memset(heap + oldhs, 0, sizeof(MemObject *) * (heap_size - oldhs));
}
mem->segmgr_id = hash_id;
mem->type = type;
// hook it to the heap
heap[segid] = mem;
return mem;
}
/* No longer in use?
void SegManager::sm_object_init(Object *object) {
if (!object)
return;
object->variables_nr = 0;
object->variables = NULL;
};*/
void SegManager::freeScript(MemObject *mem) {
if (!mem)
return;
if (mem->data.script.buf) {
free(mem->data.script.buf);
mem->data.script.buf = NULL;
mem->data.script.buf_size = 0;
}
if (mem->data.script.objects) {
int i;
for (i = 0; i < mem->data.script.objects_nr; i++) {
Object* object = &mem->data.script.objects[i];
if (object->variables) {
free(object->variables);
object->variables = NULL;
object->variables_nr = 0;
}
}
free(mem->data.script.objects);
mem->data.script.objects = NULL;
mem->data.script.objects_nr = 0;
}
delete mem->data.script.obj_indices;
free(mem->data.script.code);
}
// memory operations
#if 0
// Unreferenced - removed
static void SegManager::sm_mset(int offset, int c, size_t n, int id, int flag) {
MemObject *mem_obj;
GET_SEGID();
mem_obj = heap[id];
switch (mem_obj->type) {
case MEM_OBJ_SCRIPT:
if (mem_obj->data.script.buf) {
memset(mem_obj->data.script.buf + offset, c, n);
}
break;
case MEM_OBJ_CLONES:
sciprintf("memset for clones haven't been implemented\n");
break;
default:
sciprintf("unknown mem obj type\n");
break;
}
}
#endif
#if 0
// Unreferenced - removed
static void SegManager::sm_mcpy_in_in(int dst, const int src, size_t n, int id, int flag) {
MemObject *mem_obj;
GET_SEGID();
mem_obj = heap[id];
switch (mem_obj->type) {
case MEM_OBJ_SCRIPT:
if (mem_obj->data.script.buf) {
memcpy(mem_obj->data.script.buf + dst, mem_obj->data.script.buf + src, n);
}
break;
case MEM_OBJ_CLONES:
sciprintf("memcpy for clones haven't been implemented\n");
break;
default:
sciprintf("unknown mem obj type\n");
break;
}
}
#endif
void SegManager::mcpyInOut(int dst, const void *src, size_t n, int id, int flag) {
MemObject *mem_obj;
GET_SEGID();
mem_obj = heap[id];
switch (mem_obj->type) {
case MEM_OBJ_SCRIPT:
if (mem_obj->data.script.buf) {
memcpy(mem_obj->data.script.buf + dst, src, n);
}
break;
case MEM_OBJ_CLONES:
sciprintf("memcpy for clones hasn't been implemented yet\n");
break;
default:
sciprintf("unknown mem obj type\n");
break;
}
}
#if 0
// Unreferenced - removed
static void SegManager::sm_mcpy_out_in(void *dst, const int src, size_t n, int id, int flag) {
MemObject *mem_obj;
GET_SEGID();
mem_obj = heap[id];
switch (mem_obj->type) {
case MEM_OBJ_SCRIPT:
if (mem_obj->data.script.buf) {
memcpy(dst, mem_obj->data.script.buf + src, n);
}
break;
case MEM_OBJ_CLONES:
sciprintf("memcpy for clones hasn't been implemented yet\n");
break;
default:
sciprintf("unknown mem obj type\n");
break;
}
}
#endif
int16 SegManager::getHeap(reg_t reg) {
MemObject *mem_obj;
memObjType mem_type;
VERIFY(check(reg.segment), "Invalid seg id");
mem_obj = heap[reg.segment];
mem_type = mem_obj->type;
switch (mem_type) {
case MEM_OBJ_SCRIPT:
VERIFY(reg.offset + 1 < (uint16)mem_obj->data.script.buf_size, "invalid offset\n");
return (mem_obj->data.script.buf[reg.offset] | (mem_obj->data.script.buf[reg.offset+1]) << 8);
case MEM_OBJ_CLONES:
sciprintf("memcpy for clones hasn't been implemented yet\n");
break;
default:
sciprintf("unknown mem obj type\n");
break;
}
return 0; // never get here
}
#if 0
// Unreferenced - removed
void SegManager::sm_put_heap(reg_t reg, int16 value) {
MemObject *mem_obj;
memObjType mem_type;
VERIFY(check(reg.segment), "Invalid seg id");
mem_obj = heap[reg.segment];
mem_type = mem_obj->type;
switch (mem_type) {
case MEM_OBJ_SCRIPT:
VERIFY(reg.offset + 1 < (uint16)mem_obj->data.script.buf_size, "invalid offset");
mem_obj->data.script.buf[reg.offset] = value & 0xff;
mem_obj->data.script.buf[reg.offset + 1] = value >> 8;
break;
case MEM_OBJ_CLONES:
sciprintf("memcpy for clones haven't been implemented\n");
break;
default:
sciprintf("unknown mem obj type\n");
break;
}
}
#endif
// return the seg if script_id is valid and in the map, else -1
int SegManager::segGet(int script_id) const {
return id_seg_map->lookupKey(script_id);
}
// validate the seg
// return:
// false - invalid seg
// true - valid seg
bool SegManager::check(int seg) {
if (seg < 0 || seg >= heap_size) {
return false;
}
if (!heap[seg]) {
sciprintf("SegManager: seg %x is removed from memory, but not removed from hash_map\n", seg);
return false;
}
return true;
}
int SegManager::scriptIsLoaded(int id, idFlag flag) {
if (flag == SCRIPT_ID)
id = segGet(id);
return check(id);
}
void SegManager::incrementLockers(int id, idFlag flag) {
if (flag == SCRIPT_ID)
id = segGet(id);
VERIFY(check(id), "invalid seg id");
heap[id]->data.script.lockers++;
}
void SegManager::decrementLockers(int id, idFlag flag) {
if (flag == SCRIPT_ID)
id = segGet(id);
VERIFY(check(id), "invalid seg id");
if (heap[id]->data.script.lockers > 0)
heap[id]->data.script.lockers--;
}
int SegManager::getLockers(int id, idFlag flag) {
if (flag == SCRIPT_ID)
id = segGet(id);
VERIFY(check(id), "invalid seg id");
return heap[id]->data.script.lockers;
}
void SegManager::setLockers(int lockers, int id, idFlag flag) {
if (flag == SCRIPT_ID)
id = segGet(id);
VERIFY(check(id), "invalid seg id");
heap[id]->data.script.lockers = lockers;
}
void SegManager::setExportTableOffset(int offset, int id, idFlag flag) {
Script *scr = &(heap[id]->data.script);
GET_SEGID();
if (offset) {
scr->export_table = (uint16 *)(scr->buf + offset + 2);
scr->exports_nr = READ_LE_UINT16((byte *)(scr->export_table - 1));
} else {
scr->export_table = NULL;
scr->exports_nr = 0;
}
}
#if 0
// Unreferenced - removed
int SegManager::sm_hash_segment_data(int id) {
int i, len, hash_code = 0x55555555;
char *buf;
if (heap[id]->type == MEM_OBJ_LISTS)
return 0;
if (heap[id]->type == MEM_OBJ_NODES)
return 0;
if (heap[id]->type == MEM_OBJ_CLONES)
return 0;
buf = (char *)dereference(make_reg(id, 0), &len);
for (i = 0; i < len; i++)
hash_code = (hash_code * 19) + *(buf + i);
return hash_code;
}
#endif
void SegManager::setExportWidth(int flag) {
exports_wide = flag;
}
#if 0
// Unreferenced - removed
static uint16 *SegManager::sm_get_export_table_offset(int id, int flag, int *max) {
GET_SEGID();
if (max)
*max = heap[id]->data.script.exports_nr;
return heap[id]->data.script.export_table;
}
#endif
void SegManager::setSynonymsOffset(int offset, int id, idFlag flag) {
GET_SEGID();
heap[id]->data.script.synonyms = heap[id]->data.script.buf + offset;
}
byte *SegManager::getSynonyms(int id, idFlag flag) {
GET_SEGID();
return heap[id]->data.script.synonyms;
}
void SegManager::setSynonymsNr(int nr, int id, idFlag flag) {
GET_SEGID();
heap[id]->data.script.synonyms_nr = nr;
}
int SegManager::getSynonymsNr(int id, idFlag flag) {
GET_SEGID();
return heap[id]->data.script.synonyms_nr;
}
#if 0
// Unreferenced - removed
static int SegManager::sm_get_heappos(int id, int flag) {
GET_SEGID();
return 0;
}
#endif
#if 0
// Unreferenced - removed
static void SegManager::sm_set_variables(reg_t reg, int obj_index, reg_t variable_reg, int variable_index) {
Script *script;
VERIFY(check(reg.segment), "invalid seg id");
VERIFY(heap[reg.segment], "invalid mem");
script = &(heap[reg.segment]->data.script);
VERIFY(obj_index < script->objects_nr, "Invalid obj_index");
VERIFY(variable_index >= 0 && variable_index < script->objects[obj_index].variables_nr, "Attempt to write to invalid variable number");
script->objects[obj_index].variables[variable_index] = variable_reg;
}
#endif
int SegManager::relocateBlock(reg_t *block, int block_location, int block_items, SegmentId segment, int location) {
int rel = location - block_location;
int index;
if (rel < 0)
return 0;
index = rel >> 1;
if (index >= block_items)
return 0;
if (rel & 1) {
sciprintf("Error: Attempt to relocate odd variable #%d.5e (relative to %04x)\n", index, block_location);
return 0;
}
block[index].segment = segment; // Perform relocation
if (isSci1_1)
block[index].offset += heap[segment]->data.script.script_size;
return 1;
}
int SegManager::relocateLocal(Script *scr, SegmentId segment, int location) {
if (scr->locals_block)
return relocateBlock(scr->locals_block->locals, scr->locals_offset, scr->locals_block->nr, segment, location);
else
return 0; // No hands, no cookies
}
int SegManager::relocateObject(Object *obj, SegmentId segment, int location) {
return relocateBlock(obj->variables, obj->pos.offset, obj->variables_nr, segment, location);
}
void SegManager::scriptAddCodeBlock(reg_t location) {
MemObject *mobj = heap[location.segment];
Script *scr;
int index;
VERIFY(!(location.segment >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt to add a code block to non-script\n");
scr = &(mobj->data.script);
if (++scr->code_blocks_nr > scr->code_blocks_allocated) {
scr->code_blocks_allocated += DEFAULT_OBJECTS_INCREMENT;
scr->code = (CodeBlock *)sci_realloc(scr->code, scr->code_blocks_allocated * sizeof(CodeBlock));
}
index = scr->code_blocks_nr - 1;
scr->code[index].pos = location;
scr->code[index].size = READ_LE_UINT16(scr->buf + location.offset - 2);
}
void SegManager::scriptRelocate(reg_t block) {
MemObject *mobj = heap[block.segment];
Script *scr;
int count;
int i;
VERIFY(!(block.segment >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt relocate non-script\n");
scr = &(mobj->data.script);
VERIFY(block.offset < (uint16)scr->buf_size && READ_LE_UINT16(scr->buf + block.offset) * 2 + block.offset < (uint16)scr->buf_size,
"Relocation block outside of script\n");
count = READ_LE_UINT16(scr->buf + block.offset);
for (i = 0; i <= count; i++) {
int pos = READ_LE_UINT16(scr->buf + block.offset + 2 + (i * 2));
if (!pos)
continue; // FIXME: A hack pending investigation
if (!relocateLocal(scr, block.segment, pos)) {
int k, done = 0;
for (k = 0; !done && k < scr->objects_nr; k++) {
if (relocateObject(scr->objects + k, block.segment, pos))
done = 1;
}
for (k = 0; !done && k < scr->code_blocks_nr; k++) {
if (pos >= scr->code[k].pos.offset &&
pos < scr->code[k].pos.offset + scr->code[k].size)
done = 1;
}
if (!done) {
sciprintf("While processing relocation block "PREG":\n", PRINT_REG(block));
sciprintf("Relocation failed for index %04x (%d/%d)\n", pos, i + 1, count);
if (scr->locals_block)
sciprintf("- locals: %d at %04x\n", scr->locals_block->nr, scr->locals_offset);
else
sciprintf("- No locals\n");
for (k = 0; k < scr->objects_nr; k++)
sciprintf("- obj#%d at %04x w/ %d vars\n", k, scr->objects[k].pos.offset, scr->objects[k].variables_nr);
// SQ3 script 71 has broken relocation entries.
// Since this is mainstream, we can't break out as we used to do.
sciprintf("Trying to continue anyway...\n");
// BREAKPOINT();
}
}
}
}
void SegManager::heapRelocate(EngineState *s, reg_t block) {
MemObject *mobj = heap[block.segment];
Script *scr;
int count;
int i;
VERIFY(!(block.segment >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt relocate non-script\n");
scr = &(mobj->data.script);
VERIFY(block.offset < (uint16)scr->heap_size && READ_LE_UINT16(scr->heap_start + block.offset) * 2 + block.offset < (uint16)scr->buf_size,
"Relocation block outside of script\n");
if (scr->relocated)
return;
scr->relocated = 1;
count = READ_LE_UINT16(scr->heap_start + block.offset);
for (i = 0; i < count; i++) {
int pos = READ_LE_UINT16(scr->heap_start + block.offset + 2 + (i * 2)) + scr->script_size;
if (!relocateLocal(scr, block.segment, pos)) {
int k, done = 0;
for (k = 0; !done && k < scr->objects_nr; k++) {
if (relocateObject(scr->objects + k, block.segment, pos))
done = 1;
}
if (!done) {
sciprintf("While processing relocation block "PREG":\n", PRINT_REG(block));
sciprintf("Relocation failed for index %04x (%d/%d)\n", pos, i + 1, count);
if (scr->locals_block)
sciprintf("- locals: %d at %04x\n", scr->locals_block->nr, scr->locals_offset);
else
sciprintf("- No locals\n");
for (k = 0; k < scr->objects_nr; k++)
sciprintf("- obj#%d at %04x w/ %d vars\n", k, scr->objects[k].pos.offset, scr->objects[k].variables_nr);
sciprintf("Triggering breakpoint...\n");
BREAKPOINT();
}
}
}
}
#define INST_LOOKUP_CLASS(id) ((id == 0xffff) ? NULL_REG : get_class_address(s, id, SCRIPT_GET_LOCK, NULL_REG))
reg_t get_class_address(EngineState *s, int classnr, int lock, reg_t caller);
Object *SegManager::scriptObjInit0(EngineState *s, reg_t obj_pos) {
MemObject *mobj = heap[obj_pos.segment];
Script *scr;
Object *obj;
int id;
unsigned int base = obj_pos.offset - SCRIPT_OBJECT_MAGIC_OFFSET;
reg_t temp;
VERIFY(!(obj_pos.segment >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt to initialize object in non-script\n");
scr = &(mobj->data.script);
VERIFY(base < scr->buf_size, "Attempt to initialize object beyond end of script\n");
if (!scr->objects) {
scr->objects_allocated = DEFAULT_OBJECTS;
scr->objects = (Object *)sci_malloc(sizeof(Object) * scr->objects_allocated);
}
if (scr->objects_nr == scr->objects_allocated) {
scr->objects_allocated += DEFAULT_OBJECTS_INCREMENT;
scr->objects = (Object *)sci_realloc(scr->objects, sizeof(Object) * scr->objects_allocated);
}
temp = make_reg(obj_pos.segment, base);
id = scr->obj_indices->checkKey(base, true);
scr->objects_nr++;
obj = scr->objects + id;
VERIFY(base + SCRIPT_FUNCTAREAPTR_OFFSET < scr->buf_size, "Function area pointer stored beyond end of script\n");
{
byte *data = (byte *)(scr->buf + base);
int funct_area = READ_LE_UINT16(data + SCRIPT_FUNCTAREAPTR_OFFSET);
int variables_nr;
int functions_nr;
int is_class;
int i;
obj->flags = 0;
obj->pos = temp;
VERIFY(base + funct_area < scr->buf_size, "Function area pointer references beyond end of script");
variables_nr = READ_LE_UINT16(data + SCRIPT_SELECTORCTR_OFFSET);
functions_nr = READ_LE_UINT16(data + funct_area - 2);
is_class = READ_LE_UINT16(data + SCRIPT_INFO_OFFSET) & SCRIPT_INFO_CLASS;
VERIFY(base + funct_area + functions_nr * 2
// add again for classes, since those also store selectors
+ (is_class ? functions_nr * 2 : 0) < scr->buf_size, "Function area extends beyond end of script");
obj->variables_nr = variables_nr;
obj->variables = (reg_t *)sci_malloc(sizeof(reg_t) * variables_nr);
obj->methods_nr = functions_nr;
obj->base = scr->buf;
obj->base_obj = data;
obj->base_method = (uint16 *)(data + funct_area);
obj->base_vars = NULL;
for (i = 0; i < variables_nr; i++)
obj->variables[i] = make_reg(0, READ_LE_UINT16(data + (i * 2)));
}
return obj;
}
Object *SegManager::scriptObjInit11(EngineState *s, reg_t obj_pos) {
MemObject *mobj = heap[obj_pos.segment];
Script *scr;
Object *obj;
int id;
int base = obj_pos.offset;
VERIFY(!(obj_pos.segment >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt to initialize object in non-script\n");
scr = &(mobj->data.script);
VERIFY(base < (uint16)scr->buf_size, "Attempt to initialize object beyond end of script\n");
if (!scr->objects) {
scr->objects_allocated = DEFAULT_OBJECTS;
scr->objects = (Object *)sci_malloc(sizeof(Object) * scr->objects_allocated);
}
if (scr->objects_nr == scr->objects_allocated) {
scr->objects_allocated += DEFAULT_OBJECTS_INCREMENT;
scr->objects = (Object *)sci_realloc(scr->objects, sizeof(Object) * scr->objects_allocated);
}
id = scr->obj_indices->checkKey(obj_pos.offset, true);
scr->objects_nr++;
obj = scr->objects + id;
VERIFY(base + SCRIPT_FUNCTAREAPTR_OFFSET < (uint16)scr->buf_size, "Function area pointer stored beyond end of script\n");
{
byte *data = (byte *)(scr->buf + base);
uint16 *funct_area = (uint16 *)(scr->buf + READ_LE_UINT16(data + 6));
uint16 *prop_area = (uint16 *)(scr->buf + READ_LE_UINT16(data + 4));
int variables_nr;
int functions_nr;
int is_class;
int i;
obj->flags = 0;
obj->pos = obj_pos;
VERIFY((byte *) funct_area < scr->buf + scr->buf_size, "Function area pointer references beyond end of script");
variables_nr = READ_LE_UINT16(data + 2);
functions_nr = *funct_area;
is_class = READ_LE_UINT16(data + 14) & SCRIPT_INFO_CLASS;
obj->base_method = funct_area;
obj->base_vars = prop_area;
VERIFY(((byte *) funct_area + functions_nr) < scr->buf + scr->buf_size, "Function area extends beyond end of script");
obj->variables_nr = variables_nr;
obj->variable_names_nr = variables_nr;
obj->variables = (reg_t *)sci_malloc(sizeof(reg_t) * variables_nr);
obj->methods_nr = functions_nr;
obj->base = scr->buf;
obj->base_obj = data;
for (i = 0; i < variables_nr; i++)
obj->variables[i] = make_reg(0, READ_LE_UINT16(data + (i * 2)));
}
return obj;
}
Object *SegManager::scriptObjInit(EngineState *s, reg_t obj_pos) {
if (!isSci1_1)
return scriptObjInit0(s, obj_pos);
else
return scriptObjInit11(s, obj_pos);
}
LocalVariables *SegManager::allocLocalsSegment(Script *scr, int count) {
if (!count) { // No locals
scr->locals_segment = 0;
scr->locals_block = NULL;
return NULL;
} else {
MemObject *mobj;
LocalVariables *locals;
if (scr->locals_segment) {
mobj = heap[scr->locals_segment];
VERIFY(mobj != NULL, "Re-used locals segment was NULL'd out");
VERIFY(mobj->type == MEM_OBJ_LOCALS, "Re-used locals segment did not consist of local variables");
VERIFY(mobj->data.locals.script_id == scr->nr, "Re-used locals segment belonged to other script");
} else
mobj = allocNonscriptSegment(MEM_OBJ_LOCALS, &scr->locals_segment);
locals = scr->locals_block = &(mobj->data.locals);
locals->script_id = scr->nr;
locals->locals = (reg_t *)sci_calloc(count, sizeof(reg_t));
locals->nr = count;
return locals;
}
}
void SegManager::scriptInitialiseLocalsZero(SegmentId seg, int count) {
MemObject *mobj = heap[seg];
Script *scr;
VERIFY(!(seg >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt to initialize locals in non-script\n");
scr = &(mobj->data.script);
scr->locals_offset = -count * 2; // Make sure it's invalid
allocLocalsSegment(scr, count);
}
void SegManager::scriptInitialiseLocals(reg_t location) {
MemObject *mobj = heap[location.segment];
unsigned int count;
Script *scr;
LocalVariables *locals;
VERIFY(!(location.segment >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt to initialize locals in non-script\n");
scr = &(mobj->data.script);
VERIFY(location.offset + 1 < (uint16)scr->buf_size, "Locals beyond end of script\n");
if (isSci1_1)
count = READ_LE_UINT16(scr->buf + location.offset - 2);
else
count = (READ_LE_UINT16(scr->buf + location.offset - 2) - 4) >> 1;
// half block size
scr->locals_offset = location.offset;
if (!(location.offset + count * 2 + 1 < scr->buf_size)) {
sciprintf("Locals extend beyond end of script: offset %04x, count %x vs size %x\n", location.offset, count, (uint)scr->buf_size);
count = (scr->buf_size - location.offset) >> 1;
}
locals = allocLocalsSegment(scr, count);
if (locals) {
uint i;
byte *base = (byte *)(scr->buf + location.offset);
for (i = 0; i < count; i++)
locals->locals[i].offset = READ_LE_UINT16(base + i * 2);
}
}
void SegManager::scriptRelocateExportsSci11(int seg) {
MemObject *mobj = heap[seg];
Script *scr;
int i;
int location;
VERIFY(!(seg >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt to relocate exports in non-script\n");
scr = &(mobj->data.script);
for (i = 0; i < scr->exports_nr; i++) {
/* We are forced to use an ugly heuristic here to distinguish function
exports from object/class exports. The former kind points into the
script resource, the latter into the heap resource. */
location = READ_LE_UINT16((byte *)(scr->export_table + i));
if (READ_LE_UINT16(scr->heap_start + location) == SCRIPT_OBJECT_MAGIC_NUMBER) {
WRITE_LE_UINT16((byte *)(scr->export_table + i), location + scr->heap_start - scr->buf);
} else {
// Otherwise it's probably a function export,
// and we don't need to do anything.
}
}
}
void SegManager::scriptInitialiseObjectsSci11(EngineState *s, int seg) {
MemObject *mobj = heap[seg];
Script *scr;
byte *seeker;
VERIFY(!(seg >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt to relocate exports in non-script\n");
scr = &(mobj->data.script);
seeker = scr->heap_start + 4 + READ_LE_UINT16(scr->heap_start + 2) * 2;
while (READ_LE_UINT16(seeker) == SCRIPT_OBJECT_MAGIC_NUMBER) {
if (READ_LE_UINT16(seeker + 14) & SCRIPT_INFO_CLASS) {
int classpos = seeker - scr->buf;
int species = READ_LE_UINT16(seeker + 10);
if (species < 0 || species >= (int)s->_classtable.size()) {
sciprintf("Invalid species %d(0x%x) not in interval [0,%d) while instantiating script %d\n",
species, species, s->_classtable.size(), scr->nr);
script_debug_flag = script_error_flag = 1;
return;
}
s->_classtable[species].script = scr->nr;
s->_classtable[species].reg.segment = seg;
s->_classtable[species].reg.offset = classpos;
}
seeker += READ_LE_UINT16(seeker + 2) * 2;
}
seeker = scr->heap_start + 4 + READ_LE_UINT16(scr->heap_start + 2) * 2;
while (READ_LE_UINT16(seeker) == SCRIPT_OBJECT_MAGIC_NUMBER) {
reg_t reg;
Object *obj;
reg.segment = seg;
reg.offset = seeker - scr->buf;
obj = scriptObjInit(s, reg);
#if 0
if (obj->variables[5].offset != 0xffff) {
obj->variables[5] = INST_LOOKUP_CLASS(obj->variables[5].offset);
base_obj = obj_get(s, obj->variables[5]);
obj->variable_names_nr = base_obj->variables_nr;
obj->base_obj = base_obj->base_obj;
}
#endif
// Copy base from species class, as we need its selector IDs
obj->variables[6] = INST_LOOKUP_CLASS(obj->variables[6].offset);
seeker += READ_LE_UINT16(seeker + 2) * 2;
}
}
void SegManager::scriptFreeUnusedObjects(SegmentId seg) {
MemObject *mobj = heap[seg];
Script *scr;
VERIFY(!(seg >= heap_size || mobj->type != MEM_OBJ_SCRIPT), "Attempt to free unused objects in non-script\n");
scr = &(mobj->data.script);
if (scr->objects_allocated > scr->objects_nr) {
if (scr->objects_nr)
scr->objects = (Object *)sci_realloc(scr->objects, sizeof(Object) * scr->objects_nr);
else {
if (scr->objects_allocated)
free(scr->objects);
scr->objects = NULL;
}
scr->objects_allocated = scr->objects_nr;
}
}
/*
static char *SegManager::dynprintf(char *msg, ...) {
va_list argp;
char *buf = (char *)sci_malloc(strlen(msg) + 100);
va_start(argp, msg);
vsprintf(buf, msg, argp);
va_end(argp);
return buf;
}
*/
dstack_t *SegManager::allocateStack(int size, SegmentId *segid) {
MemObject *memobj = allocNonscriptSegment(MEM_OBJ_STACK, segid);
dstack_t *retval = &(memobj->data.stack);
retval->entries = (reg_t*)sci_calloc(size, sizeof(reg_t));
retval->nr = size;
return retval;
}
SystemStrings *SegManager::allocateSysStrings(SegmentId *segid) {
MemObject *memobj = allocNonscriptSegment(MEM_OBJ_SYS_STRINGS, segid);
SystemStrings *retval = &(memobj->data.sys_strings);
memset(retval, 0, sizeof(SystemString)*SYS_STRINGS_MAX);
return retval;
}
SegmentId SegManager::allocateStringFrags() {
SegmentId segid;
allocNonscriptSegment(MEM_OBJ_STRING_FRAG, &segid);
return segid;
}
#if 0
// Unreferenced - removed
SegmentId SegManager::sm_allocate_reserved_segment(char *src_name) {
SegmentId segid;
MemObject *memobj = allocNonscriptSegment(MEM_OBJ_RESERVED, &segid);
char *name = sci_strdup(src_name);
memobj->data.reserved = name;
return segid;
}
#endif
uint16 SegManager::validateExportFunc(int pubfunct, int seg) {
Script* script;
uint16 offset;
VERIFY(check(seg), "invalid seg id");
VERIFY(heap[seg]->type == MEM_OBJ_SCRIPT, "Can only validate exports on scripts");
script = &heap[seg]->data.script;
if (script->exports_nr <= pubfunct) {
sciprintf("pubfunct is invalid");
return 0;
}
if (exports_wide)
pubfunct *= 2;
offset = READ_LE_UINT16((byte *)(script->export_table + pubfunct));
VERIFY(offset < script->buf_size, "invalid export function pointer");
return offset;
}
void SegManager::free_hunk_entry(reg_t addr) {
MemObject *mobj = GET_SEGMENT(*this, addr.segment, MEM_OBJ_HUNK);
if (!mobj) {
sciprintf("Attempt to free Hunk from address "PREG": Invalid segment type\n", PRINT_REG(addr));
return;
}
Sci::free_Hunk_entry(&(mobj->data.hunks), addr.offset);
}
Hunk *SegManager::alloc_hunk_entry(const char *hunk_type, int size, reg_t *reg) {
Hunk *h = alloc_Hunk(reg);
if (!h)
return NULL;
h->mem = sci_malloc(size);
h->size = size;
h->type = hunk_type;
return h;
}
void init_List_table(ListTable *table) {
table->entries_nr = 8;
table->max_entry = 0;
table->entries_used = 0;
table->first_free = HEAPENTRY_INVALID;
table->table = (ListEntry *)sci_malloc(sizeof(ListEntry) * 8);
memset(table->table, 0, sizeof(ListEntry) * 8);
}
void free_List_entry(ListTable *table, int index) {
ListEntry *e = table->table + index;
if (index < 0 || index >= table->max_entry) {
error("heapmgr: Attempt to release invalid table index %d", index);
}
e->next_free = table->first_free;
table->first_free = index;
table->entries_used--;
}
void init_Node_table(NodeTable *table) {
table->entries_nr = 32;
table->max_entry = 0;
table->entries_used = 0;
table->first_free = HEAPENTRY_INVALID;
table->table = (NodeEntry *)sci_malloc(sizeof(NodeEntry) * 32);
memset(table->table, 0, sizeof(NodeEntry) * 32);
}
void free_Node_entry(NodeTable *table, int index) {
NodeEntry *e = table->table + index;
if (index < 0 || index >= table->max_entry) {
error("heapmgr: Attempt to release invalid table index %d", index);
}
e->next_free = table->first_free;
table->first_free = index;
table->entries_used--;
}
void init_Clone_table(CloneTable *table) {
table->entries_nr = 16;
table->max_entry = 0;
table->entries_used = 0;
table->first_free = HEAPENTRY_INVALID;
table->table = (CloneEntry *)sci_malloc(sizeof(CloneEntry) * 16);
memset(table->table, 0, sizeof(CloneEntry) * 16);
}
void free_Clone_entry(CloneTable *table, int index) {
CloneEntry *e = table->table + index;
if (index < 0 || index >= table->max_entry) {
error("heapmgr: Attempt to release invalid table index %d", index);
}
free(e->entry.variables); // Free the dynamically allocated memory part
e->next_free = table->first_free;
table->first_free = index;
table->entries_used--;
}
void init_Hunk_table(HunkTable *table) {
table->entries_nr = 4;
table->max_entry = 0;
table->entries_used = 0;
table->first_free = HEAPENTRY_INVALID;
table->table = (HunkEntry *)sci_malloc(sizeof(HunkEntry) * 4);
memset(table->table, 0, sizeof(HunkEntry) * 4);
}
void free_Hunk_entry(HunkTable *table, int index) {
HunkEntry *e = table->table + index;
if (index < 0 || index >= table->max_entry) {
error("heapmgr: Attempt to release invalid table index %d", index);
}
free(e->entry.mem);
e->next_free = table->first_free;
table->first_free = index;
table->entries_used--;
}
Clone *SegManager::alloc_Clone(reg_t *addr) {
MemObject *mobj;
CloneTable *table;
int offset;
if (!Clones_seg_id) {
mobj = allocNonscriptSegment(MEM_OBJ_CLONES, &(Clones_seg_id));
init_Clone_table(&(mobj->data.clones));
} else
mobj = heap[Clones_seg_id];
table = &(mobj->data.clones);
offset = table->allocEntry();
*addr = make_reg(Clones_seg_id, offset);
return &(mobj->data.clones.table[offset].entry);
}
List *SegManager::alloc_List(reg_t *addr) {
MemObject *mobj;
ListTable *table;
int offset;
if (!Lists_seg_id) {
mobj = allocNonscriptSegment(MEM_OBJ_LISTS, &(Lists_seg_id));
init_List_table(&(mobj->data.lists));
} else
mobj = heap[Lists_seg_id];
table = &(mobj->data.lists);
offset = table->allocEntry();
*addr = make_reg(Lists_seg_id, offset);
return &(mobj->data.lists.table[offset].entry);
}
Node *SegManager::alloc_Node(reg_t *addr) {
MemObject *mobj;
NodeTable *table;
int offset;
if (!Nodes_seg_id) {
mobj = allocNonscriptSegment(MEM_OBJ_NODES, &(Nodes_seg_id));
init_Node_table(&(mobj->data.nodes));
} else
mobj = heap[Nodes_seg_id];
table = &(mobj->data.nodes);
offset = table->allocEntry();
*addr = make_reg(Nodes_seg_id, offset);
return &(mobj->data.nodes.table[offset].entry);
}
Hunk *SegManager::alloc_Hunk(reg_t *addr) {
MemObject *mobj;
HunkTable *table;
int offset;
if (!Hunks_seg_id) {
mobj = allocNonscriptSegment(MEM_OBJ_HUNK, &(Hunks_seg_id));
init_Hunk_table(&(mobj->data.hunks));
} else
mobj = heap[Hunks_seg_id];
table = &(mobj->data.hunks);
offset = table->allocEntry();
*addr = make_reg(Hunks_seg_id, offset);
return &(mobj->data.hunks.table[offset].entry);
}
byte *SegManager::dereference(reg_t pointer, int *size) {
MemObject *mobj;
byte *base = NULL;
int count;
if (!pointer.segment || (pointer.segment >= heap_size) || !heap[pointer.segment]) {
sciprintf("Error: Attempt to dereference invalid pointer "PREG"!\n",
PRINT_REG(pointer));
return NULL; /* Invalid */
}
mobj = heap[pointer.segment];
switch (mobj->type) {
case MEM_OBJ_SCRIPT:
if (pointer.offset > mobj->data.script.buf_size) {
sciprintf("Error: Attempt to dereference invalid pointer "PREG" into script segment (script size=%d)\n",
PRINT_REG(pointer), (uint)mobj->data.script.buf_size);
return NULL;
}
if (size)
*size = mobj->data.script.buf_size - pointer.offset;
return (byte *)(mobj->data.script.buf + pointer.offset);
break;
case MEM_OBJ_LOCALS:
count = mobj->data.locals.nr * sizeof(reg_t);
base = (byte *)mobj->data.locals.locals;
break;
case MEM_OBJ_STACK:
count = mobj->data.stack.nr * sizeof(reg_t);
base = (byte *)mobj->data.stack.entries;
break;
case MEM_OBJ_DYNMEM:
count = mobj->data.dynmem.size;
base = (byte *)mobj->data.dynmem.buf;
break;
case MEM_OBJ_SYS_STRINGS:
if (size)
*size = mobj->data.sys_strings.strings[pointer.offset].max_size;
if (pointer.offset < SYS_STRINGS_MAX && mobj->data.sys_strings.strings[pointer.offset].name)
return (byte *)(mobj->data.sys_strings.strings[pointer.offset].value);
else {
sciprintf("Error: Attempt to dereference invalid pointer "PREG"!\n",
PRINT_REG(pointer));
return NULL;
}
case MEM_OBJ_RESERVED:
sciprintf("Error: Trying to dereference pointer "PREG" to reserved segment `%s'!\n",
PRINT_REG(pointer),
mobj->data.reserved);
return NULL;
break;
default:
sciprintf("Error: Trying to dereference pointer "PREG" to inappropriate"
" segment!\n",
PRINT_REG(pointer));
return NULL;
}
if (size)
*size = count;
return
base + pointer.offset;
}
unsigned char *SegManager::allocDynmem(int size, const char *descr, reg_t *addr) {
SegmentId seg;
MemObject *mobj = allocNonscriptSegment(MEM_OBJ_DYNMEM, &seg);
*addr = make_reg(seg, 0);
mobj->data.dynmem.size = size;
if (size == 0)
mobj->data.dynmem.buf = NULL;
else
mobj->data.dynmem.buf = (byte*) sci_malloc(size);
mobj->data.dynmem.description = sci_strdup(descr);
return (unsigned char *)(mobj->data.dynmem.buf);
}
const char *SegManager::getDescription(reg_t addr) {
MemObject *mobj = heap[addr.segment];
if (addr.segment >= heap_size)
return "";
switch (mobj->type) {
case MEM_OBJ_DYNMEM:
return mobj->data.dynmem.description;
default:
return "";
}
}
int SegManager::freeDynmem(reg_t addr) {
if (addr.segment <= 0 || addr.segment >= heap_size || !heap[addr.segment] || heap[addr.segment]->type != MEM_OBJ_DYNMEM)
return 1; // error
deallocate(addr.segment, true);
return 0; // OK
}
void SegManager::dbgPrint(const char* msg, void *i) {
#ifdef DEBUG_SEG_MANAGER
char buf[1000];
sprintf(buf, "%s = [0x%x], dec:[%d]", msg, i, i);
perror(buf);
#endif
}
// ------------------- Segment interface ------------------
SegInterface::SegInterface(SegManager *segmgr, MemObject *mobj, SegmentId segId, memObjType typeId) :
_segmgr(segmgr), _mobj(mobj), _segId(segId), _typeId(typeId) {
VERIFY(_mobj->type == _typeId, "Invalid MemObject type");
}
reg_t SegInterface::findCanonicAddress(reg_t addr) {
return addr;
}
void SegInterface::freeAtAddress(reg_t sub_addr) {
}
void SegInterface::listAllDeallocatable(void *param, NoteCallback note) {
}
void SegInterface::listAllOutgoingReferences(EngineState *s, reg_t object, void *param, NoteCallback note) {
}
//-------------------- base --------------------
class SegInterfaceBase : public SegInterface {
protected:
SegInterfaceBase(SegManager *segmgr, MemObject *mobj, SegmentId segId, memObjType typeId) :
SegInterface(segmgr, mobj, segId, typeId) {}
public:
reg_t findCanonicAddress(reg_t addr);
void listAllDeallocatable(void *param, NoteCallback note);
};
reg_t SegInterfaceBase::findCanonicAddress(reg_t addr) {
addr.offset = 0;
return addr;
}
void SegInterfaceBase::listAllDeallocatable(void *param, NoteCallback note) {
(*note)(param, make_reg(_segId, 0));
}
//-------------------- script --------------------
class SegInterfaceScript : public SegInterfaceBase {
public:
SegInterfaceScript(SegManager *segmgr, MemObject *mobj, SegmentId segId) :
SegInterfaceBase(segmgr, mobj, segId, MEM_OBJ_SCRIPT) {}
void freeAtAddress(reg_t addr);
void listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note);
};
void SegInterfaceScript::freeAtAddress(reg_t addr) {
Script *script = &(_mobj->data.script);
/*
sciprintf("[GC] Freeing script "PREG"\n", PRINT_REG(addr));
if (script->locals_segment)
sciprintf("[GC] Freeing locals %04x:0000\n", script->locals_segment);
*/
if (script->marked_as_deleted)
_segmgr->deallocateScript(script->nr);
}
void SegInterfaceScript::listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note) {
Script *script = &(_mobj->data.script);
if (addr.offset <= script->buf_size && addr.offset >= -SCRIPT_OBJECT_MAGIC_OFFSET && RAW_IS_OBJECT(script->buf + addr.offset)) {
int idx = RAW_GET_CLASS_INDEX(script, addr);
if (idx >= 0 && idx < script->objects_nr) {
Object *obj = script->objects + idx;
int i;
// Note all local variables, if we have a local variable environment
if (script->locals_segment)
(*note)(param, make_reg(script->locals_segment, 0));
for (i = 0; i < obj->variables_nr; i++)
(*note)(param, obj->variables[i]);
} else {
fprintf(stderr, "Request for outgoing script-object reference at "PREG" yielded invalid index %d\n", PRINT_REG(addr), idx);
}
} else {
/* fprintf(stderr, "Unexpected request for outgoing script-object references at "PREG"\n", PRINT_REG(addr));*/
/* Happens e.g. when we're looking into strings */
}
}
#define LIST_ALL_DEALLOCATABLE(kind, kind_field) \
kind##Table * table = &(_mobj->data.kind_field); \
int i; \
\
for (i = 0; i < table->max_entry; i++) \
if (ENTRY_IS_VALID(table, i)) \
(*note) (param, make_reg(_segId, i));
//-------------------- clones --------------------
class SegInterfaceClones : public SegInterface {
public:
SegInterfaceClones(SegManager *segmgr, MemObject *mobj, SegmentId segId) :
SegInterface(segmgr, mobj, segId, MEM_OBJ_CLONES) {}
void freeAtAddress(reg_t addr);
void listAllDeallocatable(void *param, NoteCallback note);
void listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note);
};
void SegInterfaceClones::listAllDeallocatable(void *param, NoteCallback note) {
LIST_ALL_DEALLOCATABLE(Clone, clones);
}
void SegInterfaceClones::listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note) {
CloneTable *clone_table = &(_mobj->data.clones);
Clone *clone;
int i;
assert(addr.segment == _segId);
if (!(ENTRY_IS_VALID(clone_table, addr.offset))) {
fprintf(stderr, "Unexpected request for outgoing references from clone at "PREG"\n", PRINT_REG(addr));
// BREAKPOINT();
return;
}
clone = &(clone_table->table[addr.offset].entry);
// Emit all member variables (including references to the 'super' delegate)
for (i = 0; i < clone->variables_nr; i++)
(*note)(param, clone->variables[i]);
// Note that this also includes the 'base' object, which is part of the script and therefore also emits the locals.
(*note)(param, clone->pos);
//sciprintf("[GC] Reporting clone-pos "PREG"\n", PRINT_REG(clone->pos));
}
void SegInterfaceClones::freeAtAddress(reg_t addr) {
Object *victim_obj;
assert(addr.segment == _segId);
victim_obj = &(_mobj->data.clones.table[addr.offset].entry);
#ifdef GC_DEBUG
if (!(victim_obj->flags & OBJECT_FLAG_FREED))
sciprintf("[GC] Warning: Clone "PREG" not reachable and not freed (freeing now)\n", PRINT_REG(addr));
#ifdef GC_DEBUG_VERBOSE
else
sciprintf("[GC-DEBUG] Clone "PREG": Freeing\n", PRINT_REG(addr));
#endif
#endif
/*
sciprintf("[GC] Clone "PREG": Freeing\n", PRINT_REG(addr));
sciprintf("[GC] Clone had pos "PREG"\n", PRINT_REG(victim_obj->pos));
*/
free(victim_obj->variables);
victim_obj->variables = NULL;
Sci::free_Clone_entry(&(_mobj->data.clones), addr.offset);
}
//-------------------- locals --------------------
class SegInterfaceLocals : public SegInterface {
public:
SegInterfaceLocals(SegManager *segmgr, MemObject *mobj, SegmentId segId) :
SegInterface(segmgr, mobj, segId, MEM_OBJ_LOCALS) {}
reg_t findCanonicAddress(reg_t addr);
void freeAtAddress(reg_t addr);
void listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note);
};
reg_t SegInterfaceLocals::findCanonicAddress(reg_t addr) {
LocalVariables *locals = &(_mobj->data.locals);
// Reference the owning script
SegmentId owner_seg = _segmgr->segGet(locals->script_id);
assert(owner_seg >= 0);
return make_reg(owner_seg, 0);
}
void SegInterfaceLocals::freeAtAddress(reg_t sub_addr) {
//sciprintf(" Request to free "PREG"\n", PRINT_REG(sub_addr));
// STUB
}
void SegInterfaceLocals::listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note) {
LocalVariables *locals = &(_mobj->data.locals);
int i;
assert(addr.segment == _segId);
for (i = 0; i < locals->nr; i++)
(*note)(param, locals->locals[i]);
}
//-------------------- stack --------------------
class SegInterfaceStack : public SegInterface {
public:
SegInterfaceStack(SegManager *segmgr, MemObject *mobj, SegmentId segId) :
SegInterface(segmgr, mobj, segId, MEM_OBJ_STACK) {}
reg_t findCanonicAddress(reg_t addr);
void listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note);
};
reg_t SegInterfaceStack::findCanonicAddress(reg_t addr) {
addr.offset = 0;
return addr;
}
void SegInterfaceStack::listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note) {
int i;
fprintf(stderr, "Emitting %d stack entries\n", _mobj->data.stack.nr);
for (i = 0; i < _mobj->data.stack.nr; i++)
(*note)(param, _mobj->data.stack.entries[i]);
fprintf(stderr, "DONE");
}
//-------------------- system strings --------------------
class SegInterfaceSysStrings : public SegInterface {
public:
SegInterfaceSysStrings(SegManager *segmgr, MemObject *mobj, SegmentId segId) :
SegInterface(segmgr, mobj, segId, MEM_OBJ_SYS_STRINGS) {}
};
//-------------------- string frags --------------------
class SegInterfaceStringFrag : public SegInterface {
public:
SegInterfaceStringFrag(SegManager *segmgr, MemObject *mobj, SegmentId segId) :
SegInterface(segmgr, mobj, segId, MEM_OBJ_STRING_FRAG) {}
};
//-------------------- lists --------------------
class SegInterfaceLists : public SegInterface {
public:
SegInterfaceLists(SegManager *segmgr, MemObject *mobj, SegmentId segId) :
SegInterface(segmgr, mobj, segId, MEM_OBJ_LISTS) {}
void freeAtAddress(reg_t addr);
void listAllDeallocatable(void *param, NoteCallback note);
void listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note);
};
void SegInterfaceLists::freeAtAddress(reg_t sub_addr) {
Sci::free_List_entry(&(_mobj->data.lists), sub_addr.offset);
}
void SegInterfaceLists::listAllDeallocatable(void *param, NoteCallback note) {
LIST_ALL_DEALLOCATABLE(List, lists);
}
void SegInterfaceLists::listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note) {
ListTable *table = &(_mobj->data.lists);
List *list = &(table->table[addr.offset].entry);
if (!ENTRY_IS_VALID(table, addr.offset)) {
fprintf(stderr, "Invalid list referenced for outgoing references: "PREG"\n", PRINT_REG(addr));
return;
}
note(param, list->first);
note(param, list->last);
// We could probably get away with just one of them, but
// let's be conservative here.
}
//-------------------- nodes --------------------
class SegInterfaceNodes : public SegInterface {
public:
SegInterfaceNodes(SegManager *segmgr, MemObject *mobj, SegmentId segId) :
SegInterface(segmgr, mobj, segId, MEM_OBJ_NODES) {}
void freeAtAddress(reg_t addr);
void listAllDeallocatable(void *param, NoteCallback note);
void listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note);
};
void SegInterfaceNodes::freeAtAddress(reg_t sub_addr) {
Sci::free_Node_entry(&(_mobj->data.nodes), sub_addr.offset);
}
void SegInterfaceNodes::listAllDeallocatable(void *param, NoteCallback note) {
LIST_ALL_DEALLOCATABLE(Node, nodes);
}
void SegInterfaceNodes::listAllOutgoingReferences(EngineState *s, reg_t addr, void *param, NoteCallback note) {
NodeTable *table = &(_mobj->data.nodes);
Node *node = &(table->table[addr.offset].entry);
if (!ENTRY_IS_VALID(table, addr.offset)) {
fprintf(stderr, "Invalid node referenced for outgoing references: "PREG"\n", PRINT_REG(addr));
return;
}
// We need all four here. Can't just stick with 'pred' OR 'succ' because node operations allow us
// to walk around from any given node
note(param, node->pred);
note(param, node->succ);
note(param, node->key);
note(param, node->value);
}
//-------------------- hunk --------------------
class SegInterfaceHunk : public SegInterface {
public:
SegInterfaceHunk(SegManager *segmgr, MemObject *mobj, SegmentId segId) :
SegInterface(segmgr, mobj, segId, MEM_OBJ_HUNK) {}
void freeAtAddress(reg_t addr);
void listAllDeallocatable(void *param, NoteCallback note);
};
void SegInterfaceHunk::freeAtAddress(reg_t sub_addr) {
//sciprintf(" Request to free "PREG"\n", PRINT_REG(sub_addr));
// STUB
}
void SegInterfaceHunk::listAllDeallocatable(void *param, NoteCallback note) {
LIST_ALL_DEALLOCATABLE(Hunk, hunks);
}
//-------------------- dynamic memory --------------------
class SegInterfaceDynMem : public SegInterfaceBase {
public:
SegInterfaceDynMem(SegManager *segmgr, MemObject *mobj, SegmentId segId) :
SegInterfaceBase(segmgr, mobj, segId, MEM_OBJ_DYNMEM) {}
void freeAtAddress(reg_t addr);
};
void SegInterfaceDynMem::freeAtAddress(reg_t sub_addr) {
//sciprintf(" Request to free "PREG"\n", PRINT_REG(sub_addr));
// STUB
}
//-------------------- reserved --------------------
class SegInterfaceReserved : public SegInterface {
public:
SegInterfaceReserved(SegManager *segmgr, MemObject *mobj, SegmentId segId) :
SegInterface(segmgr, mobj, segId, MEM_OBJ_RESERVED) {}
};
SegInterface *SegManager::getSegInterface(SegmentId segid) {
if (!check(segid))
return NULL; // Invalid segment
SegInterface *retval = NULL;
MemObject *mobj = heap[segid];
switch (mobj->type) {
case MEM_OBJ_SCRIPT:
retval = new SegInterfaceScript(this, mobj, segid);
break;
case MEM_OBJ_CLONES:
retval = new SegInterfaceClones(this, mobj, segid);
break;
case MEM_OBJ_LOCALS:
retval = new SegInterfaceLocals(this, mobj, segid);
break;
case MEM_OBJ_STACK:
retval = new SegInterfaceStack(this, mobj, segid);
break;
case MEM_OBJ_SYS_STRINGS:
retval = new SegInterfaceSysStrings(this, mobj, segid);
break;
case MEM_OBJ_LISTS:
retval = new SegInterfaceLists(this, mobj, segid);
break;
case MEM_OBJ_NODES:
retval = new SegInterfaceNodes(this, mobj, segid);
break;
case MEM_OBJ_HUNK:
retval = new SegInterfaceHunk(this, mobj, segid);
break;
case MEM_OBJ_DYNMEM:
retval = new SegInterfaceDynMem(this, mobj, segid);
break;
case MEM_OBJ_STRING_FRAG:
retval = new SegInterfaceStringFrag(this, mobj, segid);
break;
case MEM_OBJ_RESERVED:
retval = new SegInterfaceReserved(this, mobj, segid);
break;
default:
error("Improper segment interface for %d", mobj->type);
}
return retval;
}
} // End of namespace Sci