scummvm/sword2/router.cpp
Jonathan Gray 6d392a73e2 fix shadow'd vars
svn-id: r9245
2003-07-28 12:24:13 +00:00

3091 lines
84 KiB
C++

/* Copyright (C) 1994-2003 Revolution Software Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* $Header$
*/
//--------------------------------------------------------------------------------------
// ROUTER.CPP by James
// A rehash of Jeremy's original jrouter.c, containing low-level system routines
// for calculating routes between points inside a walk-grid, and constructing
// walk animations from mega-sets.
// jrouter.c undwent 2 major reworks from the original:
// (1) Restructured to allow more flexibility in the mega-sets, ie. more info taken from the walk-data
// - the new George & Nico mega-sets & walk-data were then tested & tweaked in the Sword1 system
// (2) Updated for the new Sword2 system, ie. new object structures
// - now compatible with Sword2, the essential code already having been tested
//--------------------------------------------------------------------------------------
/****************************************************************************
* JROUTER.C polygon router with modular walks
* using a tree of modules
* 21 july 94
* 3 november 94
* System currently works by scanning grid data and coming up with a ROUTE
* as a series of way points(nodes), the smoothest eight directional PATH
* through these nodes is then found, and a WALK created to fit the PATH.
*
* Two funtions are called by the user, RouteFinder creates a route as a
* module list, HardWalk creates an animation list from the module list.
* The split is only provided to allow the possibility of turning the
* autorouter over two game cycles.
****************************************************************************
*
* Routine timings on osborne 486
*
* Read floor resource (file already loaded) 112 pixels
*
* Read mega resource (file already loaded) 112 pixels
*
*
*
****************************************************************************
*
* Modified 12 Oct 95
*
* Target Points within 1 pixel of a line are ignored ???
*
* Modules split into Points within 1 pixel of a line are ignored ???
*
****************************************************************************
*
* TOTALLY REHASHED BY JAMES FOR NEW MEGAS USING OLD SYSTEM
* THEN REINCARNATED BY JAMES FOR NEW MEGAS USING NEW SYSTEM
*
****************************************************************************
****************************************************************************/
//#define PLOT_PATHS 1
/*
* Include Files
*/
#include "stdafx.h"
#include "driver/driver96.h"
#include "console.h"
#include "debug.h"
#include "defs.h"
#include "header.h"
#include "interpreter.h"
#include "memory.h"
#include "object.h"
#include "resman.h"
#include "router.h"
//#ifdef PLOT_PATHS
//#include "grengine.h"
//#endif
#define MAX_FRAMES_PER_CYCLE 16
#define NO_DIRECTIONS 8
#define MAX_FRAMES_PER_CHAR (MAX_FRAMES_PER_CYCLE * NO_DIRECTIONS)
#define ROUTE_END_FLAG 255
//---------------------------------------
// TEMP!
int8 forceSlidy; // 1 = force the use of slidy router (so solid path not used when ending walk in ANY direction)
//---------------------------------------
/*
* Type Defines
*/
#define O_WALKANIM_SIZE 600 // max number of nodes in router output
#define O_GRID_SIZE 200 // max 200 lines & 200 points
#define EXTRA_GRID_SIZE 20 // max 20 lines & 20 points
#define O_ROUTE_SIZE 50 // max number of modules in a route
typedef struct
{
int16 x1;
int16 y1;
int16 x2;
int16 y2;
int16 xmin;
int16 ymin;
int16 xmax;
int16 ymax;
int16 dx; // x2 - x1
int16 dy; // y2 - y1
int32 co; // co = (y1 *dx)- (x1*dy) from an equation for a line y*dx = x*dy + co
}_barData;
typedef struct
{
int16 x;
int16 y;
int16 level;
int16 prev;
int16 dist;
}_nodeData;
typedef struct
{
int32 nbars;
_barData *bars;
int32 nnodes;
_nodeData *node;
} _floorData;
typedef struct
{
int32 x;
int32 y;
int32 dirS;
int32 dirD;
} _routeData;
typedef struct
{
int32 x;
int32 y;
int32 dir;
int32 num;
} _pathData;
//--------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------
// Function prototypes
int32 GetRoute(void);
void ExtractRoute(void);
void LoadWalkGrid(void);
void SetUpWalkGrid(Object_mega *ob_mega, int32 x, int32 y, int32 dir);
void LoadWalkData(Object_walkdata *ob_walkdata);
void PlotCross(int16 x, int16 y, uint8 colour);
int32 Scan(int32);
int32 NewCheck(int32, int32 , int32 , int32 , int32);
int32 LineCheck(int32 , int32 , int32 , int32);
int32 VertCheck(int32 , int32 , int32);
int32 HorizCheck(int32 , int32 , int32);
int32 Check(int32 , int32 , int32 , int32);
int32 CheckTarget(int32 , int32);
int32 SmoothestPath();
int32 SlidyPath();
int32 SolidPath();
int32 SmoothCheck(int32 best, int32 p, int32 dirS, int32 dirD);
int32 AddSlowInFrames(_walkData *walkAnim);
void AddSlowOutFrames(_walkData *walkAnim);
void SlidyWalkAnimator(_walkData *walkAnim);
int32 SolidWalkAnimator(_walkData *walkAnim);
void RouteLine(int32 x1,int32 y1,int32 x2,int32 y2 ,int32 colour);
//--------------------------------------------------------------------------------------
#define MAX_WALKGRIDS 10
int32 walkGridList[MAX_WALKGRIDS];
//--------------------------------------------------------------------------------------
#define TOTAL_ROUTE_SLOTS 2 // because we only have 2 megas in the game!
mem *route_slots[TOTAL_ROUTE_SLOTS]; // stores pointers to mem blocks containing routes created & used by megas (NULL if slot not in use)
//--------------------------------------------------------------------------------------
// Local Variables
static int32 nbars;
static int32 nnodes;
static _barData bars[O_GRID_SIZE+EXTRA_GRID_SIZE]; // because extra bars will be copied into here afer walkgrid loaded
static _nodeData node[O_GRID_SIZE+EXTRA_GRID_SIZE];
// area for extra route data to block parts of floors and enable routing round mega charaters
static int32 nExtraBars = 0;
static int32 nExtraNodes = 0;
static _barData extraBars[EXTRA_GRID_SIZE];
static _nodeData extraNode[EXTRA_GRID_SIZE];
static int32 startX;
static int32 startY;
static int32 startDir;
static int32 targetX;
static int32 targetY;
static int32 targetDir;
static int32 scaleA;
static int32 scaleB;
static _routeData route[O_ROUTE_SIZE];
static _pathData smoothPath[O_ROUTE_SIZE];
static _pathData modularPath[O_ROUTE_SIZE];
static int32 routeLength;
int32 framesPerStep;
int32 framesPerChar;
uint8 nWalkFrames; // no. of frames per walk cycle
uint8 usingStandingTurnFrames; // any standing turn frames?
uint8 usingWalkingTurnFrames; // any walking turn frames?
uint8 usingSlowInFrames; // any slow-in frames?
uint8 usingSlowOutFrames; // any slow-out frames?
int32 dx[NO_DIRECTIONS + MAX_FRAMES_PER_CHAR];
int32 dy[NO_DIRECTIONS + MAX_FRAMES_PER_CHAR];
int8 modX[NO_DIRECTIONS];
int8 modY[NO_DIRECTIONS];
int32 diagonalx = 0;
int32 diagonaly = 0;
int32 firstStandFrame;
int32 firstStandingTurnLeftFrame;
int32 firstStandingTurnRightFrame;
int32 firstWalkingTurnLeftFrame; // left walking turn
int32 firstWalkingTurnRightFrame; // right walking turn
uint32 firstSlowInFrame[NO_DIRECTIONS];
uint32 numberOfSlowInFrames[NO_DIRECTIONS];
uint32 leadingLeg[NO_DIRECTIONS];
int32 firstSlowOutFrame;
int32 numberOfSlowOutFrames; // number of slow-out frames on for each leading-leg in each direction
int32 stepCount;
int32 moduleX;
int32 moduleY;
int32 currentDir;
int32 lastCount;
int32 frame;
// ie. total number of slow-out frames = (numberOfSlowOutFrames * 2 * NO_DIRECTIONS)
/*
* CODE
*/
// **************************************************************************
//--------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------
uint8 CheckForCollision(void)
{
// static uint32 player_pc;
// static uint32 non_player_pc;
uint8 collision=0;
return (collision);
}
//--------------------------------------------------------------------------------------
uint8 ReturnSlotNo(uint32 megaId)
{
if (ID==CUR_PLAYER_ID) // George (8)
return(0);
else // One of Nico's mega id's
return(1);
}
//--------------------------------------------------------------------------------------
void AllocateRouteMem(void)
{
// uint8 slotNo=0;
uint8 slotNo;
//------------------------------------------
// removed (James23June96)
/*
while (route_slots[slotNo] > 0)
{
slotNo++;
#ifdef _BS2_DEBUG
if (slotNo == TOTAL_ROUTE_SLOTS)
Con_fatal_error("ERROR: route_slots[] full in AllocateRouteMem() (%s line %u)",__FILE__,__LINE__);
#endif
}
*/
//------------------------------------------
// added (James23June96)
// Player character always always slot 0, while the other mega (normally Nico) always uses slot 1
// Better this way, so that if mega object removed from memory while in middle of route,
// the old route will be safely cleared from memory just before they create a new one
slotNo = ReturnSlotNo(ID);
// if this slot is already used, then it can't be needed any more
// because this id is creating a new route!
if (route_slots[slotNo])
{
FreeRouteMem();
}
//------------------------------------------
route_slots[slotNo] = Twalloc( 4800, MEM_locked, UID_walk_anim );
// 12000 bytes were used for this in Sword1 mega compacts, based on 20 bytes per '_walkData' frame
// ie. allowing for 600 frames including end-marker
// Now '_walkData' is 8 bytes, so 8*600 = 4800 bytes.
// Note that a 600 frame walk lasts about 48 seconds! (600fps / 12.5s = 48s)
// megaObject->route_slot_id = slotNo+1; // mega keeps note of which slot contains the pointer to it's walk animation mem block
// +1 so that '0' can mean "not walking"
}
//--------------------------------------------------------------------------------------
_walkData* LockRouteMem(void)
{
uint8 slotNo = ReturnSlotNo(ID);
Lock_mem( route_slots[slotNo] );
return (_walkData *)route_slots[slotNo]->ad;
}
//--------------------------------------------------------------------------------------
void FloatRouteMem(void)
{
uint8 slotNo = ReturnSlotNo(ID);
Float_mem( route_slots[slotNo] );
}
//--------------------------------------------------------------------------------------
void FreeRouteMem(void)
{
uint8 slotNo = ReturnSlotNo(ID);
Free_mem( route_slots[slotNo] ); // free the mem block pointed to from this entry of route_slots[]
route_slots[slotNo] = NULL; // clear this route_slots[] entry
}
//--------------------------------------------------------------------------------------
void FreeAllRouteMem(void)
{
uint8 slotNo;
for (slotNo=0; slotNo < TOTAL_ROUTE_SLOTS; slotNo++)
{
if (route_slots[slotNo])
{
Free_mem( route_slots[slotNo] ); // free the mem block pointed to from this entry of route_slots[]
route_slots[slotNo] = NULL;
}
}
}
//--------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------
// **************************************************************************
// **************************************************************************
// **************************************************************************
// **************************************************************************
int32 RouteFinder(Object_mega *ob_mega, Object_walkdata *ob_walkdata, int32 x, int32 y, int32 dir)
{
/****************************************************************************
* RouteFinder.C polygon router with modular walks
* 21 august 94
* 3 november 94
* RouteFinder creates a list of modules that enables HardWalk to create
* an animation list.
*
* RouteFinder currently works by scanning grid data and coming up with a ROUTE
* as a series of way points(nodes), the smoothest eight directional PATH
* through these nodes is then found, this information is made available to
* HardWalk for a WALK to be created to fit the PATH.
*
* 30 november 94 return values modified
*
* return 0 = failed to find a route
*
* 1 = found a route
*
* 2 = mega already at target
*
****************************************************************************/
int32 routeFlag = 0;
int32 solidFlag = 0;
_walkData *walkAnim;
// megaId = id;
SetUpWalkGrid(ob_mega, x, y, dir);
LoadWalkData(ob_walkdata);
walkAnim = LockRouteMem(); // lock the _walkData array (NB. AFTER loading walkgrid & walkdata!)
// **************************************************************************
// All route data now loaded start finding a route
// **************************************************************************
// **************************************************************************
// Check if we can get a route through the floor changed 12 Oct95 JPS
// **************************************************************************
routeFlag = GetRoute();
if (routeFlag == 2) //special case for zero length route
{
if (targetDir >7)// if target direction specified as any
{
targetDir = startDir;
}
// just a turn on the spot is required set an end module for the route let the animator deal with it
// modularPath is normally set by ExtractRoute
modularPath[0].dir = startDir;
modularPath[0].num = 0;
modularPath[0].x = startX;
modularPath[0].y = startY;
modularPath[1].dir = targetDir;
modularPath[1].num = 0;
modularPath[1].x = startX;
modularPath[1].y = startY;
modularPath[2].dir = 9;
modularPath[2].num = ROUTE_END_FLAG;
SlidyWalkAnimator(walkAnim);
routeFlag = 2;
}
else if (routeFlag == 1) // a normal route
{
SmoothestPath();//Converts the route to an exact path
// The Route had waypoints and direction options
// The Path is an exact set of lines in 8 directions that reach the target.
// The path is in module format, but steps taken in each direction are not accurate
// if target dir = 8 then the walk isn't linked to an anim so
// we can create a route without sliding and miss the exact target
if (!forceSlidy)
{
if (targetDir == 8) // can end facing ANY direction (ie. exact end position not vital) - so use SOLID walk to avoid sliding to exact position
{
SolidPath();
solidFlag = SolidWalkAnimator(walkAnim);
}
}
if(!solidFlag) // if we failed to create a SOLID route, do a SLIDY one instead
{
SlidyPath();
SlidyWalkAnimator(walkAnim);
}
}
else // Route didn't reach target so assume point was off the floor
{
// routeFlag = 0;
}
#ifdef PLOT_PATHS
#ifdef _WIN32
RenderScreenGDK( screenDef.buffer, scroll_offset_x, scroll_offset_y, screenDef.width * XBLOCKSIZE );
#else
RenderOffScreenBuffer( scroll_offset_x, scroll_offset_y, SCREEN_WIDTH, SCREEN_DEPTH );
#endif
FlipScreens();
FlushMouseEvents(); // clear mouse buffer
while (!TestForMouseEvent()); // wait for a button press or release
FlushMouseEvents(); // clear mouse buffer again to prevent rapid fire!
#endif
FloatRouteMem(); // float the _walkData array again
return routeFlag; // send back null route
}
/*******************************************************************************
*******************************************************************************
* GET A ROUTE
*******************************************************************************
*******************************************************************************/
int32 GetRoute(void)
{
/****************************************************************************
* GetRoute.C extract a path from walk grid
* 12 october 94
*
* GetRoute currently works by scanning grid data and coming up with a ROUTE
* as a series of way points(nodes).
* static _routeData route[O_ROUTE_SIZE];
*
* return 0 = failed to find a route
*
* 1 = found a route
*
* 2 = mega already at target
*
* 3 = failed to find a route because target was on a line
*
****************************************************************************/
int32 routeGot = 0;
int32 level;
int32 changed;
if ((startX == targetX) && (startY == targetY))
routeGot = 2;
else // 'else' added by JEL (23jan96) otherwise 'routeGot' affected even when already set to '2' above - causing some 'turns' to walk downwards on the spot
routeGot = CheckTarget(targetX,targetY);// returns 3 if target on a line ( +- 1 pixel )
if (routeGot == 0) //still looking for a route check if target is within a pixel of a line
{
// scan through the nodes linking each node to its nearest neighbour until no more nodes change
// This is the routine that finds a route using Scan()
level = 1;
do
{
changed = Scan(level);
level =level + 1;
}
while(changed == 1);
// Check to see if the route reached the target
if (node[nnodes].dist < 9999)
{
routeGot = 1;
ExtractRoute(); // it did so extract the route as nodes and the directions to go between each node
// route.X,route.Y and route.Dir now hold all the route infomation with the target dir or route continuation
}
}
return routeGot;
}
/*******************************************************************************
*******************************************************************************
* THE SLIDY PATH ROUTINES
*******************************************************************************
*******************************************************************************/
int32 SmoothestPath()
{
/*
* This is the second big part of the route finder and the the only bit that tries to be clever
* (the other bits are clever).
* This part of the autorouter creates a list of modules from a set of lines running across the screen
* The task is complicated by two things;
* Firstly in choosing a route through the maze of nodes the routine tries to minimise the amount of each
* individual turn avoiding 90 degree and greater turns (where possible) and reduces the total number of
* turns (subject to two 45 degree turns being better than one 90 degree turn).
* Secondly when walking in a given direction the number of steps required to reach the end of that run
* is not calculated accurately. This is because I was unable to derive a function to relate number of
* steps taken between two points to the shrunken step size
*
*/
int32 p;
int32 dirS;
int32 dirD;
int32 dS;
int32 dD;
int32 dSS;
int32 dSD;
int32 dDS;
int32 dDD;
int32 SS;
int32 SD;
int32 DS;
int32 DD;
int32 i;
int32 j;
int32 temp;
int32 steps;
int32 option;
int32 options;
int32 lastDir;
int32 nextDirS;
int32 nextDirD;
int32 tempturns[4];
int32 turns[4];
int32 turntable[NO_DIRECTIONS] = {0,1,3,5,7,5,3,1};
// route.X route.Y and route.Dir start at far end
smoothPath[0].x = startX;
smoothPath[0].y = startY;
smoothPath[0].dir = startDir;
smoothPath[0].num = 0;
p = 0;
lastDir = startDir;
// for each section of the route
do
{
dirS = route[p].dirS;
dirD = route[p].dirD;
nextDirS = route[p+1].dirS;
nextDirD = route[p+1].dirD;
// Check directions into and out of a pair of nodes
// going in
dS = dirS - lastDir;
if ( dS < 0)
dS = dS + NO_DIRECTIONS;
dD = dirD - lastDir;
if ( dD < 0)
dD = dD + NO_DIRECTIONS;
// coming out
dSS = dirS - nextDirS;
if ( dSS < 0)
dSS = dSS + NO_DIRECTIONS;
dDD = dirD - nextDirD;
if ( dDD < 0)
dDD = dDD + NO_DIRECTIONS;
dSD = dirS - nextDirD;
if ( dSD < 0)
dSD = dSD + NO_DIRECTIONS;
dDS = dirD - nextDirS;
if ( dDS < 0)
dDS = dDS + NO_DIRECTIONS;
// Determine the amount of turning involved in each possible path
dS = turntable[dS];
dD = turntable[dD];
dSS = turntable[dSS];
dDD = turntable[dDD];
dSD = turntable[dSD];
dDS = turntable[dDS];
// get the best path out ie assume next section uses best direction
if (dSD < dSS)
{
dSS = dSD;
}
if (dDS < dDD)
{
dDD = dDS;
}
// rate each option
SS = dS + dSS + 3; // Split routes look crap so weight against them
SD = dS + dDD;
DS = dD + dSS;
DD = dD + dDD + 3;
// set up turns as a sorted array of the turn values
tempturns[0] = SS;
turns[0] = 0;
tempturns[1] = SD;
turns[1] = 1;
tempturns[2] = DS;
turns[2] = 2;
tempturns[3] = DD;
turns[3] = 3;
i = 0;
do
{
j = 0;
do
{
if (tempturns[j] > tempturns[j + 1])
{
temp = turns[j];
turns[j] = turns[j+1];
turns[j+1] = temp;
temp = tempturns[j];
tempturns[j] = tempturns[j+1];
tempturns[j+1] = temp;
}
j = j + 1;
}
while (j < 3);
i = i + 1;
}
while (i < 3);
// best option matched in order of the priority we would like to see on the screen
// but each option must be checked to see if it can be walked
options = NewCheck(1, route[p].x, route[p].y, route[p + 1].x, route[p + 1].y);
#ifdef _BS2_DEBUG
if (options == 0)
{
Zdebug("BestTurns fail %d %d %d %d",route[p].x, route[p].y, route[p + 1].x, route[p + 1].y);
Zdebug("BestTurns fail %d %d %d %d",turns[0],turns[1],turns[2],options);
Con_fatal_error("BestTurns failed (%s line %u)",__FILE__,__LINE__);
}
#endif
i = 0;
steps = 0;
do
{
option = 1 << turns[i];
if (option & options)
steps = SmoothCheck(turns[i],p,dirS,dirD);
i = i + 1;
}
while ((steps == 0) && (i < 4));
#ifdef PLOT_PATHS // plot the best path
if (steps != 0)
{
i = 0;
do
{
RouteLine(smoothPath[i].x, smoothPath[i].y, smoothPath[i+1].x, smoothPath[i+1].y, 228);
i = i + 1;
}
while (i < steps);
}
#endif
#ifdef _BS2_DEBUG
if (steps == 0)
{
Zdebug("BestTurns failed %d %d %d %d",route[p].x, route[p].y, route[p + 1].x, route[p + 1].y);
Zdebug("BestTurns failed %d %d %d %d",turns[0],turns[1],turns[2],options);
Con_fatal_error("BestTurns failed (%s line %u)",__FILE__,__LINE__);
}
#endif
// route.X route.Y route.dir and bestTurns start at far end
p = p + 1;
}
while (p < (routeLength));
// best turns will end heading as near as possible to target dir rest is down to anim for now
smoothPath[steps].dir = 9;
smoothPath[steps].num = ROUTE_END_FLAG;
return 1;
}
int32 SmoothCheck(int32 best, int32 p, int32 dirS, int32 dirD)
/****************************************************************************
* Slip sliding away
* This path checker checks to see if a walk that exactly follows the path
* would be valid. This should be inherently true for atleast one of the turn
* options.
* No longer checks the data it only creates the smoothPath array JPS
****************************************************************************/
{
static int32 k;
int32 tempK;
int32 x;
int32 y;
int32 x2;
int32 y2;
int32 ldx;
int32 ldy;
int32 dsx;
int32 dsy;
int32 ddx;
int32 ddy;
int32 dirX;
int32 dirY;
int32 ss0;
int32 ss1;
int32 ss2;
int32 sd0;
int32 sd1;
int32 sd2;
if (p == 0)
{
k = 1;
}
tempK = 0;
x = route[p].x;
y = route[p].y;
x2 = route[p + 1].x;
y2 = route[p + 1].y;
ldx = x2 - x;
ldy = y2 - y;
dirX = 1;
dirY = 1;
if (ldx < 0)
{
ldx = -ldx;
dirX = -1;
}
if (ldy < 0)
{
ldy = -ldy;
dirY = -1;
}
// set up sd0-ss2 to reflect possible movement in each direction
if ((dirS == 0) || (dirS == 4))// vert and diag
{
ddx = ldx;
ddy = (ldx*diagonaly)/diagonalx;
dsy = ldy - ddy;
ddx = ddx * dirX;
ddy = ddy * dirY;
dsy = dsy * dirY;
dsx = 0;
sd0 = (ddx + modX[dirD]/2)/ modX[dirD];
ss0 = (dsy + modY[dirS]/2) / modY[dirS];
sd1 = sd0/2;
ss1 = ss0/2;
sd2 = sd0 - sd1;
ss2 = ss0 - ss1;
}
else
{
ddy = ldy;
ddx = (ldy*diagonalx)/diagonaly;
dsx = ldx - ddx;
ddy = ddy * dirY;
ddx = ddx * dirX;
dsx = dsx * dirX;
dsy = 0;
sd0 = (ddy + modY[dirD]/2)/ modY[dirD];
ss0 = (dsx + modX[dirS]/2)/ modX[dirS];
sd1 = sd0/2;
ss1 = ss0/2;
sd2 = sd0 - sd1;
ss2 = ss0 - ss1;
}
if (best == 0) //halfsquare, diagonal, halfsquare
{
smoothPath[k].x = x+dsx/2;
smoothPath[k].y = y+dsy/2;
smoothPath[k].dir = dirS;
smoothPath[k].num = ss1;
k = k + 1;
smoothPath[k].x = x+dsx/2+ddx;
smoothPath[k].y = y+dsy/2+ddy;
smoothPath[k].dir = dirD;
smoothPath[k].num = sd0;
k = k + 1;
smoothPath[k].x = x+dsx+ddx;
smoothPath[k].y = y+dsy+ddy;
smoothPath[k].dir = dirS;
smoothPath[k].num = ss2;
k = k + 1;
tempK = k;
}
else if (best == 1) //square, diagonal
{
smoothPath[k].x = x+dsx;
smoothPath[k].y = y+dsy;
smoothPath[k].dir = dirS;
smoothPath[k].num = ss0;
k = k + 1;
smoothPath[k].x = x2;
smoothPath[k].y = y2;
smoothPath[k].dir = dirD;
smoothPath[k].num = sd0;
k = k + 1;
tempK = k;
}
else if (best == 2) //diagonal square
{
smoothPath[k].x = x+ddx;
smoothPath[k].y = y+ddy;
smoothPath[k].dir = dirD;
smoothPath[k].num = sd0;
k = k + 1;
smoothPath[k].x = x2;
smoothPath[k].y = y2;
smoothPath[k].dir = dirS;
smoothPath[k].num = ss0;
k = k + 1;
tempK = k;
}
else //halfdiagonal, square, halfdiagonal
{
smoothPath[k].x = x+ddx/2;
smoothPath[k].y = y+ddy/2;
smoothPath[k].dir = dirD;
smoothPath[k].num = sd1;
k = k + 1;
smoothPath[k].x = x+dsx+ddx/2;
smoothPath[k].y = y+dsy+ddy/2;
smoothPath[k].dir = dirS;
smoothPath[k].num = ss0;
k = k + 1;
smoothPath[k].x = x2;
smoothPath[k].y = y2;
smoothPath[k].dir = dirD;
smoothPath[k].num = sd2;
k = k + 1;
tempK = k;
}
return tempK;
}
int32 SlidyPath()
{
/****************************************************************************
* SlidyPath creates a path based on part steps with no sliding to get
* as near as possible to the target without any sliding this routine is
* currently unused, but is intended for use when just clicking about.
*
* produce a module list from the line data
*
****************************************************************************/
int32 smooth;
int32 slidy;
int32 scale;
int32 stepX;
int32 stepY;
int32 deltaX;
int32 deltaY;
// strip out the short sections
slidy = 1;
smooth = 1;
modularPath[0].x = smoothPath[0].x;
modularPath[0].y = smoothPath[0].y;
modularPath[0].dir = smoothPath[0].dir;
modularPath[0].num = 0;
while (smoothPath[smooth].num < ROUTE_END_FLAG)
{
scale = scaleA * smoothPath[smooth].y + scaleB;
deltaX = smoothPath[smooth].x - modularPath[slidy-1].x;
deltaY = smoothPath[smooth].y - modularPath[slidy-1].y;
stepX = modX[smoothPath[smooth].dir];
stepY = modY[smoothPath[smooth].dir];
stepX = stepX * scale;
stepY = stepY * scale;
stepX = stepX >> 19;// quarter a step minimum
stepY = stepY >> 19;
if ((abs(deltaX)>=abs(stepX)) && (abs(deltaY)>=abs(stepY)))
{
modularPath[slidy].x = smoothPath[smooth].x;
modularPath[slidy].y = smoothPath[smooth].y;
modularPath[slidy].dir = smoothPath[smooth].dir;
modularPath[slidy].num = 1;
slidy += 1;
}
smooth += 1;
}
// in case the last bit had no steps
if (slidy > 1)
{
modularPath[slidy-1].x = smoothPath[smooth-1].x;
modularPath[slidy-1].y = smoothPath[smooth-1].y;
}
// set up the end of the walk
modularPath[slidy].x = smoothPath[smooth-1].x;
modularPath[slidy].y = smoothPath[smooth-1].y;
modularPath[slidy].dir = targetDir;
modularPath[slidy].num = 0;
slidy += 1;
modularPath[slidy].x = smoothPath[smooth-1].x;
modularPath[slidy].y = smoothPath[smooth-1].y;
modularPath[slidy].dir = 9;
modularPath[slidy].num = ROUTE_END_FLAG;
return 1;
}
//****************************************************************************
// SLOW IN
int32 AddSlowInFrames(_walkData *walkAnim)
{
uint32 slowInFrameNo;
if ((usingSlowInFrames) && (modularPath[1].num > 0))
{
for (slowInFrameNo=0; slowInFrameNo<numberOfSlowInFrames[currentDir]; slowInFrameNo++)
{
walkAnim[stepCount].frame = firstSlowInFrame[currentDir] + slowInFrameNo;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
return(1);
}
else
{
return(0);
}
}
//----------------------------------------------------------------------------
void EarlySlowOut(Object_mega *ob_mega, Object_walkdata *ob_walkdata)
{
int32 slowOutFrameNo;
int32 walk_pc;
_walkData *walkAnim;
//Zdebug("\nEARLY SLOW-OUT");
LoadWalkData(ob_walkdata);
//Zdebug("********************************");
//Zdebug("framesPerStep =%d",framesPerStep); // 6;
//Zdebug("numberOfSlowOutFrames =%d",numberOfSlowOutFrames); // 7;
//Zdebug("firstWalkingTurnLeftFrame =%d",firstWalkingTurnLeftFrame); // 120;
//Zdebug("firstWalkingTurnRightFrame =%d",firstWalkingTurnRightFrame); // 216;
//Zdebug("firstSlowOutFrame =%d",firstSlowOutFrame); // 344;
//Zdebug("********************************");
walk_pc = ob_mega->walk_pc;
walkAnim = LockRouteMem(); // lock the _walkData array (NB. AFTER loading walkgrid & walkdata!)
if (usingSlowOutFrames) // if this mega does actually have slow-out frames
{
do // overwrite the next step (half a cycle) of the walk (ie .step - 0..5
{
//Zdebug("\nSTEP NUMBER: walkAnim[%d].step = %d",walk_pc,walkAnim[walk_pc].step);
//Zdebug("ORIGINAL FRAME: walkAnim[%d].frame = %d",walk_pc,walkAnim[walk_pc].frame);
// map from existing walk frame across to correct frame number of slow-out - remember, there may be more slow-out frames than walk-frames!
if (walkAnim[walk_pc].frame >= firstWalkingTurnRightFrame) // if it's a walking turn-right, rather than a normal step
{
walkAnim[walk_pc].frame -= firstWalkingTurnRightFrame; // then map it to a normal step frame first
//Zdebug("MAPPED TO WALK: walkAnim[%d].frame = %d (walking turn-right frame --> walk frame)",walk_pc,walkAnim[walk_pc].frame);
}
else if (walkAnim[walk_pc].frame >= firstWalkingTurnLeftFrame) // if it's a walking turn-left, rather than a normal step
{
walkAnim[walk_pc].frame -= firstWalkingTurnLeftFrame; // then map it to a normal step frame first
//Zdebug("MAPPED TO WALK: walkAnim[%d].frame = %d (walking turn-left frame --> walk frame)",walk_pc,walkAnim[walk_pc].frame);
}
walkAnim[walk_pc].frame += firstSlowOutFrame + ((walkAnim[walk_pc].frame / framesPerStep) * (numberOfSlowOutFrames-framesPerStep));
walkAnim[walk_pc].step = 0;
//Zdebug("SLOW-OUT FRAME: walkAnim[%d].frame = %d",walk_pc,walkAnim[walk_pc].frame);
walk_pc += 1;
}
while(walkAnim[walk_pc].step > 0 );
//Zdebug("\n");
for (slowOutFrameNo=framesPerStep; slowOutFrameNo < numberOfSlowOutFrames; slowOutFrameNo++) // add stationary frame(s) (OPTIONAL)
{
walkAnim[walk_pc].frame = walkAnim[walk_pc-1].frame + 1;
//Zdebug("EXTRA FRAME: walkAnim[%d].frame = %d",walk_pc,walkAnim[walk_pc].frame);
walkAnim[walk_pc].step = 0;
walkAnim[walk_pc].dir = walkAnim[walk_pc-1].dir;
walkAnim[walk_pc].x = walkAnim[walk_pc-1].x;
walkAnim[walk_pc].y = walkAnim[walk_pc-1].y;
walk_pc++;
}
}
else // this mega doesn't have slow-out frames
{
walkAnim[walk_pc].frame = firstStandFrame + walkAnim[walk_pc-1].dir; // stand in current direction
walkAnim[walk_pc].step = 0;
walkAnim[walk_pc].dir = walkAnim[walk_pc-1].dir;
walkAnim[walk_pc].x = walkAnim[walk_pc-1].x;
walkAnim[walk_pc].y = walkAnim[walk_pc-1].y;
walk_pc++;
}
walkAnim[walk_pc].frame = 512; // end of sequence
walkAnim[walk_pc].step = 99; // so that this doesn't happen again while 'george_walking' is still '2'
}
//----------------------------------------------------------------------------
// SLOW OUT
void AddSlowOutFrames(_walkData *walkAnim)
{
int32 slowOutFrameNo;
if ((usingSlowOutFrames)&&(lastCount>=framesPerStep)) // if the mega did actually walk, we overwrite the last step (half a cycle) with slow-out frames + add any necessary stationary frames
{
// place stop frames here
// slowdown at the end of the last walk
slowOutFrameNo = lastCount - framesPerStep;
//Zdebug("SLOW OUT: slowOutFrameNo(%d) = lastCount(%d) - framesPerStep(%d)",slowOutFrameNo,lastCount,framesPerStep);
do // overwrite the last step (half a cycle) of the walk
{
// map from existing walk frame across to correct frame number of slow-out - remember, there may be more slow-out frames than walk-frames!
walkAnim[slowOutFrameNo].frame += firstSlowOutFrame + ((walkAnim[slowOutFrameNo].frame / framesPerStep) * (numberOfSlowOutFrames-framesPerStep));
walkAnim[slowOutFrameNo].step = 0; // because no longer a normal walk-step
//Zdebug("walkAnim[%d].frame = %d",slowOutFrameNo,walkAnim[slowOutFrameNo].frame);
slowOutFrameNo += 1;
}
while(slowOutFrameNo < lastCount );
for (slowOutFrameNo=framesPerStep; slowOutFrameNo < numberOfSlowOutFrames; slowOutFrameNo++) // add stationary frame(s) (OPTIONAL)
{
walkAnim[stepCount].frame = walkAnim[stepCount-1].frame + 1;
//Zdebug("EXTRA FRAMES: walkAnim[%d].frame = %d",stepCount,walkAnim[stepCount].frame);
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = walkAnim[stepCount-1].dir;
walkAnim[stepCount].x = walkAnim[stepCount-1].x;
walkAnim[stepCount].y = walkAnim[stepCount-1].y;
stepCount += 1;
}
}
}
//----------------------------------------------------------------------------
void SlidyWalkAnimator(_walkData *walkAnim)
/****************************************************************************
* Skidding every where HardWalk creates an animation that exactly fits the
* smoothPath and uses foot slipping to fit whole steps into the route
* Parameters: georgeg,mouseg
* Returns: rout
*
* produce a module list from the line data
*
****************************************************************************/
{
static int32 left = 0;
int32 p;
int32 lastDir;
int32 lastRealDir;
int32 turnDir;
int32 scale;
int32 step;
int32 module;
int32 moduleEnd;
int32 module16X;
int32 module16Y;
int32 stepX;
int32 stepY;
int32 errorX;
int32 errorY;
int32 lastErrorX;
int32 lastErrorY;
int32 frameCount;
int32 frames;
p = 0;
lastDir = modularPath[0].dir;
currentDir = modularPath[1].dir;
if (currentDir == NO_DIRECTIONS)
{
currentDir = lastDir;
}
moduleX = startX;
moduleY = startY;
module16X = moduleX << 16;
module16Y = moduleY << 16;
stepCount = 0;
//****************************************************************************
// SLIDY
// START THE WALK WITH THE FIRST STANDFRAME THIS MAY CAUSE A DELAY
// BUT IT STOPS THE PLAYER MOVING FOR COLLISIONS ARE DETECTED
//****************************************************************************
//Zdebug("\nSLIDY: STARTING THE WALK");
module = framesPerChar + lastDir;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
//****************************************************************************
// SLIDY
// TURN TO START THE WALK
//****************************************************************************
//Zdebug("\nSLIDY: TURNING TO START THE WALK");
// rotate if we need to
if (lastDir != currentDir)
{
// get the direction to turn
turnDir = currentDir - lastDir;
if ( turnDir < 0)
turnDir += NO_DIRECTIONS;
if (turnDir > 4)
turnDir = -1;
else if (turnDir > 0)
turnDir = 1;
// rotate to new walk direction
// for george and nico put in a head turn at the start
if (usingStandingTurnFrames)
{
if ( turnDir < 0) // new frames for turn frames 29oct95jps
{
module = firstStandingTurnLeftFrame + lastDir;
}
else
{
module = firstStandingTurnRightFrame + lastDir;
}
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
// rotate till were facing new dir then go back 45 degrees
while (lastDir != currentDir)
{
lastDir += turnDir;
if ( turnDir < 0) // new frames for turn frames 29oct95jps
{
if ( lastDir < 0)
lastDir += NO_DIRECTIONS;
module = firstStandingTurnLeftFrame + lastDir;
}
else
{
if ( lastDir > 7)
lastDir -= NO_DIRECTIONS;
module = firstStandingTurnRightFrame + lastDir;
}
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
// the back 45 degrees bit
stepCount -= 1;// step back one because new head turn for george takes us past the new dir
}
// his head is in the right direction
lastRealDir = currentDir;
//****************************************************************************
// SLIDY: THE SLOW IN
AddSlowInFrames(walkAnim);
//****************************************************************************
//****************************************************************************
// SLIDY
// THE WALK
//****************************************************************************
//Zdebug("\nSLIDY: THE WALK");
//---------------------------------------------------
// start the walk on the left or right leg, depending on how the slow-in frames were drawn
if (leadingLeg[currentDir]==0) // (0=left; 1=right)
left = 0; // start the walk on the left leg (ie. at beginning of the first step of the walk cycle)
else
left = framesPerStep; // start the walk on the right leg (ie. at beginning of the second step of the walk cycle)
//---------------------------------------------------
lastCount = stepCount;
lastDir = 99;// this ensures that we don't put in turn frames for the start
currentDir = 99;// this ensures that we don't put in turn frames for the start
do
{
while (modularPath[p].num == 0)
{
p = p + 1;
if (currentDir != 99)
lastRealDir = currentDir;
lastDir = currentDir;
lastCount = stepCount;
}
//calculate average amount to lose in each step on the way to the next node
currentDir = modularPath[p].dir;
if (currentDir < NO_DIRECTIONS)
{
module = currentDir * framesPerStep * 2 + left;
if (left == 0)
left = framesPerStep;
else
left = 0;
moduleEnd = module + framesPerStep;
step = 0;
scale = (scaleA * moduleY + scaleB);
do
{
module16X += dx[module]*scale;
module16Y += dy[module]*scale;
moduleX = module16X >> 16;
moduleY = module16Y >> 16;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = step; // normally 0,1,2,3,4,5,0,1,2,etc
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
step += 1;
module += 1;
}
while( module < moduleEnd) ;
stepX = modX[modularPath[p].dir];
stepY = modY[modularPath[p].dir];
errorX = modularPath[p].x - moduleX;
errorX = errorX * stepX;
errorY = modularPath[p].y - moduleY;
errorY = errorY * stepY;
if ((errorX < 0) || (errorY < 0))
{
modularPath[p].num = 0; // the end of the path
// okay those last steps took us past our target but do we want to scoot or moonwalk
frames = stepCount - lastCount;
errorX = modularPath[p].x - walkAnim[stepCount-1].x;
errorY = modularPath[p].y - walkAnim[stepCount-1].y;
if (frames > framesPerStep)
{
lastErrorX = modularPath[p].x - walkAnim[stepCount-7].x;
lastErrorY = modularPath[p].y - walkAnim[stepCount-7].y;
if (stepX==0)
{
if (3*abs(lastErrorY) < abs(errorY)) //the last stop was closest
{
stepCount -= framesPerStep;
if (left == 0)
left = framesPerStep;
else
left = 0;
}
}
else
{
if (3*abs(lastErrorX) < abs(errorX)) //the last stop was closest
{
stepCount -= framesPerStep;
if (left == 0)
left = framesPerStep;
else
left = 0;
}
}
}
errorX = modularPath[p].x - walkAnim[stepCount-1].x;
errorY = modularPath[p].y - walkAnim[stepCount-1].y;
// okay we've reached the end but we still have an error
if (errorX != 0)
{
frameCount = 0;
frames = stepCount - lastCount;
do
{
frameCount += 1;
walkAnim[lastCount + frameCount - 1].x += errorX*frameCount/frames;
}
while(frameCount<frames);
}
if (errorY != 0)
{
frameCount = 0;
frames = stepCount - lastCount;
do
{
frameCount += 1;
walkAnim[lastCount + frameCount-1].y += errorY*frameCount/frames;
}
while(frameCount<frames);
}
// Now is the time to put in the turn frames for the last turn
if (frames < framesPerStep)
currentDir = 99;// this ensures that we don't put in turn frames for this walk or the next
if (currentDir != 99)
lastRealDir = currentDir;
// check each turn condition in turn
if (((lastDir != 99) && (currentDir != 99)) && (usingWalkingTurnFrames)) // only for george
{
lastDir = currentDir - lastDir;//1 and -7 going right -1 and 7 going left
if (((lastDir == -1) || (lastDir == 7)) || ((lastDir == -2) || (lastDir == 6)))
{
// turn at the end of the last walk
frame = lastCount - framesPerStep;
do
{
walkAnim[frame].frame += firstWalkingTurnLeftFrame; //was 104; //turning left
frame += 1;
}
while(frame < lastCount );
}
if (((lastDir == 1) || (lastDir == -7)) || ((lastDir == 2) || (lastDir == -6)))
{
// turn at the end of the current walk
frame = lastCount - framesPerStep;
do
{
walkAnim[frame].frame += firstWalkingTurnRightFrame; // was 200; // turning right
frame += 1;
}
while(frame < lastCount );
}
lastDir = currentDir;
}
// all turns checked
lastCount = stepCount;
moduleX = walkAnim[stepCount-1].x;
moduleY = walkAnim[stepCount-1].y;
module16X = moduleX << 16;
module16Y = moduleY << 16;
}
}
}
while (modularPath[p].dir < NO_DIRECTIONS);
#ifdef _BS2_DEBUG
if (lastRealDir == 99)
{
Con_fatal_error("SlidyWalkAnimatorlast direction error (%s line %u)",__FILE__,__LINE__);
}
#endif
//****************************************************************************
// SLIDY: THE SLOW OUT
AddSlowOutFrames(walkAnim);
//****************************************************************************
// SLIDY
// TURNS TO END THE WALK ?
//****************************************************************************
// We've done the walk now put in any turns at the end
if (targetDir == 8) // ANY direction -> stand in the last direction
{
module = firstStandFrame + lastRealDir;
targetDir = lastRealDir;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastRealDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
if (targetDir == 9) // 'stance' was non-zero
{
if (stepCount == 0)
{
module = framesPerChar + lastRealDir;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastRealDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
}
else if (targetDir != lastRealDir) // rotate to targetDir
{
// rotate to target direction
turnDir = targetDir - lastRealDir;
if ( turnDir < 0)
turnDir += NO_DIRECTIONS;
if (turnDir > 4)
turnDir = -1;
else if (turnDir > 0)
turnDir = 1;
// rotate to target direction
// for george and nico put in a head turn at the start
if (usingStandingTurnFrames)
{
if ( turnDir < 0) // new frames for turn frames 29oct95jps
{
module = firstStandingTurnLeftFrame + lastDir;
}
else
{
module = firstStandingTurnRightFrame + lastDir;
}
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastRealDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
// rotate if we need to
while (lastRealDir != targetDir)
{
lastRealDir += turnDir;
if ( turnDir < 0) // new frames for turn frames 29oct95jps
{
if ( lastRealDir < 0)
lastRealDir += NO_DIRECTIONS;
module = firstStandingTurnLeftFrame + lastRealDir;
}
else
{
if ( lastRealDir > 7)
lastRealDir -= NO_DIRECTIONS;
module = firstStandingTurnRightFrame + lastRealDir;
}
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastRealDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
module = firstStandFrame + lastRealDir;
walkAnim[stepCount-1].frame = module;
}
else // just stand at the end
{
module = firstStandFrame + lastRealDir;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastRealDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
walkAnim[stepCount].frame = 512;
walkAnim[stepCount].step = 99;
stepCount += 1;
walkAnim[stepCount].frame = 512;
walkAnim[stepCount].step = 99;
stepCount += 1;
walkAnim[stepCount].frame = 512;
walkAnim[stepCount].step = 99;
//-------------------------------------------
// write all the frames to "debug.txt"
//Zdebug("\nTHE WALKDATA:");
for (frame=0; frame<=stepCount; frame++)
{
//Zdebug("walkAnim[%d].frame=%d",frame,walkAnim[frame].frame);
}
//-------------------------------------------
// Zdebug("RouteFinder RouteSize is %d", stepCount);
return;
}
/*******************************************************************************
*******************************************************************************
* THE SOLID PATH ROUTINES
*******************************************************************************
*******************************************************************************/
int32 SolidPath()
{
/****************************************************************************
* SolidPath creates a path based on whole steps with no sliding to get
* as near as possible to the target without any sliding this routine is
* currently unused, but is intended for use when just clicking about.
*
* produce a module list from the line data
*
****************************************************************************/
int32 smooth;
int32 solid;
int32 scale;
int32 stepX;
int32 stepY;
int32 deltaX;
int32 deltaY;
// strip out the short sections
solid = 1;
smooth = 1;
modularPath[0].x = smoothPath[0].x;
modularPath[0].y = smoothPath[0].y;
modularPath[0].dir = smoothPath[0].dir;
modularPath[0].num = 0;
do
{
scale = scaleA * smoothPath[smooth].y + scaleB;
deltaX = smoothPath[smooth].x - modularPath[solid-1].x;
deltaY = smoothPath[smooth].y - modularPath[solid-1].y;
stepX = modX[smoothPath[smooth].dir];
stepY = modY[smoothPath[smooth].dir];
stepX = stepX * scale;
stepY = stepY * scale;
stepX = stepX >> 16;
stepY = stepY >> 16;
if ((abs(deltaX)>=abs(stepX)) && (abs(deltaY)>=abs(stepY)))
{
modularPath[solid].x = smoothPath[smooth].x;
modularPath[solid].y = smoothPath[smooth].y;
modularPath[solid].dir = smoothPath[smooth].dir;
modularPath[solid].num = 1;
solid += 1;
}
smooth += 1;
}
while (smoothPath[smooth].num < ROUTE_END_FLAG);
// in case the last bit had no steps
if (solid == 1) //there were no paths so put in a dummy end
{
solid = 2;
modularPath[1].dir = smoothPath[0].dir;
modularPath[1].num = 0;
}
modularPath[solid-1].x = smoothPath[smooth-1].x;
modularPath[solid-1].y = smoothPath[smooth-1].y;
// set up the end of the walk
modularPath[solid].x = smoothPath[smooth-1].x;
modularPath[solid].y = smoothPath[smooth-1].y;
modularPath[solid].dir = 9;
modularPath[solid].num = ROUTE_END_FLAG;
return 1;
}
int32 SolidWalkAnimator(_walkData *walkAnim)
{
/****************************************************************************
* SolidWalk creates an animation based on whole steps with no sliding to get
* as near as possible to the target without any sliding this routine is
* is intended for use when just clicking about.
*
* produce a module list from the line data
*
* returns 0 if solid route not found
****************************************************************************/
int32 p;
int32 i;
int32 left;
int32 lastDir;
int32 turnDir;
int32 scale;
int32 step;
int32 module;
int32 module16X;
int32 module16Y;
int32 errorX;
int32 errorY;
int32 moduleEnd;
int32 slowStart=0;
// start at the beginning for a change
lastDir = modularPath[0].dir;
p = 1;
currentDir = modularPath[1].dir;
module = framesPerChar + lastDir;
moduleX = startX;
moduleY = startY;
module16X = moduleX << 16;
module16Y = moduleY << 16;
stepCount = 0;
//****************************************************************************
// SOLID
// START THE WALK WITH THE FIRST STANDFRAME THIS MAY CAUSE A DELAY
// BUT IT STOPS THE PLAYER MOVING FOR COLLISIONS ARE DETECTED
//****************************************************************************
//Zdebug("\nSOLID: STARTING THE WALK");
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
//****************************************************************************
// SOLID
// TURN TO START THE WALK
//****************************************************************************
//Zdebug("\nSOLID: TURNING TO START THE WALK");
// rotate if we need to
if (lastDir != currentDir)
{
// get the direction to turn
turnDir = currentDir - lastDir;
if ( turnDir < 0)
turnDir += NO_DIRECTIONS;
if (turnDir > 4)
turnDir = -1;
else if (turnDir > 0)
turnDir = 1;
// rotate to new walk direction
// for george and nico put in a head turn at the start
if (usingStandingTurnFrames)
{
if ( turnDir < 0) // new frames for turn frames 29oct95jps
{
module = firstStandingTurnLeftFrame + lastDir;
}
else
{
module = firstStandingTurnRightFrame + lastDir;
}
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
// rotate till were facing new dir then go back 45 degrees
while (lastDir != currentDir)
{
lastDir += turnDir;
if ( turnDir < 0) // new frames for turn frames 29oct95jps
{
if ( lastDir < 0)
lastDir += NO_DIRECTIONS;
module = firstStandingTurnLeftFrame + lastDir;
}
else
{
if ( lastDir > 7)
lastDir -= NO_DIRECTIONS;
module = firstStandingTurnRightFrame + lastDir;
}
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = lastDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
}
// the back 45 degrees bit
stepCount -= 1;// step back one because new head turn for george takes us past the new dir
}
//****************************************************************************
// SOLID: THE SLOW IN
slowStart = AddSlowInFrames(walkAnim);
//****************************************************************************
// SOLID
// THE WALK
//****************************************************************************
//Zdebug("\nSOLID: THE WALK");
//---------------------------------------------------
// start the walk on the left or right leg, depending on how the slow-in frames were drawn
if (leadingLeg[currentDir]==0) // (0=left; 1=right)
left = 0; // start the walk on the left leg (ie. at beginning of the first step of the walk cycle)
else
left = framesPerStep; // start the walk on the right leg (ie. at beginning of the second step of the walk cycle)
//---------------------------------------------------
lastCount = stepCount;
lastDir = 99;// this ensures that we don't put in turn frames for the start
currentDir = 99;// this ensures that we don't put in turn frames for the start
do
{
while(modularPath[p].num > 0)
{
currentDir = modularPath[p].dir;
if (currentDir< NO_DIRECTIONS)
{
module = currentDir * framesPerStep * 2 + left;
if (left == 0)
left = framesPerStep;
else
left = 0;
moduleEnd = module + framesPerStep;
step = 0;
scale = (scaleA * moduleY + scaleB);
do
{
module16X += dx[module]*scale;
module16Y += dy[module]*scale;
moduleX = module16X >> 16;
moduleY = module16Y >> 16;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = step; // normally 0,1,2,3,4,5,0,1,2,etc
walkAnim[stepCount].dir = currentDir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
module += 1;
step += 1;
}
while( module < moduleEnd) ;
errorX = modularPath[p].x - moduleX;
errorX = errorX * modX[modularPath[p].dir];
errorY = modularPath[p].y - moduleY;
errorY = errorY * modY[modularPath[p].dir];
if ((errorX < 0) || (errorY < 0))
{
modularPath[p].num = 0;
stepCount -= framesPerStep;
if (left == 0)
left = framesPerStep;
else
left = 0;
// Okay this is the end of a section
moduleX = walkAnim[stepCount-1].x;
moduleY = walkAnim[stepCount-1].y;
module16X = moduleX << 16;
module16Y = moduleY << 16;
modularPath[p].x =moduleX;
modularPath[p].y =moduleY;
// Now is the time to put in the turn frames for the last turn
if ((stepCount - lastCount) < framesPerStep)// no step taken
{
if (slowStart == 1)// clean up if a slow in but no walk
{
//stepCount -= 3;
stepCount -= numberOfSlowInFrames[currentDir]; // (James08sep97)
//lastCount -= 3;
lastCount -= numberOfSlowInFrames[currentDir]; // (James08sep97)
slowStart = 0;
}
currentDir = 99;// this ensures that we don't put in turn frames for this walk or the next
}
// check each turn condition in turn
if (((lastDir != 99) && (currentDir != 99)) && (usingWalkingTurnFrames)) // only for george
{
lastDir = currentDir - lastDir;//1 and -7 going right -1 and 7 going left
if (((lastDir == -1) || (lastDir == 7)) || ((lastDir == -2) || (lastDir == 6)))
{
// turn at the end of the last walk
frame = lastCount - framesPerStep;
do
{
walkAnim[frame].frame += firstWalkingTurnLeftFrame; // was 104; //turning left
frame += 1;
}
while(frame < lastCount );
}
if (((lastDir == 1) || (lastDir == -7)) || ((lastDir == 2) || (lastDir == -6)))
{
// turn at the end of the current walk
frame = lastCount - framesPerStep;
do
{
walkAnim[frame].frame += firstWalkingTurnRightFrame; // was 200; // turning right
frame += 1;
}
while(frame < lastCount );
}
}
// all turns checked
lastCount = stepCount;
}
}
}
p = p + 1;
lastDir = currentDir;
slowStart = 0; //can only be valid first time round
}
while (modularPath[p].dir < NO_DIRECTIONS);
//****************************************************************************
// SOLID: THE SLOW OUT
AddSlowOutFrames(walkAnim);
//****************************************************************************
module = framesPerChar + modularPath[p-1].dir;
walkAnim[stepCount].frame = module;
walkAnim[stepCount].step = 0;
walkAnim[stepCount].dir = modularPath[p-1].dir;
walkAnim[stepCount].x = moduleX;
walkAnim[stepCount].y = moduleY;
stepCount += 1;
walkAnim[stepCount].frame = 512;
walkAnim[stepCount].step = 99;
stepCount += 1;
walkAnim[stepCount].frame = 512;
walkAnim[stepCount].step = 99;
stepCount += 1;
walkAnim[stepCount].frame = 512;
walkAnim[stepCount].step = 99;
//-------------------------------------------
// write all the frames to "debug.txt"
//Zdebug("\nTHE WALKDATA:");
for (frame=0; frame<=stepCount; frame++)
{
//Zdebug("walkAnim[%d].frame=%d",frame,walkAnim[frame].frame);
}
//-------------------------------------------
//****************************************************************************
// SOLID
// NO END TURNS
//****************************************************************************
// Zdebug("RouteFinder RouteSize is %d", stepCount);
// now check the route
i = 0;
do
{
if (!Check(modularPath[i].x, modularPath[i].y, modularPath[i+1].x, modularPath[i+1].y))
p=0;
#ifdef PLOT_PATHS
RouteLine(modularPath[i].x, modularPath[i].y, modularPath[i+1].x, modularPath[i+1].y, 227);
#endif
i += 1;
}
while(i<p-1);
if (p != 0)
{
targetDir = modularPath[p-1].dir;
}
if (p != 0)
{
if (CheckTarget(moduleX,moduleY) == 3)// new target on a line
{
p = 0;
//Zdebug("Solid walk target was on a line %d %d", moduleX, moduleY);
}
}
return p;
}
/*******************************************************************************
*******************************************************************************
* THE SCAN ROUTINES
*******************************************************************************
*******************************************************************************/
int32 Scan(int32 level)
/*******************************************************************************
* Called successively from RouteFinder until no more changes take place in the
* grid array ie he best path has been found
*
* Scans through every point in the node array and checks if there is a route
* between each point and if this route gives a new route.
*
* This routine could probably halve its processing time if it doubled up on the
* checks after each route check
*
*******************************************************************************/
{
int32 i;
int32 k;
int32 x1;
int32 y1;
int32 x2;
int32 y2;
int32 distance;
int32 changed = 0;
// For all the nodes that have new values and a distance less than enddist
// ie dont check for new routes from a point we checked before or from a point
// that is already further away than the best route so far.
i = 0;
do
{
if ((node[i].dist < node[nnodes].dist) && (node[i].level == level))
{
x1 = node[i].x;
y1 = node[i].y;
k=nnodes;
do
{
if (node[k].dist > node[i].dist)
{
x2 = node[k].x;
y2 = node[k].y;
if (abs(x2-x1)>(4.5*abs(y2-y1)))
{
distance = (8*abs(x2-x1)+18*abs(y2-y1))/(54*8)+1;
}
else
{
distance = (6*abs(x2-x1)+36*abs(y2-y1))/(36*14)+1;
}
if ((distance + node[i].dist < node[nnodes].dist) && (distance + node[i].dist < node[k].dist))
{
if (NewCheck(0, x1,y1,x2,y2))
{
node[k].level = level + 1;
node[k].dist = distance + node[i].dist;
node[k].prev = i;
changed = 1;
}
}
}
k-=1;
}
while(k > 0);
}
i=i+1;
}
while(i < nnodes);
return changed;
}
int32 NewCheck(int32 status, int32 x1 , int32 y1 , int32 x2 ,int32 y2)
/*******************************************************************************
* NewCheck routine checks if the route between two points can be achieved
* without crossing any of the bars in the Bars array.
*
* NewCheck differs from check in that that 4 route options are considered
* corresponding to actual walked routes.
*
* Note distance doesnt take account of shrinking ???
*
* Note Bars array must be properly calculated ie min max dx dy co
*******************************************************************************/
{
int32 ldx;
int32 ldy;
int32 dlx;
int32 dly;
int32 dirX;
int32 dirY;
int32 step1;
int32 step2;
int32 step3;
int32 steps;
int32 options;
steps = 0;
options = 0;
ldx = x2 - x1;
ldy = y2 - y1;
dirX = 1;
dirY = 1;
if (ldx < 0)
{
ldx = -ldx;
dirX = -1;
}
if (ldy < 0)
{
ldy = -ldy;
dirY = -1;
}
//make the route options
if ((diagonaly * ldx) > (diagonalx * ldy)) // dir = 1,2 or 2,3 or 5,6 or 6,7
{
dly = ldy;
dlx = (ldy*diagonalx)/diagonaly;
ldx = ldx - dlx;
dlx = dlx * dirX;
dly = dly * dirY;
ldx = ldx * dirX;
ldy = 0;
//options are
//square, diagonal a code 1 route
step1 = Check(x1, y1, x1+ldx, y1);
if (step1 != 0)
{
step2 = Check(x1+ldx, y1, x2, y2);
if (step2 != 0)
{
steps = step1 + step2; // yes
options = options + 2;
#ifdef PLOT_PATHS
if (status == 1)
{
RouteLine(x1, y1, x1+ldx, y1, 231);
RouteLine(x1+ldx, y1, x2, y2, 231);
}
#endif
}
}
//diagonal, square a code 2 route
if ((steps == 0) || (status == 1))
{
step1 = Check(x1, y1, x1+dlx,y1+dly);
if (step1 != 0)
{
step2 = Check(x1+dlx, y2, x2, y2);
if (step2 != 0)
{
steps = step1 + step2; // yes
options = options + 4;
#ifdef PLOT_PATHS
if (status == 1)
{
RouteLine(x1, y1, x1+dlx,y1+dly, 231);
RouteLine(x1+dlx, y2, x2, y2, 231);
}
#endif
}
}
}
//halfsquare, diagonal, halfsquare a code 0 route
if ((steps == 0) || (status == 1))
{
step1 = Check(x1, y1, x1+ldx/2, y1);
if (step1 != 0)
{
step2 = Check(x1+ldx/2, y1, x1+ldx/2+dlx, y2);
if (step2 != 0)
{
step3 = Check(x1+ldx/2+dlx, y2, x2, y2);
if (step3 != 0)
{
steps = step1 + step2 + step3; // yes
options = options + 1;
#ifdef PLOT_PATHS
if (status == 1)
{
RouteLine(x1, y1, x1+ldx/2, y1, 231);
RouteLine(x1+ldx/2, y1, x1+ldx/2+dlx, y2, 231);
RouteLine(x1+ldx/2+dlx, y2, x2, y2, 231);
}
#endif
}
}
}
}
//halfdiagonal, square, halfdiagonal a code 3 route
if ((steps == 0) || (status == 1))
{
step1 = Check(x1, y1, x1+dlx/2, y1+dly/2);
if (step1 != 0)
{
step2 = Check(x1+dlx/2, y1+dly/2, x1+ldx+dlx/2, y1+dly/2);
if (step2 != 0)
{
step3 = Check(x1+ldx+dlx/2, y1+dly/2, x2, y2);
if (step3 != 0)
{
steps = step1 + step2 + step3; // yes
#ifdef PLOT_PATHS
if (status == 1)
{
RouteLine(x1, y1, x1+dlx/2, y1+dly/2, 231);
RouteLine(x1+dlx/2, y1+dly/2, x1+ldx+dlx/2, y1+dly/2, 231);
RouteLine(x1+ldx+dlx/2, y1+dly/2, x2, y2, 231);
}
#endif
options = options + 8;
}
}
}
}
}
else // dir = 7,0 or 0,1 or 3,4 or 4,5
{
dlx = ldx;
dly = (ldx*diagonaly)/diagonalx;
ldy = ldy - dly;
dlx = dlx * dirX;
dly = dly * dirY;
ldy = ldy * dirY;
ldx = 0;
//options are
//square, diagonal a code 1 route
step1 = Check(x1 ,y1 ,x1 ,y1+ldy );
if (step1 != 0)
{
step2 = Check(x1 ,y1+ldy ,x2,y2);
if (step2 != 0)
{
steps = step1 + step2; // yes
#ifdef PLOT_PATHS
if (status == 1)
{
RouteLine(x1 ,y1 ,x1 ,y1+ldy, 231);
RouteLine(x1 ,y1+ldy ,x2, y2, 231);
}
#endif
options = options + 2;
}
}
//diagonal, square a code 2 route
if ((steps == 0) || (status == 1))
{
step1 = Check(x1, y1, x2, y1+dly);
if (step1 != 0)
{
step2 = Check(x2, y1+dly, x2, y2);
if (step2 != 0)
{
steps = step1 + step2; // yes
#ifdef PLOT_PATHS
if (status == 1)
{
RouteLine(x1, y1, x2, y1+dly, 231);
RouteLine(x2, y1+dly, x2, y2, 231);
}
#endif
options = options + 4;
}
}
}
//halfsquare, diagonal, halfsquare a code 0 route
if ((steps == 0) || (status == 1))
{
step1 = Check(x1, y1, x1, y1+ldy/2);
if (step1 != 0)
{
step2 = Check(x1, y1+ldy/2, x2, y1+ldy/2+dly);
if (step2 != 0)
{
step3 = Check(x2, y1+ldy/2+dly, x2, y2);
if (step3 != 0)
{
steps = step1 + step2 + step3; // yes
#ifdef PLOT_PATHS
if (status == 1)
{
RouteLine(x1, y1, x1, y1+ldy/2, 231);
RouteLine(x1, y1+ldy/2, x2, y1+ldy/2+dly, 231);
RouteLine(x2, y1+ldy/2+dly, x2, y2, 231);
}
#endif
options = options + 1;
}
}
}
}
//halfdiagonal, square, halfdiagonal a code 3 route
if ((steps == 0) || (status == 1))
{
step1 = Check(x1, y1, x1+dlx/2, y1+dly/2);
if (step1 != 0)
{
step2 = Check(x1+dlx/2, y1+dly/2, x1+dlx/2, y1+ldy+dly/2);
if (step2 != 0)
{
step3 = Check(x1+dlx/2, y1+ldy+dly/2, x2, y2);
if (step3 != 0)
{
steps = step1 + step2 + step3; // yes
options = options + 8;
#ifdef PLOT_PATHS
if (status == 1)
{
RouteLine(x1, y1, x1+dlx/2, y1+dly/2, 231);
RouteLine(x1+dlx/2, y1+dly/2, x1+dlx/2, y1+ldy+dly/2, 231);
RouteLine(x1+dlx/2, y1+ldy+dly/2, x2, y2, 231);
}
#endif
}
}
}
}
}
if (status == 0)
{
status = steps;
}
else
{
status = options;
}
return status;
}
/*******************************************************************************
*******************************************************************************
* CHECK ROUTINES
*******************************************************************************
*******************************************************************************/
int32 Check(int32 x1 , int32 y1 , int32 x2 ,int32 y2)
{
//call the fastest line check for the given line
//returns 1 if line didn't cross any bars
int32 steps;
if ((x1 == x2) && (y1 == y2))
{
steps = 1;
}
else if (x1 == x2)
{
steps = VertCheck(x1, y1, y2);
}
else if (y1 == y2)
{
steps = HorizCheck(x1, y1, x2);
}
else
{
steps = LineCheck(x1, y1, x2, y2);
}
return steps;
}
int32 LineCheck(int32 x1 , int32 y1 , int32 x2 ,int32 y2)
{
int32 dirx;
int32 diry;
int32 co;
int32 slope;
int32 i;
int32 xc;
int32 yc;
int32 xmin;
int32 ymin;
int32 xmax;
int32 ymax;
int32 linesCrossed = 1;
if (x1 > x2)
{
xmin = x2;
xmax = x1;
}
else
{
xmin = x1;
xmax = x2;
}
if (y1 > y2)
{
ymin = y2;
ymax = y1;
}
else
{
ymin = y1;
ymax = y2;
}
//line set to go one step in chosen direction
//so ignore if it hits anything
dirx = x2 - x1;
diry = y2 - y1;
co = (y1 *dirx)- (x1*diry); //new line equation
i = 0;
do
{
// this is the inner inner loop
if ((xmax >= bars[i].xmin) && ( xmin <= bars[i].xmax)) //skip if not on module
{
if ((ymax >= bars[i].ymin) && ( ymin <= bars[i].ymax)) //skip if not on module
{
// okay its a valid line calculate an intersept
// wow but all this arithmatic we must have loads of time
slope = (bars[i].dx * diry) - (bars[i].dy *dirx);// slope it he slope between the two lines
if (slope != 0)//assuming parallel lines don't cross
{
//calculate x intercept and check its on both lines
xc = ((bars[i].co * dirx) - (co * bars[i].dx)) / slope;
if ((xc >= xmin-1) && (xc <= xmax+1)) //skip if not on module
{
if ((xc >= bars[i].xmin-1) && (xc <= bars[i].xmax+1)) //skip if not on line
{
yc = ((bars[i].co * diry) - (co * bars[i].dy)) / slope;
if ((yc >= ymin-1) && (yc <= ymax+1)) //skip if not on module
{
if ((yc >= bars[i].ymin-1) && (yc <= bars[i].ymax+1)) //skip if not on line
{
linesCrossed = 0;
}
}
}
}
}
}
}
i = i + 1;
}
while((i < nbars) && linesCrossed);
return linesCrossed;
}
int32 HorizCheck(int32 x1 , int32 y , int32 x2)
{
int32 ldy;
int32 i;
int32 xc;
int32 xmin;
int32 xmax;
int32 linesCrossed = 1;
if (x1 > x2)
{
xmin = x2;
xmax = x1;
}
else
{
xmin = x1;
xmax = x2;
}
//line set to go one step in chosen direction
//so ignore if it hits anything
i = 0;
do
{
// this is the inner inner loop
if ((xmax >= bars[i].xmin) && ( xmin <= bars[i].xmax)) //skip if not on module
{
if ((y >= bars[i].ymin) && ( y <= bars[i].ymax)) //skip if not on module
{
// okay its a valid line calculate an intersept
// wow but all this arithmatic we must have loads of time
if (bars[i].dy == 0)
{
linesCrossed = 0;
}
else
{
ldy = y-bars[i].y1;
xc = bars[i].x1 + (bars[i].dx * ldy)/bars[i].dy;
if ((xc >= xmin-1) && (xc <= xmax+1)) //skip if not on module
{
linesCrossed = 0;
}
}
}
}
i = i + 1;
}
while((i < nbars) && linesCrossed);
return linesCrossed;
}
int32 VertCheck(int32 x, int32 y1, int32 y2)
{
int32 ldx;
int32 i;
int32 yc;
int32 ymin;
int32 ymax;
int32 linesCrossed = 1;
if (y1 > y2)
{
ymin = y2;
ymax = y1;
}
else
{
ymin = y1;
ymax = y2;
}
//line set to go one step in chosen direction
//so ignore if it hits anything
i = 0;
do // this is the inner inner loop
{
if ((x >= bars[i].xmin) && ( x <= bars[i].xmax)) //overlapping
{
if ((ymax >= bars[i].ymin) && ( ymin <= bars[i].ymax)) //skip if not on module
{
// okay its a valid line calculate an intersept
// wow but all this arithmatic we must have loads of time
if (bars[i].dx == 0)//both lines vertical and overlap in x and y so they cross
{
linesCrossed = 0;
}
else
{
ldx = x-bars[i].x1;
yc = bars[i].y1 + (bars[i].dy * ldx)/bars[i].dx;
if ((yc >= ymin-1) && (yc <= ymax+1)) //the intersept overlaps
{
linesCrossed = 0;
}
}
}
}
i = i + 1;
}
while((i < nbars) && linesCrossed);
return linesCrossed;
}
int32 CheckTarget(int32 x , int32 y)
/*******************************************************************************
*******************************************************************************/
{
int32 ldx;
int32 ldy;
int32 i;
int32 xc;
int32 yc;
int32 xmin;
int32 xmax;
int32 ymin;
int32 ymax;
int32 onLine = 0;
xmin = x - 1;
xmax = x + 1;
ymin = y - 1;
ymax = y + 1;
// check if point +- 1 is on the line
//so ignore if it hits anything
i = 0;
do
{
// this is the inner inner loop
if ((xmax >= bars[i].xmin) && ( xmin <= bars[i].xmax)) //overlapping line
{
if ((ymax >= bars[i].ymin) && ( ymin <= bars[i].ymax)) //overlapping line
{
// okay this line overlaps the target calculate an y intersept for x
if (bars[i].dx == 0)// vertical line so we know it overlaps y
{
yc = 0;
}
else
{
ldx = x-bars[i].x1;
yc = bars[i].y1 + (bars[i].dy * ldx)/bars[i].dx;
}
if ((yc >= ymin) && (yc <= ymax)) //overlapping point for y
{
onLine = 3;// target on a line so drop out
//Zdebug("RouteFail due to target on a line %d %d",x,y);
}
else
{
if (bars[i].dy == 0)// vertical line so we know it overlaps y
{
xc = 0;
}
else
{
ldy = y-bars[i].y1;
xc = bars[i].x1 + (bars[i].dx * ldy)/bars[i].dy;
}
if ((xc >= xmin) && (xc <= xmax)) //skip if not on module
{
onLine = 3;// target on a line so drop out
//Zdebug("RouteFail due to target on a line %d %d",x,y);
}
}
}
}
i = i + 1;
}
while((i < nbars) && (onLine == 0));
return onLine;
}
/*******************************************************************************
*******************************************************************************
* THE SETUP ROUTINES
*******************************************************************************
*******************************************************************************/
//------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------------------
void LoadWalkData(Object_walkdata *ob_walkdata)
{
uint8 direction;
uint16 firstFrameOfDirection;
uint16 walkFrameNo;
uint32 frameCounter = 0; // starts at frame 0 of mega set (16sep96 JEL)
nWalkFrames = ob_walkdata->nWalkFrames;
usingStandingTurnFrames = ob_walkdata->usingStandingTurnFrames;
usingWalkingTurnFrames = ob_walkdata->usingWalkingTurnFrames;
usingSlowInFrames = ob_walkdata->usingSlowInFrames;
usingSlowOutFrames = ob_walkdata->usingSlowOutFrames;
numberOfSlowOutFrames = usingSlowOutFrames; // 0 = not using slow out frames; non-zero = using that many frames for each leading leg for each direction
memcpy(&numberOfSlowInFrames[0],ob_walkdata->nSlowInFrames,NO_DIRECTIONS*sizeof(numberOfSlowInFrames[0]));
memcpy(&leadingLeg[0],ob_walkdata->leadingLeg,NO_DIRECTIONS*sizeof(leadingLeg[0]));
memcpy(&dx[0],ob_walkdata->dx,NO_DIRECTIONS*(nWalkFrames+1)*sizeof(dx[0]));
memcpy(&dy[0],ob_walkdata->dy,NO_DIRECTIONS*(nWalkFrames+1)*sizeof(dy[0]));
//---------------------------------------------------------
for (direction=0; direction<NO_DIRECTIONS; direction++)
{
firstFrameOfDirection = direction * nWalkFrames;
modX[direction]=0;
modY[direction]=0;
for (walkFrameNo=firstFrameOfDirection; walkFrameNo < (firstFrameOfDirection + (nWalkFrames/2)); walkFrameNo++ )
{
modX[direction] += dx[walkFrameNo]; // eg. modX[0] is the sum of the x-step sizes for the first half of the walk cycle for direction 0
modY[direction] += dy[walkFrameNo];
}
}
diagonalx = modX[3];
diagonaly = modY[3];
//----------------------------------------------------
// interpret the walk data
//----------------------------------------------------
framesPerStep = nWalkFrames/2;
framesPerChar = nWalkFrames * NO_DIRECTIONS;
// offset pointers added Oct 30 95 JPS
// mega id references removed 16sep96 by JEL
//---------------------
// WALK FRAMES
// start on frame 0
frameCounter += framesPerChar;
//---------------------
// STAND FRAMES
firstStandFrame = frameCounter; // stand frames come after the walk frames
frameCounter += NO_DIRECTIONS; // one stand frame for each direction
//---------------------
// STANDING TURN FRAMES - OPTIONAL!
if (usingStandingTurnFrames)
{
firstStandingTurnLeftFrame = frameCounter; // standing turn-left frames come after the slow-out frames
frameCounter += NO_DIRECTIONS; // one for each direction
firstStandingTurnRightFrame = frameCounter; // standing turn-left frames come after the standing turn-right frames
frameCounter += NO_DIRECTIONS; // one for each direction
}
else
{
firstStandingTurnLeftFrame = firstStandFrame; // refer instead to the normal stand frames
firstStandingTurnRightFrame = firstStandFrame; // -"-
}
//---------------------
// WALKING TURN FRAMES - OPTIONAL!
if (usingWalkingTurnFrames)
{
firstWalkingTurnLeftFrame = frameCounter; // walking left-turn frames come after the stand frames
frameCounter += framesPerChar;
firstWalkingTurnRightFrame = frameCounter; // walking right-turn frames come after the walking left-turn frames
frameCounter += framesPerChar;
}
else
{
firstWalkingTurnLeftFrame = 0;
firstWalkingTurnRightFrame = 0;
}
//---------------------
// SLOW-IN FRAMES - OPTIONAL!
if (usingSlowInFrames) // slow-in frames come after the walking right-turn frames
{
for (direction=0; direction<NO_DIRECTIONS; direction++)
{
firstSlowInFrame[direction] = frameCounter; // make note of frame number of first slow-in frame for each direction
frameCounter += numberOfSlowInFrames[direction]; // can be a different number of slow-in frames in each direction
}
}
//---------------------
// SLOW-OUT FRAMES - OPTIONAL!
if (usingSlowOutFrames)
{
firstSlowOutFrame = frameCounter; // slow-out frames come after the slow-in frames
}
//---------------------
}
/*******************************************************************************
*******************************************************************************
* THE ROUTE EXTRACTOR
*******************************************************************************
*******************************************************************************/
void ExtractRoute()
/****************************************************************************
* ExtractRoute gets route from the node data after a full scan, route is
* written with just the basic way points and direction options for heading
* to the next point.
****************************************************************************/
{
int32 prev;
int32 prevx;
int32 prevy;
int32 last;
int32 point;
int32 p;
int32 dirx;
int32 diry;
int32 dir;
int32 ldx;
int32 ldy;
// extract the route from the node data
prev = nnodes;
last = prev;
point = O_ROUTE_SIZE - 1;
route[point].x = node[last].x;
route[point].y = node[last].y;
do
{
point = point - 1;
prev = node[last].prev;
prevx = node[prev].x;
prevy = node[prev].y;
route[point].x = prevx;
route[point].y = prevy;
last = prev;
}
while (prev > 0);
// now shuffle route down in the buffer
routeLength = 0;
do
{
route[routeLength].x = route[point].x;
route[routeLength].y = route[point].y;
point = point + 1;
routeLength = routeLength + 1;
}
while (point < O_ROUTE_SIZE);
routeLength = routeLength - 1;
// okay the route exists as a series point now put in some directions
p = 0;
do
{
#ifdef PLOT_PATHS
BresenhamLine(route[p+1].x-128,route[p+1].y-128, route[p].x-128,route[p].y-128, (uint8*)screen_ad, true_pixel_size_x, pixel_size_y, ROUTE_END_FLAG);
#endif
ldx = route[p+1].x - route[p].x;
ldy = route[p+1].y - route[p].y;
dirx = 1;
diry = 1;
if (ldx < 0)
{
ldx = -ldx;
dirx = -1;
}
if (ldy < 0)
{
ldy = -ldy;
diry = -1;
}
if ((diagonaly * ldx) > (diagonalx * ldy)) // dir = 1,2 or 2,3 or 5,6 or 6,7
{
dir = 4 - 2 * dirx; // 2 or 6
route[p].dirS = dir;
dir = dir + diry * dirx; // 1,3,5 or 7
route[p].dirD = dir;
}
else // dir = 7,0 or 0,1 or 3,4 or 4,5
{
dir = 2 + 2 * diry; // 0 or 4
route[p].dirS = dir;
dir = 4 - 2 * dirx; // 2 or 6
dir = dir + diry * dirx; // 1,3,5 or 7
route[p].dirD = dir;
}
p = p + 1;
}
while (p < (routeLength));
// set the last dir to continue previous route unless specified
if (targetDir == 8) // ANY direction
{
route[p].dirS = route[p-1].dirS;
route[p].dirD = route[p-1].dirD;
}
else
{
route[p].dirS = targetDir;
route[p].dirD = targetDir;
}
return;
}
//*******************************************************************************
void RouteLine(int32 x1,int32 y1,int32 x2,int32 y2 ,int32 colour)
{
if (x1);
if (x2);
if (y1);
if (y2);
if (colour);
// BresenhamLine(x1-128, y1-128, x2-128, y2-128, (uint8*)screen_ad, true_pixel_size_x, pixel_size_y, colour);
return;
}
//*******************************************************************************
void SetUpWalkGrid(Object_mega *ob_mega, int32 x, int32 y, int32 dir)
{
int32 i;
LoadWalkGrid(); // get walk grid file + extra grid into 'bars' & 'node' arrays
// copy the mega structure into the local variables for use in all subroutines
startX = ob_mega->feet_x;
startY = ob_mega->feet_y;
startDir = ob_mega->current_dir;
targetX = x;
targetY = y;
targetDir = dir;
scaleA = ob_mega->scale_a;
scaleB = ob_mega->scale_b;
// mega's current position goes into first node
node[0].x = startX;
node[0].y = startY;
node[0].level = 1;
node[0].prev = 0;
node[0].dist = 0;
// reset other nodes
for (i=1; i<nnodes; i++)
{
node[i].level = 0;
node[i].prev = 0;
node[i].dist = 9999;
}
// target position goes into final node
node[nnodes].x = targetX;
node[nnodes].y = targetY;
node[nnodes].level = 0;
node[nnodes].prev = 0;
node[nnodes].dist = 9999;
}
//------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------------------
void PlotWalkGrid(void)
{
int32 j;
LoadWalkGrid(); // get walk grid file + extra grid into 'bars' & 'node' arrays
//-------------------------------
// lines
for (j=0; j<nbars; j++)
{
DrawLine(bars[j].x1,bars[j].y1, bars[j].x2,bars[j].y2, 254);
}
//-------------------------------
// nodes
for (j=1; j<nnodes; j++) // leave node 0 for start node
{
PlotCross(node[j].x,node[j].y, 184);
}
//-------------------------------
}
//------------------------------------------------------------------------------------------
void PlotCross(int16 x, int16 y, uint8 colour)
{
DrawLine(x-1, y-1, x+1, y+1, colour);
DrawLine(x+1, y-1, x-1, y+1, colour);
}
//------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------------------
void LoadWalkGrid(void)
{
// _standardHeader header;
_walkGridHeader floorHeader;
uint32 j;
uint8 *fPolygrid;
int entry;
uint32 theseBars;
uint32 theseNodes;
nbars = 0; // reset counts
nnodes = 1; // leave node 0 for start-node
//-------------------------------
// STATIC GRIDS (added/removed by object logics)
for (entry=0; entry < MAX_WALKGRIDS; entry++) // go through walkgrid list
{
if (walkGridList[entry])
{
fPolygrid = res_man.Res_open(walkGridList[entry]); // open walk grid file
// memmove( (uint8*)&header, fPolygrid, sizeof(_standardHeader) );
fPolygrid += sizeof(_standardHeader);
memmove( (uint8*)&floorHeader, fPolygrid, sizeof(_walkGridHeader) );
fPolygrid += sizeof(_walkGridHeader);
//-------------------------------
// how many bars & nodes are we getting from this walkgrid file
theseBars = floorHeader.numBars;
theseNodes = floorHeader.numNodes;
//-------------------------------
// check that we're not going to exceed the max allowed in the complete walkgrid arrays
#ifdef _BS2_DEBUG
if ((nbars+theseBars) >= O_GRID_SIZE)
Con_fatal_error("Adding walkgrid(%d): %d+%d bars exceeds max %d (%s line %u)", walkGridList[entry], nbars, theseBars, O_GRID_SIZE, __FILE__, __LINE__);
if ((nnodes+theseNodes) >= O_GRID_SIZE)
Con_fatal_error("Adding walkgrid(%d): %d+%d nodes exceeds max %d (%s line %u)", walkGridList[entry], nnodes, theseBars, O_GRID_SIZE, __FILE__, __LINE__);
#endif
//-------------------------------
// lines
memmove( (uint8*)&bars[nbars], fPolygrid, theseBars*sizeof(_barData) );
fPolygrid += theseBars*sizeof(_barData);//move pointer to start of node data
//-------------------------------
// nodes
for (j=0; j<theseNodes; j++) // leave node 0 for start node
{
memmove( (uint8*)&node[nnodes+j].x, fPolygrid, 2*sizeof(int16) );
fPolygrid += 2*sizeof(int16);
}
//-------------------------------
res_man.Res_close(walkGridList[entry]); // close walk grid file
nbars += theseBars; // increment counts of total bars & nodes in whole walkgrid
nnodes += theseNodes;
}
}
//-------------------------------
// EXTRA GRIDS (moveable grids added by megas)
// Note that these will be checked against allowed max at the time of creating them
//-------------------------------
// extra lines
memmove((uint8 *) &bars[nbars], (uint8 *) &extraBars[0], nExtraBars*sizeof(_barData));
nbars += nExtraBars;
//-------------------------------
// extra nodes
memmove((uint8 *) &node[nnodes], (uint8 *) &extraNode[0], nExtraNodes*sizeof(_nodeData));
nnodes += nExtraNodes;
//-------------------------------
}
//------------------------------------------------------------------------------------------
void ClearWalkGridList(void)
{
int entry;
for (entry=0; entry < MAX_WALKGRIDS; entry++)
walkGridList[entry] = 0;
}
//------------------------------------------------------------------------------------------
// called from FN_add_walkgrid
void AddWalkGrid(int32 gridResource)
{
int entry;
// first, scan list to see if this grid is already included
entry=0;
while ((entry < MAX_WALKGRIDS) && (walkGridList[entry] != gridResource))
entry++;
if (entry == MAX_WALKGRIDS) // if this new resource isn't already in the list, then add it, (otherwise finish)
{
// scan the list for a free slot
entry=0;
while ((entry < MAX_WALKGRIDS) && (walkGridList[entry]))
entry++;
if (entry < MAX_WALKGRIDS) // if we found a free slot
walkGridList[entry] = gridResource;
else
Con_fatal_error("ERROR: walkGridList[] full in %s line %d",__FILE__,__LINE__);
}
}
//--------------------------------------------------------------------------------------
// called from FN_remove_walkgrid
void RemoveWalkGrid(int32 gridResource)
{
int entry;
// first, scan list to see if this grid is actually there
entry=0;
while ((entry < MAX_WALKGRIDS) && (walkGridList[entry] != gridResource))
entry++;
if (entry < MAX_WALKGRIDS) // if we've found it in the list, reset entry to zero (otherwise just ignore the request)
walkGridList[entry] = 0;
}
//--------------------------------------------------------------------------------------