scummvm/sound/rate.cpp

285 lines
7.5 KiB
C++

/* ScummVM - Scumm Interpreter
* Copyright (C) 2001-2006 The ScummVM project
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
/*
* The code in this file is based on code with Copyright 1998 Fabrice Bellard
* Fabrice original code is part of SoX (http://sox.sourceforge.net).
* Max Horn adapted that code to the needs of ScummVM and rewrote it partial,
* in the process removing any use of floating point arithmetic. Various other
* improvments over the original code were made.
*/
#include "common/stdafx.h"
#include "sound/audiostream.h"
#include "sound/rate.h"
#include "sound/mixer.h"
#include "common/util.h"
namespace Audio {
/**
* The precision of the fractional computations used by the rate converter.
* Normally you should never have to modify this value.
*/
#define FRAC_BITS 16
/**
* The size of the intermediate input cache. Bigger values may increase
* performance, but only until some point (depends largely on cache size,
* target processor and various other factors), at which it will decrease
* again.
*/
#define INTERMEDIATE_BUFFER_SIZE 512
/**
* Audio rate converter based on simple linear Interpolation.
*
* The use of fractional increment allows us to use no buffer. It
* avoid the problems at the end of the buffer we had with the old
* method which stored a possibly big buffer of size
* lcm(in_rate,out_rate).
*
* Limited to sampling frequency <= 65535 Hz.
*/
template<bool stereo, bool reverseStereo>
class LinearRateConverter : public RateConverter {
protected:
st_sample_t inBuf[INTERMEDIATE_BUFFER_SIZE];
const st_sample_t *inPtr;
int inLen;
/** fractional position of the output stream in input stream unit */
unsigned long opos, opos_frac;
/** fractional position increment in the output stream */
unsigned long opos_inc, opos_inc_frac;
/** position in the input stream (integer) */
unsigned long ipos;
/** last sample(s) in the input stream (left/right channel) */
st_sample_t ilast[2];
/** current sample(s) in the input stream (left/right channel) */
st_sample_t icur[2];
public:
LinearRateConverter(st_rate_t inrate, st_rate_t outrate);
int flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol_l, st_volume_t vol_r);
int drain(st_sample_t *obuf, st_size_t osamp, st_volume_t vol) {
return (ST_SUCCESS);
}
};
/*
* Prepare processing.
*/
template<bool stereo, bool reverseStereo>
LinearRateConverter<stereo, reverseStereo>::LinearRateConverter(st_rate_t inrate, st_rate_t outrate) {
unsigned long incr;
if (inrate == outrate) {
error("Input and Output rates must be different to use rate effect");
}
if (inrate >= 65536 || outrate >= 65536) {
error("rate effect can only handle rates < 65536");
}
opos_frac = 0;
opos = 1;
/* increment */
incr = (inrate << FRAC_BITS) / outrate;
opos_inc_frac = incr & ((1UL << FRAC_BITS) - 1);
opos_inc = incr >> FRAC_BITS;
ipos = 0;
ilast[0] = ilast[1] = 0;
icur[0] = icur[1] = 0;
inLen = 0;
}
/*
* Processed signed long samples from ibuf to obuf.
* Return number of samples processed.
*/
template<bool stereo, bool reverseStereo>
int LinearRateConverter<stereo, reverseStereo>::flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol_l, st_volume_t vol_r) {
st_sample_t *ostart, *oend;
st_sample_t out[2];
const int numChannels = stereo ? 2 : 1;
int i;
ostart = obuf;
oend = obuf + osamp * 2;
while (obuf < oend) {
// read enough input samples so that ipos > opos
while (ipos <= opos) {
// Check if we have to refill the buffer
if (inLen == 0) {
inPtr = inBuf;
inLen = input.readBuffer(inBuf, ARRAYSIZE(inBuf));
if (inLen <= 0)
goto the_end;
}
for (i = 0; i < numChannels; i++) {
ilast[i] = icur[i];
icur[i] = *inPtr++;
inLen--;
}
ipos++;
}
// Loop as long as the outpos trails behind, and as long as there is
// still space in the output buffer.
while (ipos > opos) {
// interpolate
out[0] = out[1] = (st_sample_t)(ilast[0] + (((icur[0] - ilast[0]) * opos_frac + (1UL << (FRAC_BITS-1))) >> FRAC_BITS));
if (stereo) {
// interpolate
out[reverseStereo ? 0 : 1] = (st_sample_t)(ilast[1] + (((icur[1] - ilast[1]) * opos_frac + (1UL << (FRAC_BITS-1))) >> FRAC_BITS));
}
// output left channel
clampedAdd(*obuf++, (out[0] * (int)vol_l) / Audio::Mixer::kMaxMixerVolume);
// output right channel
clampedAdd(*obuf++, (out[1] * (int)vol_r) / Audio::Mixer::kMaxMixerVolume);
// Increment output position
unsigned long tmp = opos_frac + opos_inc_frac;
opos += opos_inc + (tmp >> FRAC_BITS);
opos_frac = tmp & ((1UL << FRAC_BITS) - 1);
// Abort if we reached the end of the output buffer
if (obuf >= oend)
goto the_end;
}
}
the_end:
return (ST_SUCCESS);
}
#pragma mark -
/**
* Simple audio rate converter for the case that the inrate equals the outrate.
*/
template<bool stereo, bool reverseStereo>
class CopyRateConverter : public RateConverter {
st_sample_t *_buffer;
st_size_t _bufferSize;
public:
CopyRateConverter() : _buffer(0), _bufferSize(0) {}
~CopyRateConverter() {
free(_buffer);
}
virtual int flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol_l, st_volume_t vol_r) {
assert(input.isStereo() == stereo);
st_sample_t *ptr;
st_size_t len;
if (stereo)
osamp *= 2;
// Reallocate temp buffer, if necessary
if (osamp > _bufferSize) {
free(_buffer);
_buffer = (st_sample_t *)malloc(osamp * 2);
_bufferSize = osamp;
}
// Read up to 'osamp' samples into our temporary buffer
len = input.readBuffer(_buffer, osamp);
// Mix the data into the output buffer
ptr = _buffer;
while (len-- > 0) {
st_sample_t tmp0, tmp1;
tmp0 = tmp1 = *ptr++;
if (stereo) {
if (reverseStereo)
tmp0 = *ptr++;
else
tmp1 = *ptr++;
len--;
}
// output left channel
clampedAdd(*obuf++, (tmp0 * (int)vol_l) / Audio::Mixer::kMaxMixerVolume);
// output right channel
clampedAdd(*obuf++, (tmp1 * (int)vol_r) / Audio::Mixer::kMaxMixerVolume);
}
return (ST_SUCCESS);
}
virtual int drain(st_sample_t *obuf, st_size_t osamp, st_volume_t vol) {
return (ST_SUCCESS);
}
};
#pragma mark -
/**
* Create and return a RateConverter object for the specified input and output rates.
*/
RateConverter *makeRateConverter(st_rate_t inrate, st_rate_t outrate, bool stereo, bool reverseStereo) {
if (inrate != outrate) {
if (stereo) {
if (reverseStereo)
return new LinearRateConverter<true, true>(inrate, outrate);
else
return new LinearRateConverter<true, false>(inrate, outrate);
} else
return new LinearRateConverter<false, false>(inrate, outrate);
//return new ResampleRateConverter(inrate, outrate, 1);
} else {
if (stereo) {
if (reverseStereo)
return new CopyRateConverter<true, true>();
else
return new CopyRateConverter<true, false>();
} else
return new CopyRateConverter<false, false>();
}
}
} // End of namespace Audio