scummvm/engines/sci/engine/klists.cpp
Filippos Karapetis 98a8c01dbb SCI: Fixed bug #3038433 - "HOYLE1: Crashes"
svn-id: r52182
2010-08-18 07:14:17 +00:00

732 lines
20 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "sci/engine/state.h"
#include "sci/engine/selector.h"
#include "sci/engine/kernel.h"
namespace Sci {
static bool isSaneNodePointer(SegManager *segMan, reg_t addr) {
bool havePrev = false;
reg_t prev = addr;
do {
Node *node = segMan->lookupNode(addr, false);
if (!node) {
if ((g_sci->getGameId() == GID_ICEMAN) && (g_sci->getEngineState()->currentRoomNumber() == 40)) {
// ICEMAN: when plotting course, unDrawLast is called by startPlot::changeState
// there is no previous entry so we get 0 in here
} else if ((g_sci->getGameId() == GID_HOYLE1) && (g_sci->getEngineState()->currentRoomNumber() == 3)) {
// HOYLE1: after sorting cards in hearts, in the next round
// we get an invalid node - bug #3038433
} else {
error("isSaneNodePointer: Node at %04x:%04x wasn't found", PRINT_REG(addr));
}
return false;
}
if (havePrev && node->pred != prev) {
error("isSaneNodePointer: Node at %04x:%04x points to invalid predecessor %04x:%04x (should be %04x:%04x)",
PRINT_REG(addr), PRINT_REG(node->pred), PRINT_REG(prev));
//node->pred = prev; // fix the problem in the node
return false;
}
prev = addr;
addr = node->succ;
havePrev = true;
} while (!addr.isNull());
return true;
}
static void checkListPointer(SegManager *segMan, reg_t addr) {
List *list = segMan->lookupList(addr);
if (!list) {
error("checkListPointer (list %04x:%04x): The requested list wasn't found",
PRINT_REG(addr));
return;
}
if (list->first.isNull() && list->last.isNull()) {
// Empty list is fine
} else if (!list->first.isNull() && !list->last.isNull()) {
// Normal list
Node *node_a = segMan->lookupNode(list->first, false);
Node *node_z = segMan->lookupNode(list->last, false);
if (!node_a) {
error("checkListPointer (list %04x:%04x): missing first node", PRINT_REG(addr));
return;
}
if (!node_z) {
error("checkListPointer (list %04x:%04x): missing last node", PRINT_REG(addr));
return;
}
if (!node_a->pred.isNull()) {
error("checkListPointer (list %04x:%04x): First node of the list points to a predecessor node",
PRINT_REG(addr));
//node_a->pred = NULL_REG; // fix the problem in the node
return;
}
if (!node_z->succ.isNull()) {
error("checkListPointer (list %04x:%04x): Last node of the list points to a successor node",
PRINT_REG(addr));
//node_z->succ = NULL_REG; // fix the problem in the node
return;
}
isSaneNodePointer(segMan, list->first);
} else {
// Not sane list... it's missing pointers to the first or last element
if (list->first.isNull())
error("checkListPointer (list %04x:%04x): missing pointer to first element",
PRINT_REG(addr));
if (list->last.isNull())
error("checkListPointer (list %04x:%04x): missing pointer to last element",
PRINT_REG(addr));
}
}
reg_t kNewList(EngineState *s, int argc, reg_t *argv) {
reg_t listRef;
List *list = s->_segMan->allocateList(&listRef);
list->first = list->last = NULL_REG;
debugC(2, kDebugLevelNodes, "New listRef at %04x:%04x", PRINT_REG(listRef));
return listRef; // Return list base address
}
reg_t kDisposeList(EngineState *s, int argc, reg_t *argv) {
// This function is not needed in ScummVM. The garbage collector
// cleans up unused objects automatically
return s->r_acc;
}
reg_t kNewNode(EngineState *s, int argc, reg_t *argv) {
reg_t nodeValue = argv[0];
// Some SCI32 games call this with 1 parameter (e.g. the demo of Phantasmagoria).
// Set the key to be the same as the value in this case
reg_t nodeKey = (argc == 2) ? argv[1] : argv[0];
s->r_acc = s->_segMan->newNode(nodeValue, nodeKey);
debugC(2, kDebugLevelNodes, "New nodeRef at %04x:%04x", PRINT_REG(s->r_acc));
return s->r_acc;
}
reg_t kFirstNode(EngineState *s, int argc, reg_t *argv) {
if (argv[0].isNull())
return NULL_REG;
List *list = s->_segMan->lookupList(argv[0]);
if (list) {
checkListPointer(s->_segMan, argv[0]);
return list->first;
} else {
return NULL_REG;
}
}
reg_t kLastNode(EngineState *s, int argc, reg_t *argv) {
if (argv[0].isNull())
return NULL_REG;
List *list = s->_segMan->lookupList(argv[0]);
if (list) {
checkListPointer(s->_segMan, argv[0]);
return list->last;
} else {
return NULL_REG;
}
}
reg_t kEmptyList(EngineState *s, int argc, reg_t *argv) {
if (argv[0].isNull())
return NULL_REG;
List *list = s->_segMan->lookupList(argv[0]);
checkListPointer(s->_segMan, argv[0]);
return make_reg(0, ((list) ? list->first.isNull() : 0));
}
static void addToFront(EngineState *s, reg_t listRef, reg_t nodeRef) {
List *list = s->_segMan->lookupList(listRef);
Node *newNode = s->_segMan->lookupNode(nodeRef);
debugC(2, kDebugLevelNodes, "Adding node %04x:%04x to end of list %04x:%04x", PRINT_REG(nodeRef), PRINT_REG(listRef));
if (!newNode)
error("Attempt to add non-node (%04x:%04x) to list at %04x:%04x", PRINT_REG(nodeRef), PRINT_REG(listRef));
checkListPointer(s->_segMan, listRef);
newNode->pred = NULL_REG;
newNode->succ = list->first;
// Set node to be the first and last node if it's the only node of the list
if (list->first.isNull())
list->last = nodeRef;
else {
Node *oldNode = s->_segMan->lookupNode(list->first);
oldNode->pred = nodeRef;
}
list->first = nodeRef;
}
static void addToEnd(EngineState *s, reg_t listRef, reg_t nodeRef) {
List *list = s->_segMan->lookupList(listRef);
Node *newNode = s->_segMan->lookupNode(nodeRef);
debugC(2, kDebugLevelNodes, "Adding node %04x:%04x to end of list %04x:%04x", PRINT_REG(nodeRef), PRINT_REG(listRef));
if (!newNode)
error("Attempt to add non-node (%04x:%04x) to list at %04x:%04x", PRINT_REG(nodeRef), PRINT_REG(listRef));
checkListPointer(s->_segMan, listRef);
newNode->pred = list->last;
newNode->succ = NULL_REG;
// Set node to be the first and last node if it's the only node of the list
if (list->last.isNull())
list->first = nodeRef;
else {
Node *old_n = s->_segMan->lookupNode(list->last);
old_n->succ = nodeRef;
}
list->last = nodeRef;
}
reg_t kNextNode(EngineState *s, int argc, reg_t *argv) {
Node *n = s->_segMan->lookupNode(argv[0]);
if (!isSaneNodePointer(s->_segMan, argv[0]))
return NULL_REG;
return n->succ;
}
reg_t kPrevNode(EngineState *s, int argc, reg_t *argv) {
Node *n = s->_segMan->lookupNode(argv[0]);
if (!isSaneNodePointer(s->_segMan, argv[0]))
return NULL_REG;
return n->pred;
}
reg_t kNodeValue(EngineState *s, int argc, reg_t *argv) {
Node *n = s->_segMan->lookupNode(argv[0]);
if (!isSaneNodePointer(s->_segMan, argv[0]))
return NULL_REG;
return n->value;
}
reg_t kAddToFront(EngineState *s, int argc, reg_t *argv) {
addToFront(s, argv[0], argv[1]);
if (argc == 3)
s->_segMan->lookupNode(argv[1])->key = argv[2];
return s->r_acc;
}
reg_t kAddToEnd(EngineState *s, int argc, reg_t *argv) {
addToEnd(s, argv[0], argv[1]);
if (argc == 3)
s->_segMan->lookupNode(argv[1])->key = argv[2];
return s->r_acc;
}
reg_t kAddAfter(EngineState *s, int argc, reg_t *argv) {
List *list = s->_segMan->lookupList(argv[0]);
Node *firstnode = argv[1].isNull() ? NULL : s->_segMan->lookupNode(argv[1]);
Node *newnode = s->_segMan->lookupNode(argv[2]);
checkListPointer(s->_segMan, argv[0]);
if (!newnode) {
error("New 'node' %04x:%04x is not a node", PRINT_REG(argv[2]));
return NULL_REG;
}
if (argc != 3 && argc != 4) {
error("kAddAfter: Haven't got 3 or 4 arguments, aborting");
return NULL_REG;
}
if (argc == 4)
newnode->key = argv[3];
if (firstnode) { // We're really appending after
reg_t oldnext = firstnode->succ;
newnode->pred = argv[1];
firstnode->succ = argv[2];
newnode->succ = oldnext;
if (oldnext.isNull()) // Appended after last node?
// Set new node as last list node
list->last = argv[2];
else
s->_segMan->lookupNode(oldnext)->pred = argv[2];
} else { // !firstnode
addToFront(s, argv[0], argv[2]); // Set as initial list node
}
return s->r_acc;
}
reg_t kFindKey(EngineState *s, int argc, reg_t *argv) {
reg_t node_pos;
reg_t key = argv[1];
reg_t list_pos = argv[0];
debugC(2, kDebugLevelNodes, "Looking for key %04x:%04x in list %04x:%04x", PRINT_REG(key), PRINT_REG(list_pos));
checkListPointer(s->_segMan, argv[0]);
node_pos = s->_segMan->lookupList(list_pos)->first;
debugC(2, kDebugLevelNodes, "First node at %04x:%04x", PRINT_REG(node_pos));
while (!node_pos.isNull()) {
Node *n = s->_segMan->lookupNode(node_pos);
if (n->key == key) {
debugC(2, kDebugLevelNodes, " Found key at %04x:%04x", PRINT_REG(node_pos));
return node_pos;
}
node_pos = n->succ;
debugC(2, kDebugLevelNodes, "NextNode at %04x:%04x", PRINT_REG(node_pos));
}
debugC(2, kDebugLevelNodes, "Looking for key without success");
return NULL_REG;
}
reg_t kDeleteKey(EngineState *s, int argc, reg_t *argv) {
reg_t node_pos = kFindKey(s, 2, argv);
Node *n;
List *list = s->_segMan->lookupList(argv[0]);
if (node_pos.isNull())
return NULL_REG; // Signal failure
n = s->_segMan->lookupNode(node_pos);
if (list->first == node_pos)
list->first = n->succ;
if (list->last == node_pos)
list->last = n->pred;
if (!n->pred.isNull())
s->_segMan->lookupNode(n->pred)->succ = n->succ;
if (!n->succ.isNull())
s->_segMan->lookupNode(n->succ)->pred = n->pred;
// Erase references to the predecessor and successor nodes, as the game
// scripts could reference the node itself again.
// Happens in the intro of QFG1 and in Longbow, when exiting the cave.
n->pred = NULL_REG;
n->succ = NULL_REG;
return make_reg(0, 1); // Signal success
}
struct sort_temp_t {
reg_t key, value;
reg_t order;
};
int sort_temp_cmp(const void *p1, const void *p2) {
const sort_temp_t *st1 = (const sort_temp_t *)p1;
const sort_temp_t *st2 = (const sort_temp_t *)p2;
if (st1->order.segment < st1->order.segment || (st1->order.segment == st1->order.segment && st1->order.offset < st2->order.offset))
return -1;
if (st1->order.segment > st2->order.segment || (st1->order.segment == st2->order.segment && st1->order.offset > st2->order.offset))
return 1;
return 0;
}
reg_t kSort(EngineState *s, int argc, reg_t *argv) {
SegManager *segMan = s->_segMan;
reg_t source = argv[0];
reg_t dest = argv[1];
reg_t order_func = argv[2];
int input_size = (int16)readSelectorValue(segMan, source, SELECTOR(size));
reg_t input_data = readSelector(segMan, source, SELECTOR(elements));
reg_t output_data = readSelector(segMan, dest, SELECTOR(elements));
List *list;
Node *node;
if (!input_size)
return s->r_acc;
if (output_data.isNull()) {
list = s->_segMan->allocateList(&output_data);
list->first = list->last = NULL_REG;
writeSelector(segMan, dest, SELECTOR(elements), output_data);
}
writeSelectorValue(segMan, dest, SELECTOR(size), input_size);
list = s->_segMan->lookupList(input_data);
node = s->_segMan->lookupNode(list->first);
sort_temp_t *temp_array = (sort_temp_t *)malloc(sizeof(sort_temp_t) * input_size);
int i = 0;
while (node) {
reg_t params[1] = { node->value };
invokeSelector(s, order_func, SELECTOR(doit), argc, argv, 1, params);
temp_array[i].key = node->key;
temp_array[i].value = node->value;
temp_array[i].order = s->r_acc;
i++;
node = s->_segMan->lookupNode(node->succ);
}
qsort(temp_array, input_size, sizeof(sort_temp_t), sort_temp_cmp);
for (i = 0;i < input_size;i++) {
reg_t lNode = s->_segMan->newNode(temp_array[i].value, temp_array[i].key);
addToEnd(s, output_data, lNode);
}
free(temp_array);
return s->r_acc;
}
// SCI32 list functions
#ifdef ENABLE_SCI32
reg_t kListAt(EngineState *s, int argc, reg_t *argv) {
if (argc != 2) {
error("kListAt called with %d parameters", argc);
return NULL_REG;
}
List *list = s->_segMan->lookupList(argv[0]);
reg_t curAddress = list->first;
if (list->first.isNull()) {
error("kListAt tried to reference empty list (%04x:%04x)", PRINT_REG(argv[0]));
return NULL_REG;
}
Node *curNode = s->_segMan->lookupNode(curAddress);
reg_t curObject = curNode->value;
int16 listIndex = argv[1].toUint16();
int curIndex = 0;
while (curIndex != listIndex) {
if (curNode->succ.isNull()) { // end of the list?
return NULL_REG;
}
curAddress = curNode->succ;
curNode = s->_segMan->lookupNode(curAddress);
curObject = curNode->value;
curIndex++;
}
return curObject;
}
reg_t kListIndexOf(EngineState *s, int argc, reg_t *argv) {
List *list = s->_segMan->lookupList(argv[0]);
reg_t curAddress = list->first;
Node *curNode = s->_segMan->lookupNode(curAddress);
reg_t curObject;
uint16 curIndex = 0;
while (curNode) {
curObject = curNode->value;
if (curObject == argv[1])
return make_reg(0, curIndex);
curAddress = curNode->succ;
curNode = s->_segMan->lookupNode(curAddress);
curIndex++;
}
return SIGNAL_REG;
}
reg_t kListEachElementDo(EngineState *s, int argc, reg_t *argv) {
List *list = s->_segMan->lookupList(argv[0]);
Node *curNode = s->_segMan->lookupNode(list->first);
reg_t curObject;
Selector slc = argv[1].toUint16();
ObjVarRef address;
while (curNode) {
// We get the next node here as the current node might be gone after the invoke
reg_t nextNode = curNode->succ;
curObject = curNode->value;
// First, check if the target selector is a variable
if (lookupSelector(s->_segMan, curObject, slc, &address, NULL) == kSelectorVariable) {
// This can only happen with 3 params (list, target selector, variable)
if (argc != 3) {
error("kListEachElementDo: Attempted to modify a variable selector with %d params", argc);
} else {
writeSelector(s->_segMan, curObject, slc, argv[2]);
}
} else {
invokeSelector(s, curObject, slc, argc, argv, argc - 2, argv + 2);
}
curNode = s->_segMan->lookupNode(nextNode);
}
return s->r_acc;
}
reg_t kListFirstTrue(EngineState *s, int argc, reg_t *argv) {
List *list = s->_segMan->lookupList(argv[0]);
Node *curNode = s->_segMan->lookupNode(list->first);
reg_t curObject;
Selector slc = argv[1].toUint16();
ObjVarRef address;
s->r_acc = NULL_REG; // reset the accumulator
while (curNode) {
reg_t nextNode = curNode->succ;
curObject = curNode->value;
// First, check if the target selector is a variable
if (lookupSelector(s->_segMan, curObject, slc, &address, NULL) == kSelectorVariable) {
// Can this happen with variable selectors?
error("kListFirstTrue: Attempted to access a variable selector");
} else {
invokeSelector(s, curObject, slc, argc, argv, argc - 2, argv + 2);
// Check if the result is true
if (!s->r_acc.isNull())
return curObject;
}
curNode = s->_segMan->lookupNode(nextNode);
}
// No selector returned true
return NULL_REG;
}
reg_t kListAllTrue(EngineState *s, int argc, reg_t *argv) {
List *list = s->_segMan->lookupList(argv[0]);
Node *curNode = s->_segMan->lookupNode(list->first);
reg_t curObject;
Selector slc = argv[1].toUint16();
ObjVarRef address;
s->r_acc = make_reg(0, 1); // reset the accumulator
while (curNode) {
reg_t nextNode = curNode->succ;
curObject = curNode->value;
// First, check if the target selector is a variable
if (lookupSelector(s->_segMan, curObject, slc, &address, NULL) == kSelectorVariable) {
// Can this happen with variable selectors?
error("kListAllTrue: Attempted to access a variable selector");
} else {
invokeSelector(s, curObject, slc, argc, argv, argc - 2, argv + 2);
// Check if the result isn't true
if (s->r_acc.isNull())
break;
}
curNode = s->_segMan->lookupNode(nextNode);
}
return s->r_acc;
}
reg_t kList(EngineState *s, int argc, reg_t *argv) {
if (!s)
return make_reg(0, getSciVersion());
error("not supposed to call this");
}
reg_t kAddBefore(EngineState *s, int argc, reg_t *argv) {
error("Unimplemented function kAddBefore called");
return s->r_acc;
}
reg_t kMoveToFront(EngineState *s, int argc, reg_t *argv) {
error("Unimplemented function kMoveToFront called");
return s->r_acc;
}
reg_t kMoveToEnd(EngineState *s, int argc, reg_t *argv) {
error("Unimplemented function kMoveToEnd called");
return s->r_acc;
}
reg_t kArray(EngineState *s, int argc, reg_t *argv) {
switch (argv[0].toUint16()) {
case 0: { // New
reg_t arrayHandle;
SciArray<reg_t> *array = s->_segMan->allocateArray(&arrayHandle);
array->setType(argv[2].toUint16());
array->setSize(argv[1].toUint16());
return arrayHandle;
}
case 1: { // Size
SciArray<reg_t> *array = s->_segMan->lookupArray(argv[1]);
return make_reg(0, array->getSize());
}
case 2: { // At (return value at an index)
SciArray<reg_t> *array = s->_segMan->lookupArray(argv[1]);
return array->getValue(argv[2].toUint16());
}
case 3: { // Atput (put value at an index)
SciArray<reg_t> *array = s->_segMan->lookupArray(argv[1]);
uint32 index = argv[2].toUint16();
uint32 count = argc - 3;
if (index + count > 65535)
break;
if (array->getSize() < index + count)
array->setSize(index + count);
for (uint16 i = 0; i < count; i++)
array->setValue(i + index, argv[i + 3]);
return argv[1]; // We also have to return the handle
}
case 4: // Free
// Freeing of arrays is handled by the garbage collector
return s->r_acc;
case 5: { // Fill
SciArray<reg_t> *array = s->_segMan->lookupArray(argv[1]);
uint16 index = argv[2].toUint16();
// A count of -1 means fill the rest of the array
uint16 count = argv[3].toSint16() == -1 ? array->getSize() - index : argv[3].toUint16();
uint16 arraySize = array->getSize();
if (arraySize < index + count)
array->setSize(index + count);
for (uint16 i = 0; i < count; i++)
array->setValue(i + index, argv[4]);
return argv[1];
}
case 6: { // Cpy
if (s->_segMan->getSegmentObj(argv[1].segment)->getType() != SEG_TYPE_ARRAY ||
s->_segMan->getSegmentObj(argv[3].segment)->getType() != SEG_TYPE_ARRAY) {
// Happens in the RAMA demo
warning("kArray(Cpy): Request to copy a segment which isn't an array, ignoring");
return NULL_REG;
}
SciArray<reg_t> *array1 = s->_segMan->lookupArray(argv[1]);
SciArray<reg_t> *array2 = s->_segMan->lookupArray(argv[3]);
uint32 index1 = argv[2].toUint16();
uint32 index2 = argv[4].toUint16();
// The original engine ignores bad copies too
if (index2 > array2->getSize())
break;
// A count of -1 means fill the rest of the array
uint32 count = argv[5].toSint16() == -1 ? array2->getSize() - index2 : argv[5].toUint16();
if (array1->getSize() < index1 + count)
array1->setSize(index1 + count);
for (uint16 i = 0; i < count; i++)
array1->setValue(i + index1, array2->getValue(i + index2));
return argv[1];
}
case 7: // Cmp
// Not implemented in SSCI
return s->r_acc;
case 8: { // Dup
SciArray<reg_t> *array = s->_segMan->lookupArray(argv[1]);
reg_t arrayHandle;
SciArray<reg_t> *dupArray = s->_segMan->allocateArray(&arrayHandle);
dupArray->setType(array->getType());
dupArray->setSize(array->getSize());
for (uint32 i = 0; i < array->getSize(); i++)
dupArray->setValue(i, array->getValue(i));
return arrayHandle;
}
case 9: // Getdata
if (!s->_segMan->isHeapObject(argv[1]))
return argv[1];
return readSelector(s->_segMan, argv[1], SELECTOR(data));
default:
error("Unknown kArray subop %d", argv[0].toUint16());
}
return NULL_REG;
}
#endif
} // End of namespace Sci