scummvm/sound/softsynth/sid.cpp
Florian Kagerer 4a159bcb1e GUI: add music devices for c64, amiga and apple II gs
These devices are not able to create appropriate drivers.
The only purpose for now is having proper gui options and flags and music types for the device detector.
The corresponding GUIO flags for the new devices have been added, too.

svn-id: r51995
2010-08-11 18:54:56 +00:00

1457 lines
33 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
/*
* This file is based on reSID, a MOS6581 SID emulator engine.
* Copyright (C) 2004 Dag Lem <resid@nimrod.no>
*/
#ifndef DISABLE_SID
#include "sid.h"
#include "sound/null.h"
#include <math.h>
namespace Resid {
// Fixpoint constants (16.16 bits).
const int SID::FIXP_SHIFT = 16;
const int SID::FIXP_MASK = 0xffff;
/*
* WaveformGenerator
*/
WaveformGenerator::WaveformGenerator() {
sync_source = this;
reset();
}
void WaveformGenerator::set_sync_source(WaveformGenerator* source) {
sync_source = source;
source->sync_dest = this;
}
void WaveformGenerator::writeFREQ_LO(reg8 freq_lo) {
freq = (freq & 0xff00) | (freq_lo & 0x00ff);
}
void WaveformGenerator::writeFREQ_HI(reg8 freq_hi) {
freq = ((freq_hi << 8) & 0xff00) | (freq & 0x00ff);
}
void WaveformGenerator::writePW_LO(reg8 pw_lo) {
pw = (pw & 0xf00) | (pw_lo & 0x0ff);
}
void WaveformGenerator::writePW_HI(reg8 pw_hi) {
pw = ((pw_hi << 8) & 0xf00) | (pw & 0x0ff);
}
void WaveformGenerator::writeCONTROL_REG(reg8 control) {
waveform = (control >> 4) & 0x0f;
ring_mod = control & 0x04;
sync = control & 0x02;
reg8 test_next = control & 0x08;
// Test bit set.
if (test_next) {
accumulator = 0;
shift_register = 0;
}
// Test bit cleared.
else if (test) {
shift_register = 0x7ffff8;
}
test = test_next;
// The gate bit is handled by the EnvelopeGenerator.
}
reg8 WaveformGenerator::readOSC() {
return output() >> 4;
}
void WaveformGenerator::reset() {
accumulator = 0;
shift_register = 0x7ffff8;
freq = 0;
pw = 0;
test = 0;
ring_mod = 0;
sync = 0;
msb_rising = false;
}
RESID_INLINE void WaveformGenerator::clock(cycle_count delta_t) {
// No operation if test bit is set.
if (test) {
return;
}
reg24 accumulator_prev = accumulator;
// Calculate new accumulator value;
reg24 delta_accumulator = delta_t*freq;
accumulator += delta_accumulator;
accumulator &= 0xffffff;
// Check whether the MSB is set high. This is used for synchronization.
msb_rising = !(accumulator_prev & 0x800000) && (accumulator & 0x800000);
// Shift noise register once for each time accumulator bit 19 is set high.
// Bit 19 is set high each time 2^20 (0x100000) is added to the accumulator.
reg24 shift_period = 0x100000;
while (delta_accumulator) {
if (delta_accumulator < shift_period) {
shift_period = delta_accumulator;
// Determine whether bit 19 is set on the last period.
// NB! Requires two's complement integer.
if (shift_period <= 0x080000) {
// Check for flip from 0 to 1.
if (((accumulator - shift_period) & 0x080000) || !(accumulator & 0x080000))
{
break;
}
}
else {
// Check for flip from 0 (to 1 or via 1 to 0) or from 1 via 0 to 1.
if (((accumulator - shift_period) & 0x080000) && !(accumulator & 0x080000))
{
break;
}
}
}
// Shift the noise/random register.
// NB! The shift is actually delayed 2 cycles, this is not modeled.
reg24 bit0 = ((shift_register >> 22) ^ (shift_register >> 17)) & 0x1;
shift_register <<= 1;
shift_register &= 0x7fffff;
shift_register |= bit0;
delta_accumulator -= shift_period;
}
}
/**
* Synchronize oscillators.
* This must be done after all the oscillators have been clock()'ed since the
* oscillators operate in parallel.
* Note that the oscillators must be clocked exactly on the cycle when the
* MSB is set high for hard sync to operate correctly. See SID::clock().
*/
RESID_INLINE void WaveformGenerator::synchronize() {
// A special case occurs when a sync source is synced itself on the same
// cycle as when its MSB is set high. In this case the destination will
// not be synced. This has been verified by sampling OSC3.
if (msb_rising && sync_dest->sync && !(sync && sync_source->msb_rising)) {
sync_dest->accumulator = 0;
}
}
/*
* Output functions
*/
// No waveform: Zero output.
RESID_INLINE reg12 WaveformGenerator::output____() {
return 0x000;
}
// Triangle:
RESID_INLINE reg12 WaveformGenerator::output___T() {
reg24 msb = (ring_mod ? accumulator ^ sync_source->accumulator : accumulator)
& 0x800000;
return ((msb ? ~accumulator : accumulator) >> 11) & 0xfff;
}
// Sawtooth:
RESID_INLINE reg12 WaveformGenerator::output__S_() {
return accumulator >> 12;
}
// Pulse:
RESID_INLINE reg12 WaveformGenerator::output_P__() {
return (test || (accumulator >> 12) >= pw) ? 0xfff : 0x000;
}
// Noise:
RESID_INLINE reg12 WaveformGenerator::outputN___() {
return
((shift_register & 0x400000) >> 11) |
((shift_register & 0x100000) >> 10) |
((shift_register & 0x010000) >> 7) |
((shift_register & 0x002000) >> 5) |
((shift_register & 0x000800) >> 4) |
((shift_register & 0x000080) >> 1) |
((shift_register & 0x000010) << 1) |
((shift_register & 0x000004) << 2);
}
// Combined waveforms:
RESID_INLINE reg12 WaveformGenerator::output__ST() {
return wave6581__ST[output__S_()] << 4;
}
RESID_INLINE reg12 WaveformGenerator::output_P_T() {
return (wave6581_P_T[output___T() >> 1] << 4) & output_P__();
}
RESID_INLINE reg12 WaveformGenerator::output_PS_() {
return (wave6581_PS_[output__S_()] << 4) & output_P__();
}
RESID_INLINE reg12 WaveformGenerator::output_PST() {
return (wave6581_PST[output__S_()] << 4) & output_P__();
}
// Combined waveforms including noise:
RESID_INLINE reg12 WaveformGenerator::outputN__T() {
return 0;
}
RESID_INLINE reg12 WaveformGenerator::outputN_S_() {
return 0;
}
RESID_INLINE reg12 WaveformGenerator::outputN_ST() {
return 0;
}
RESID_INLINE reg12 WaveformGenerator::outputNP__() {
return 0;
}
RESID_INLINE reg12 WaveformGenerator::outputNP_T() {
return 0;
}
RESID_INLINE reg12 WaveformGenerator::outputNPS_() {
return 0;
}
RESID_INLINE reg12 WaveformGenerator::outputNPST() {
return 0;
}
/**
* Select one of 16 possible combinations of waveforms.
*/
RESID_INLINE reg12 WaveformGenerator::output() {
// It may seem cleaner to use an array of member functions to return
// waveform output; however a switch with inline functions is faster.
switch (waveform) {
default:
case 0x0:
return output____();
case 0x1:
return output___T();
case 0x2:
return output__S_();
case 0x3:
return output__ST();
case 0x4:
return output_P__();
case 0x5:
return output_P_T();
case 0x6:
return output_PS_();
case 0x7:
return output_PST();
case 0x8:
return outputN___();
case 0x9:
return outputN__T();
case 0xa:
return outputN_S_();
case 0xb:
return outputN_ST();
case 0xc:
return outputNP__();
case 0xd:
return outputNP_T();
case 0xe:
return outputNPS_();
case 0xf:
return outputNPST();
}
}
/*
* Our objective is to construct a smooth interpolating single-valued function
* y = f(x).
* Our approach is to approximate the properties of Catmull-Rom splines for
* piecewice cubic polynomials.
*/
/**
* Calculation of coefficients.
*/
inline void cubic_coefficients(double x1, double y1, double x2, double y2,
double k1, double k2,
double& a, double& b, double& c, double& d)
{
double dx = x2 - x1, dy = y2 - y1;
a = ((k1 + k2) - 2*dy/dx)/(dx*dx);
b = ((k2 - k1)/dx - 3*(x1 + x2)*a)/2;
c = k1 - (3*x1*a + 2*b)*x1;
d = y1 - ((x1*a + b)*x1 + c)*x1;
}
/**
* Evaluation of cubic polynomial by forward differencing.
*/
template<class PointPlotter>
inline void interpolate_segment(double x1, double y1, double x2, double y2,
double k1, double k2,
PointPlotter plot, double res)
{
double a, b, c, d;
cubic_coefficients(x1, y1, x2, y2, k1, k2, a, b, c, d);
double y = ((a*x1 + b)*x1 + c)*x1 + d;
double dy = (3*a*(x1 + res) + 2*b)*x1*res + ((a*res + b)*res + c)*res;
double d2y = (6*a*(x1 + res) + 2*b)*res*res;
double d3y = 6*a*res*res*res;
// Calculate each point.
for (double x = x1; x <= x2; x += res) {
plot(x, y);
y += dy; dy += d2y; d2y += d3y;
}
}
template<class PointIter>
inline double x(PointIter p) {
return (*p)[0];
}
template<class PointIter>
inline double y(PointIter p) {
return (*p)[1];
}
/**
* Evaluation of complete interpolating function.
* Note that since each curve segment is controlled by four points, the
* end points will not be interpolated. If extra control points are not
* desirable, the end points can simply be repeated to ensure interpolation.
* Note also that points of non-differentiability and discontinuity can be
* introduced by repeating points.
*/
template<class PointIter, class PointPlotter>
inline void interpolate(PointIter p0, PointIter pn, PointPlotter plot, double res) {
double k1, k2;
// Set up points for first curve segment.
PointIter p1 = p0; ++p1;
PointIter p2 = p1; ++p2;
PointIter p3 = p2; ++p3;
// Draw each curve segment.
for (; p2 != pn; ++p0, ++p1, ++p2, ++p3) {
// p1 and p2 equal; single point.
if (x(p1) == x(p2)) {
continue;
}
// Both end points repeated; straight line.
if (x(p0) == x(p1) && x(p2) == x(p3)) {
k1 = k2 = (y(p2) - y(p1))/(x(p2) - x(p1));
}
// p0 and p1 equal; use f''(x1) = 0.
else if (x(p0) == x(p1)) {
k2 = (y(p3) - y(p1))/(x(p3) - x(p1));
k1 = (3*(y(p2) - y(p1))/(x(p2) - x(p1)) - k2)/2;
}
// p2 and p3 equal; use f''(x2) = 0.
else if (x(p2) == x(p3)) {
k1 = (y(p2) - y(p0))/(x(p2) - x(p0));
k2 = (3*(y(p2) - y(p1))/(x(p2) - x(p1)) - k1)/2;
}
// Normal curve.
else {
k1 = (y(p2) - y(p0))/(x(p2) - x(p0));
k2 = (y(p3) - y(p1))/(x(p3) - x(p1));
}
interpolate_segment(x(p1), y(p1), x(p2), y(p2), k1, k2, plot, res);
}
}
/**
* Class for plotting integers into an array.
*/
template<class F>
class PointPlotter {
protected:
F* f;
public:
PointPlotter(F* arr) : f(arr) {
}
void operator ()(double x, double y) {
// Clamp negative values to zero.
if (y < 0) {
y = 0;
}
f[F(x)] = F(y);
}
};
fc_point Filter::f0_points_6581[] = {
// FC f FCHI FCLO
// ----------------------------
{ 0, 220 }, // 0x00 - repeated end point
{ 0, 220 }, // 0x00
{ 128, 230 }, // 0x10
{ 256, 250 }, // 0x20
{ 384, 300 }, // 0x30
{ 512, 420 }, // 0x40
{ 640, 780 }, // 0x50
{ 768, 1600 }, // 0x60
{ 832, 2300 }, // 0x68
{ 896, 3200 }, // 0x70
{ 960, 4300 }, // 0x78
{ 992, 5000 }, // 0x7c
{ 1008, 5400 }, // 0x7e
{ 1016, 5700 }, // 0x7f
{ 1023, 6000 }, // 0x7f 0x07
{ 1023, 6000 }, // 0x7f 0x07 - discontinuity
{ 1024, 4600 }, // 0x80 -
{ 1024, 4600 }, // 0x80
{ 1032, 4800 }, // 0x81
{ 1056, 5300 }, // 0x84
{ 1088, 6000 }, // 0x88
{ 1120, 6600 }, // 0x8c
{ 1152, 7200 }, // 0x90
{ 1280, 9500 }, // 0xa0
{ 1408, 12000 }, // 0xb0
{ 1536, 14500 }, // 0xc0
{ 1664, 16000 }, // 0xd0
{ 1792, 17100 }, // 0xe0
{ 1920, 17700 }, // 0xf0
{ 2047, 18000 }, // 0xff 0x07
{ 2047, 18000 } // 0xff 0x07 - repeated end point
};
/*
* Filter
*/
Filter::Filter() {
fc = 0;
res = 0;
filt = 0;
voice3off = 0;
hp_bp_lp = 0;
vol = 0;
// State of filter.
Vhp = 0;
Vbp = 0;
Vlp = 0;
Vnf = 0;
enable_filter(true);
// Create mappings from FC to cutoff frequency.
interpolate(f0_points_6581, f0_points_6581
+ sizeof(f0_points_6581)/sizeof(*f0_points_6581) - 1,
PointPlotter<sound_sample>(f0_6581), 1.0);
mixer_DC = (-0xfff*0xff/18) >> 7;
f0 = f0_6581;
f0_points = f0_points_6581;
f0_count = sizeof(f0_points_6581)/sizeof(*f0_points_6581);
set_w0();
set_Q();
}
void Filter::enable_filter(bool enable) {
enabled = enable;
}
void Filter::reset(){
fc = 0;
res = 0;
filt = 0;
voice3off = 0;
hp_bp_lp = 0;
vol = 0;
// State of filter.
Vhp = 0;
Vbp = 0;
Vlp = 0;
Vnf = 0;
set_w0();
set_Q();
}
void Filter::writeFC_LO(reg8 fc_lo) {
fc = (fc & 0x7f8) | (fc_lo & 0x007);
set_w0();
}
void Filter::writeFC_HI(reg8 fc_hi) {
fc = ((fc_hi << 3) & 0x7f8) | (fc & 0x007);
set_w0();
}
void Filter::writeRES_FILT(reg8 res_filt) {
res = (res_filt >> 4) & 0x0f;
set_Q();
filt = res_filt & 0x0f;
}
void Filter::writeMODE_VOL(reg8 mode_vol) {
voice3off = mode_vol & 0x80;
hp_bp_lp = (mode_vol >> 4) & 0x07;
vol = mode_vol & 0x0f;
}
// Set filter cutoff frequency.
void Filter::set_w0() {
const double pi = 3.1415926535897932385;
// Multiply with 1.048576 to facilitate division by 1 000 000 by right-
// shifting 20 times (2 ^ 20 = 1048576).
w0 = static_cast<sound_sample>(2*pi*f0[fc]*1.048576);
// Limit f0 to 16kHz to keep 1 cycle filter stable.
const sound_sample w0_max_1 = static_cast<sound_sample>(2*pi*16000*1.048576);
w0_ceil_1 = w0 <= w0_max_1 ? w0 : w0_max_1;
// Limit f0 to 4kHz to keep delta_t cycle filter stable.
const sound_sample w0_max_dt = static_cast<sound_sample>(2*pi*4000*1.048576);
w0_ceil_dt = w0 <= w0_max_dt ? w0 : w0_max_dt;
}
// Set filter resonance.
void Filter::set_Q() {
// Q is controlled linearly by res. Q has approximate range [0.707, 1.7].
// As resonance is increased, the filter must be clocked more often to keep
// stable.
// The coefficient 1024 is dispensed of later by right-shifting 10 times
// (2 ^ 10 = 1024).
_1024_div_Q = static_cast<sound_sample>(1024.0/(0.707 + 1.0*res/0x0f));
}
RESID_INLINE void Filter::clock(cycle_count delta_t,
sound_sample voice1,
sound_sample voice2,
sound_sample voice3)
{
// Scale each voice down from 20 to 13 bits.
voice1 >>= 7;
voice2 >>= 7;
// NB! Voice 3 is not silenced by voice3off if it is routed through
// the filter.
if (voice3off && !(filt & 0x04)) {
voice3 = 0;
}
else {
voice3 >>= 7;
}
// Enable filter on/off.
// This is not really part of SID, but is useful for testing.
// On slow CPUs it may be necessary to bypass the filter to lower the CPU
// load.
if (!enabled) {
Vnf = voice1 + voice2 + voice3;
Vhp = Vbp = Vlp = 0;
return;
}
// Route voices into or around filter.
// The code below is expanded to a switch for faster execution.
// (filt1 ? Vi : Vnf) += voice1;
// (filt2 ? Vi : Vnf) += voice2;
// (filt3 ? Vi : Vnf) += voice3;
sound_sample Vi;
switch (filt) {
default:
case 0x0:
Vi = 0;
Vnf = voice1 + voice2 + voice3;
break;
case 0x1:
Vi = voice1;
Vnf = voice2 + voice3;
break;
case 0x2:
Vi = voice2;
Vnf = voice1 + voice3;
break;
case 0x3:
Vi = voice1 + voice2;
Vnf = voice3;
break;
case 0x4:
Vi = voice3;
Vnf = voice1 + voice2;
break;
case 0x5:
Vi = voice1 + voice3;
Vnf = voice2;
break;
case 0x6:
Vi = voice2 + voice3;
Vnf = voice1;
break;
case 0x7:
Vi = voice1 + voice2 + voice3;
Vnf = 0;
break;
case 0x8:
Vi = 0;
Vnf = voice1 + voice2 + voice3;
break;
case 0x9:
Vi = voice1;
Vnf = voice2 + voice3;
break;
case 0xa:
Vi = voice2;
Vnf = voice1 + voice3;
break;
case 0xb:
Vi = voice1 + voice2;
Vnf = voice3;
break;
case 0xc:
Vi = voice3;
Vnf = voice1 + voice2;
break;
case 0xd:
Vi = voice1 + voice3;
Vnf = voice2;
break;
case 0xe:
Vi = voice2 + voice3;
Vnf = voice1;
break;
case 0xf:
Vi = voice1 + voice2 + voice3;
Vnf = 0;
break;
}
// Maximum delta cycles for the filter to work satisfactorily under current
// cutoff frequency and resonance constraints is approximately 8.
cycle_count delta_t_flt = 8;
while (delta_t) {
if (delta_t < delta_t_flt) {
delta_t_flt = delta_t;
}
// delta_t is converted to seconds given a 1MHz clock by dividing
// with 1 000 000. This is done in two operations to avoid integer
// multiplication overflow.
// Calculate filter outputs.
// Vhp = Vbp/Q - Vlp - Vi;
// dVbp = -w0*Vhp*dt;
// dVlp = -w0*Vbp*dt;
sound_sample w0_delta_t = w0_ceil_dt*delta_t_flt >> 6;
sound_sample dVbp = (w0_delta_t*Vhp >> 14);
sound_sample dVlp = (w0_delta_t*Vbp >> 14);
Vbp -= dVbp;
Vlp -= dVlp;
Vhp = (Vbp*_1024_div_Q >> 10) - Vlp - Vi;
delta_t -= delta_t_flt;
}
}
RESID_INLINE sound_sample Filter::output() {
// This is handy for testing.
if (!enabled) {
return (Vnf + mixer_DC)*static_cast<sound_sample>(vol);
}
// Mix highpass, bandpass, and lowpass outputs. The sum is not
// weighted, this can be confirmed by sampling sound output for
// e.g. bandpass, lowpass, and bandpass+lowpass from a SID chip.
// The code below is expanded to a switch for faster execution.
// if (hp) Vf += Vhp;
// if (bp) Vf += Vbp;
// if (lp) Vf += Vlp;
sound_sample Vf;
switch (hp_bp_lp) {
default:
case 0x0:
Vf = 0;
break;
case 0x1:
Vf = Vlp;
break;
case 0x2:
Vf = Vbp;
break;
case 0x3:
Vf = Vlp + Vbp;
break;
case 0x4:
Vf = Vhp;
break;
case 0x5:
Vf = Vlp + Vhp;
break;
case 0x6:
Vf = Vbp + Vhp;
break;
case 0x7:
Vf = Vlp + Vbp + Vhp;
break;
}
// Sum non-filtered and filtered output.
// Multiply the sum with volume.
return (Vnf + Vf + mixer_DC)*static_cast<sound_sample>(vol);
}
/*
* EnvelopeGenerator
*/
EnvelopeGenerator::EnvelopeGenerator() {
reset();
}
void EnvelopeGenerator::reset() {
envelope_counter = 0;
attack = 0;
decay = 0;
sustain = 0;
release = 0;
gate = 0;
rate_counter = 0;
exponential_counter = 0;
exponential_counter_period = 1;
state = RELEASE;
rate_period = rate_counter_period[release];
hold_zero = true;
}
reg16 EnvelopeGenerator::rate_counter_period[] = {
9, // 2ms*1.0MHz/256 = 7.81
32, // 8ms*1.0MHz/256 = 31.25
63, // 16ms*1.0MHz/256 = 62.50
95, // 24ms*1.0MHz/256 = 93.75
149, // 38ms*1.0MHz/256 = 148.44
220, // 56ms*1.0MHz/256 = 218.75
267, // 68ms*1.0MHz/256 = 265.63
313, // 80ms*1.0MHz/256 = 312.50
392, // 100ms*1.0MHz/256 = 390.63
977, // 250ms*1.0MHz/256 = 976.56
1954, // 500ms*1.0MHz/256 = 1953.13
3126, // 800ms*1.0MHz/256 = 3125.00
3907, // 1 s*1.0MHz/256 = 3906.25
11720, // 3 s*1.0MHz/256 = 11718.75
19532, // 5 s*1.0MHz/256 = 19531.25
31251 // 8 s*1.0MHz/256 = 31250.00
};
reg8 EnvelopeGenerator::sustain_level[] = {
0x00,
0x11,
0x22,
0x33,
0x44,
0x55,
0x66,
0x77,
0x88,
0x99,
0xaa,
0xbb,
0xcc,
0xdd,
0xee,
0xff,
};
void EnvelopeGenerator::writeCONTROL_REG(reg8 control) {
reg8 gate_next = control & 0x01;
// The rate counter is never reset, thus there will be a delay before the
// envelope counter starts counting up (attack) or down (release).
// Gate bit on: Start attack, decay, sustain.
if (!gate && gate_next) {
state = ATTACK;
rate_period = rate_counter_period[attack];
// Switching to attack state unlocks the zero freeze.
hold_zero = false;
}
// Gate bit off: Start release.
else if (gate && !gate_next) {
state = RELEASE;
rate_period = rate_counter_period[release];
}
gate = gate_next;
}
void EnvelopeGenerator::writeATTACK_DECAY(reg8 attack_decay) {
attack = (attack_decay >> 4) & 0x0f;
decay = attack_decay & 0x0f;
if (state == ATTACK) {
rate_period = rate_counter_period[attack];
}
else if (state == DECAY_SUSTAIN) {
rate_period = rate_counter_period[decay];
}
}
void EnvelopeGenerator::writeSUSTAIN_RELEASE(reg8 sustain_release) {
sustain = (sustain_release >> 4) & 0x0f;
release = sustain_release & 0x0f;
if (state == RELEASE) {
rate_period = rate_counter_period[release];
}
}
reg8 EnvelopeGenerator::readENV() {
return output();
}
RESID_INLINE void EnvelopeGenerator::clock(cycle_count delta_t) {
// Check for ADSR delay bug.
// If the rate counter comparison value is set below the current value of the
// rate counter, the counter will continue counting up until it wraps around
// to zero at 2^15 = 0x8000, and then count rate_period - 1 before the
// envelope can finally be stepped.
// This has been verified by sampling ENV3.
//
// NB! This requires two's complement integer.
int rate_step = rate_period - rate_counter;
if (rate_step <= 0) {
rate_step += 0x7fff;
}
while (delta_t) {
if (delta_t < rate_step) {
rate_counter += delta_t;
if (rate_counter & 0x8000) {
++rate_counter &= 0x7fff;
}
return;
}
rate_counter = 0;
delta_t -= rate_step;
// The first envelope step in the attack state also resets the exponential
// counter. This has been verified by sampling ENV3.
//
if (state == ATTACK || ++exponential_counter == exponential_counter_period)
{
exponential_counter = 0;
// Check whether the envelope counter is frozen at zero.
if (hold_zero) {
rate_step = rate_period;
continue;
}
switch (state) {
case ATTACK:
// The envelope counter can flip from 0xff to 0x00 by changing state to
// release, then to attack. The envelope counter is then frozen at
// zero; to unlock this situation the state must be changed to release,
// then to attack. This has been verified by sampling ENV3.
//
++envelope_counter &= 0xff;
if (envelope_counter == 0xff) {
state = DECAY_SUSTAIN;
rate_period = rate_counter_period[decay];
}
break;
case DECAY_SUSTAIN:
if (envelope_counter != sustain_level[sustain]) {
--envelope_counter;
}
break;
case RELEASE:
// The envelope counter can flip from 0x00 to 0xff by changing state to
// attack, then to release. The envelope counter will then continue
// counting down in the release state.
// This has been verified by sampling ENV3.
// NB! The operation below requires two's complement integer.
//
--envelope_counter &= 0xff;
break;
}
// Check for change of exponential counter period.
switch (envelope_counter) {
case 0xff:
exponential_counter_period = 1;
break;
case 0x5d:
exponential_counter_period = 2;
break;
case 0x36:
exponential_counter_period = 4;
break;
case 0x1a:
exponential_counter_period = 8;
break;
case 0x0e:
exponential_counter_period = 16;
break;
case 0x06:
exponential_counter_period = 30;
break;
case 0x00:
exponential_counter_period = 1;
// When the envelope counter is changed to zero, it is frozen at zero.
// This has been verified by sampling ENV3.
hold_zero = true;
break;
}
}
rate_step = rate_period;
}
}
RESID_INLINE reg8 EnvelopeGenerator::output() {
return envelope_counter;
}
/*
* ExternalFilter
*/
ExternalFilter::ExternalFilter() {
reset();
enable_filter(true);
set_sampling_parameter(15915.6);
mixer_DC = ((((0x800 - 0x380) + 0x800)*0xff*3 - 0xfff*0xff/18) >> 7)*0x0f;
}
void ExternalFilter::enable_filter(bool enable) {
enabled = enable;
}
void ExternalFilter::set_sampling_parameter(double pass_freq) {
static const double pi = 3.1415926535897932385;
w0hp = 105;
w0lp = (sound_sample) (pass_freq * (2.0 * pi * 1.048576));
if (w0lp > 104858)
w0lp = 104858;
}
void ExternalFilter::reset() {
// State of filter.
Vlp = 0;
Vhp = 0;
Vo = 0;
}
RESID_INLINE void ExternalFilter::clock(cycle_count delta_t, sound_sample Vi) {
// This is handy for testing.
if (!enabled) {
// Remove maximum DC level since there is no filter to do it.
Vlp = Vhp = 0;
Vo = Vi - mixer_DC;
return;
}
// Maximum delta cycles for the external filter to work satisfactorily
// is approximately 8.
cycle_count delta_t_flt = 8;
while (delta_t) {
if (delta_t < delta_t_flt) {
delta_t_flt = delta_t;
}
// delta_t is converted to seconds given a 1MHz clock by dividing
// with 1 000 000.
// Calculate filter outputs.
// Vo = Vlp - Vhp;
// Vlp = Vlp + w0lp*(Vi - Vlp)*delta_t;
// Vhp = Vhp + w0hp*(Vlp - Vhp)*delta_t;
sound_sample dVlp = (w0lp*delta_t_flt >> 8)*(Vi - Vlp) >> 12;
sound_sample dVhp = w0hp*delta_t_flt*(Vlp - Vhp) >> 20;
Vo = Vlp - Vhp;
Vlp += dVlp;
Vhp += dVhp;
delta_t -= delta_t_flt;
}
}
RESID_INLINE sound_sample ExternalFilter::output() {
return Vo;
}
/*
* Voice
*/
Voice::Voice() {
wave_zero = 0x380;
voice_DC = 0x800*0xff;
}
void Voice::set_sync_source(Voice* source) {
wave.set_sync_source(&source->wave);
}
void Voice::writeCONTROL_REG(reg8 control) {
wave.writeCONTROL_REG(control);
envelope.writeCONTROL_REG(control);
}
void Voice::reset() {
wave.reset();
envelope.reset();
}
/*
* SID
*/
SID::SID() {
voice[0].set_sync_source(&voice[2]);
voice[1].set_sync_source(&voice[0]);
voice[2].set_sync_source(&voice[1]);
set_sampling_parameters(985248, 44100);
bus_value = 0;
bus_value_ttl = 0;
}
SID::~SID() {}
void SID::reset() {
for (int i = 0; i < 3; i++) {
voice[i].reset();
}
filter.reset();
extfilt.reset();
bus_value = 0;
bus_value_ttl = 0;
}
int SID::output() {
const int range = 1 << 16;
const int half = range >> 1;
int sample = extfilt.output()/((4095*255 >> 7)*3*15*2/range);
if (sample >= half) {
return half - 1;
}
if (sample < -half) {
return -half;
}
return sample;
}
/**
* Read registers.
*
* Reading a write only register returns the last byte written to any SID
* register. The individual bits in this value start to fade down towards
* zero after a few cycles. All bits reach zero within approximately
* $2000 - $4000 cycles.
* It has been claimed that this fading happens in an orderly fashion, however
* sampling of write only registers reveals that this is not the case.
* NB! This is not correctly modeled.
* The actual use of write only registers has largely been made in the belief
* that all SID registers are readable. To support this belief the read
* would have to be done immediately after a write to the same register
* (remember that an intermediate write to another register would yield that
* value instead). With this in mind we return the last value written to
* any SID register for $2000 cycles without modeling the bit fading.
*/
reg8 SID::read(reg8 offset) {
switch (offset) {
case 0x19:
case 0x1a:
return 0; //readPOT();
case 0x1b:
return voice[2].wave.readOSC();
case 0x1c:
return voice[2].envelope.readENV();
default:
return bus_value;
}
}
void SID::write(reg8 offset, reg8 value) {
bus_value = value;
bus_value_ttl = 0x2000;
switch (offset) {
case 0x00:
voice[0].wave.writeFREQ_LO(value);
break;
case 0x01:
voice[0].wave.writeFREQ_HI(value);
break;
case 0x02:
voice[0].wave.writePW_LO(value);
break;
case 0x03:
voice[0].wave.writePW_HI(value);
break;
case 0x04:
voice[0].writeCONTROL_REG(value);
break;
case 0x05:
voice[0].envelope.writeATTACK_DECAY(value);
break;
case 0x06:
voice[0].envelope.writeSUSTAIN_RELEASE(value);
break;
case 0x07:
voice[1].wave.writeFREQ_LO(value);
break;
case 0x08:
voice[1].wave.writeFREQ_HI(value);
break;
case 0x09:
voice[1].wave.writePW_LO(value);
break;
case 0x0a:
voice[1].wave.writePW_HI(value);
break;
case 0x0b:
voice[1].writeCONTROL_REG(value);
break;
case 0x0c:
voice[1].envelope.writeATTACK_DECAY(value);
break;
case 0x0d:
voice[1].envelope.writeSUSTAIN_RELEASE(value);
break;
case 0x0e:
voice[2].wave.writeFREQ_LO(value);
break;
case 0x0f:
voice[2].wave.writeFREQ_HI(value);
break;
case 0x10:
voice[2].wave.writePW_LO(value);
break;
case 0x11:
voice[2].wave.writePW_HI(value);
break;
case 0x12:
voice[2].writeCONTROL_REG(value);
break;
case 0x13:
voice[2].envelope.writeATTACK_DECAY(value);
break;
case 0x14:
voice[2].envelope.writeSUSTAIN_RELEASE(value);
break;
case 0x15:
filter.writeFC_LO(value);
break;
case 0x16:
filter.writeFC_HI(value);
break;
case 0x17:
filter.writeRES_FILT(value);
break;
case 0x18:
filter.writeMODE_VOL(value);
break;
default:
break;
}
}
void SID::enable_filter(bool enable) {
filter.enable_filter(enable);
}
void SID::enable_external_filter(bool enable) {
extfilt.enable_filter(enable);
}
/**
* Setting of SID sampling parameters.
*
* Use a clock freqency of 985248Hz for PAL C64, 1022730Hz for NTSC C64.
* The default end of passband frequency is pass_freq = 0.9*sample_freq/2
* for sample frequencies up to ~ 44.1kHz, and 20kHz for higher sample
* frequencies.
*
* For resampling, the ratio between the clock frequency and the sample
* frequency is limited as follows:
* 125*clock_freq/sample_freq < 16384
* E.g. provided a clock frequency of ~ 1MHz, the sample frequency can not
* be set lower than ~ 8kHz. A lower sample frequency would make the
* resampling code overfill its 16k sample ring buffer.
*
* The end of passband frequency is also limited:
* pass_freq <= 0.9*sample_freq/2
*
* E.g. for a 44.1kHz sampling rate the end of passband frequency is limited
* to slightly below 20kHz. This constraint ensures that the FIR table is
* not overfilled.
*/
bool SID::set_sampling_parameters(double clock_freq,
double sample_freq, double pass_freq,
double filter_scale)
{
// The default passband limit is 0.9*sample_freq/2 for sample
// frequencies below ~ 44.1kHz, and 20kHz for higher sample frequencies.
if (pass_freq < 0) {
pass_freq = 20000;
if (2*pass_freq/sample_freq >= 0.9) {
pass_freq = 0.9*sample_freq/2;
}
}
// Check whether the FIR table would overfill.
else if (pass_freq > 0.9*sample_freq/2) {
return false;
}
// The filter scaling is only included to avoid clipping, so keep
// it sane.
if (filter_scale < 0.9 || filter_scale > 1.0) {
return false;
}
// Set the external filter to the pass freq
extfilt.set_sampling_parameter (pass_freq);
clock_frequency = clock_freq;
cycles_per_sample =
cycle_count(clock_freq/sample_freq*(1 << FIXP_SHIFT) + 0.5);
sample_offset = 0;
sample_prev = 0;
return true;
}
void SID::clock(cycle_count delta_t) {
int i;
if (delta_t <= 0) {
return;
}
// Age bus value.
bus_value_ttl -= delta_t;
if (bus_value_ttl <= 0) {
bus_value = 0;
bus_value_ttl = 0;
}
// Clock amplitude modulators.
for (i = 0; i < 3; i++) {
voice[i].envelope.clock(delta_t);
}
// Clock and synchronize oscillators.
// Loop until we reach the current cycle.
cycle_count delta_t_osc = delta_t;
while (delta_t_osc) {
cycle_count delta_t_min = delta_t_osc;
// Find minimum number of cycles to an oscillator accumulator MSB toggle.
// We have to clock on each MSB on / MSB off for hard sync to operate
// correctly.
for (i = 0; i < 3; i++) {
WaveformGenerator& wave = voice[i].wave;
// It is only necessary to clock on the MSB of an oscillator that is
// a sync source and has freq != 0.
if (!(wave.sync_dest->sync && wave.freq)) {
continue;
}
reg16 freq = wave.freq;
reg24 accumulator = wave.accumulator;
// Clock on MSB off if MSB is on, clock on MSB on if MSB is off.
reg24 delta_accumulator =
(accumulator & 0x800000 ? 0x1000000 : 0x800000) - accumulator;
cycle_count delta_t_next = delta_accumulator/freq;
if (delta_accumulator%freq) {
++delta_t_next;
}
if (delta_t_next < delta_t_min) {
delta_t_min = delta_t_next;
}
}
// Clock oscillators.
for (i = 0; i < 3; i++) {
voice[i].wave.clock(delta_t_min);
}
// Synchronize oscillators.
for (i = 0; i < 3; i++) {
voice[i].wave.synchronize();
}
delta_t_osc -= delta_t_min;
}
// Clock filter.
filter.clock(delta_t,
voice[0].output(), voice[1].output(), voice[2].output());
// Clock external filter.
extfilt.clock(delta_t, filter.output());
}
/**
* SID clocking with audio sampling.
* Fixpoint arithmetics is used.
*/
int SID::clock(cycle_count& delta_t, short* buf, int n, int interleave) {
int s = 0;
for (;;) {
cycle_count next_sample_offset = sample_offset + cycles_per_sample + (1 << (FIXP_SHIFT - 1));
cycle_count delta_t_sample = next_sample_offset >> FIXP_SHIFT;
if (delta_t_sample > delta_t) {
break;
}
if (s >= n) {
return s;
}
clock(delta_t_sample);
delta_t -= delta_t_sample;
sample_offset = (next_sample_offset & FIXP_MASK) - (1 << (FIXP_SHIFT - 1));
buf[s++*interleave] = output();
}
clock(delta_t);
sample_offset -= delta_t << FIXP_SHIFT;
delta_t = 0;
return s;
}
}
// Plugin interface
// (This can only create a null driver since C64 audio support is not part of the
// midi driver architecture. But we need the plugin for the options menu in the launcher
// and for MidiDriver::detectDevice() which is more or less used by all engines.)
class C64MusicPlugin : public NullMusicPlugin {
public:
const char *getName() const {
return _s("C64 Audio Emulator");
}
const char *getId() const {
return "C64";
}
MusicDevices getDevices() const;
};
MusicDevices C64MusicPlugin::getDevices() const {
MusicDevices devices;
devices.push_back(MusicDevice(this, "", MT_C64));
return devices;
}
//#if PLUGIN_ENABLED_DYNAMIC(C64)
//REGISTER_PLUGIN_DYNAMIC(C64, PLUGIN_TYPE_MUSIC, C64MusicPlugin);
//#else
REGISTER_PLUGIN_STATIC(C64, PLUGIN_TYPE_MUSIC, C64MusicPlugin);
//#endif
#endif