scummvm/scumm/gfx.cpp

3858 lines
87 KiB
C++

/* ScummVM - Scumm Interpreter
* Copyright (C) 2001 Ludvig Strigeus
* Copyright (C) 2001-2003 The ScummVM project
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* $Header$
*
*/
#include "stdafx.h"
#include "scumm.h"
#include "actor.h"
#include "charset.h"
#include "resource.h"
#include "usage_bits.h"
#include "util.h"
#ifdef _MSC_VER
# pragma warning( disable : 4068 ) // turn off "unknown pragma" warning
#endif
// If you wan to try buggy hacked smooth scrolling support in The Dig, enable
// the following preprocessor flag by uncommenting it.
//
// Note: This is purely experimental, NOT WORKING COMPLETLY and very buggy.
// Please do not make reports about problems with it - this is only in CVS
// to get it fixed and so that really interested parties can experiment it.
// It is NOT FIT FOR GENERAL USAGE!. You have been warned.
//
// Doing this correctly will be quite some more complicated. Basically, with smooth
// scrolling, the virtual screen strips don't match the display screen strips.
// Hence we either have to draw partial strips - but that'd be rather cumbersome.
// Or the much simple (and IMHO more elegant) solution is to simply use a screen pitch
// that is 8 pixel wider than the real screen width, and always draw one strip more than
// needed to the backbuf. This will still require quite some code to be changed but
// should otherwise be relatively easy to understand, and using VirtScreen::pitch
// will actually clean up the code.
//
// #define V7_SMOOTH_SCROLLING_HACK
enum {
kScrolltime = 500, // ms scrolling is supposed to take
kPictureDelay = 20
};
#define NUM_SHAKE_POSITIONS 8
static const int8 shake_positions[NUM_SHAKE_POSITIONS] = {
0, 1 * 2, 2 * 2, 1 * 2, 0 * 2, 2 * 2, 3 * 2, 1 * 2
};
/*
* The following structs define four basic fades/transitions used by
* transitionEffect(), each looking differently to the user.
* Note that the stripTables contain strip numbers, and they assume
* that the screen has 40 vertical strips (i.e. 320 pixel), and 25 horizontal
* strips (i.e. 200 pixel). There is a hack in transitionEffect that
* makes it work correctly in games which have a different screen height
* (for example, 240 pixel), but nothing is done regarding the width, so this
* code won't work correctly in COMI. Also, the number of iteration depends
* on min(vertStrips, horizStrips}. So the 13 is derived from 25/2, rounded up.
* And the 25 = min(25,40). Hence for Zak256 instead of 13 and 25, the values
* 15 and 30 should be used, and for COMI probably 30 and 60.
*/
struct TransitionEffect {
byte numOfIterations;
int8 deltaTable[16]; // four times l / t / r / b
byte stripTable[16]; // ditto
};
#ifdef __PALM_OS__
static const TransitionEffect *transitionEffects;
#else
static const TransitionEffect transitionEffects[4] = {
// Iris effect (looks like an opening/closing camera iris)
{
13, // Number of iterations
{
1, 1, -1, 1,
-1, 1, -1, -1,
1, -1, -1, -1,
1, 1, 1, -1
},
{
0, 0, 39, 0,
39, 0, 39, 24,
0, 24, 39, 24,
0, 0, 0, 24
}
},
// Box wipe (a box expands from the upper-left corner to the lower-right corner)
{
25, // Number of iterations
{
0, 1, 2, 1,
2, 0, 2, 1,
2, 0, 2, 1,
0, 0, 0, 0
},
{
0, 0, 0, 0,
0, 0, 0, 0,
1, 0, 1, 0,
255, 0, 0, 0
}
},
// Box wipe (a box expands from the lower-right corner to the upper-left corner)
{
25, // Number of iterations
{
-2, -1, 0, -1,
-2, -1, -2, 0,
-2, -1, -2, 0,
0, 0, 0, 0
},
{
39, 24, 39, 24,
39, 24, 39, 24,
38, 24, 38, 24,
255, 0, 0, 0
}
},
// Inverse box wipe
{
25, // Number of iterations
{
0, -1, -2, -1,
-2, 0, -2, -1,
-2, 0, -2, -1,
0, 0, 0, 0
},
{
0, 24, 39, 24,
39, 0, 39, 24,
38, 0, 38, 24,
255, 0, 0, 0
}
}
};
#endif
/*
* Mouse cursor cycle colors (for the default crosshair).
*/
static const byte default_cursor_colors[4] = {
15, 15, 7, 8
};
static const uint16 default_cursor_images[5][16] = {
/* cross-hair */
{ 0x0080, 0x0080, 0x0080, 0x0080, 0x0080, 0x0080, 0x0000, 0x7e3f,
0x0000, 0x0080, 0x0080, 0x0080, 0x0080, 0x0080, 0x0080, 0x0000 },
/* hourglass */
{ 0x0000, 0x7ffe, 0x6006, 0x300c, 0x1818, 0x0c30, 0x0660, 0x03c0,
0x0660, 0x0c30, 0x1998, 0x33cc, 0x67e6, 0x7ffe, 0x0000, 0x0000 },
/* arrow */
{ 0x0000, 0x4000, 0x6000, 0x7000, 0x7800, 0x7c00, 0x7e00, 0x7f00,
0x7f80, 0x78c0, 0x7c00, 0x4600, 0x0600, 0x0300, 0x0300, 0x0180 },
/* hand */
{ 0x1e00, 0x1200, 0x1200, 0x1200, 0x1200, 0x13ff, 0x1249, 0x1249,
0xf249, 0x9001, 0x9001, 0x9001, 0x8001, 0x8001, 0x8001, 0xffff },
/* cross-hair zak256 - chrilith palmos */
/*
{ 0x0080, 0x0080, 0x02a0, 0x01c0, 0x0080, 0x1004, 0x0808, 0x7c1f,
0x0808, 0x1004, 0x0080, 0x01c0, 0x02a0, 0x0080, 0x0080, 0x0000 },
*/
{ 0x0080, 0x02a0, 0x01c0, 0x0080, 0x0000, 0x2002, 0x1004, 0x780f,
0x1004, 0x2002, 0x0000, 0x0080, 0x01c0, 0x02a0, 0x0080, 0x0000 },
};
static const byte default_cursor_hotspots[10] = {
8, 7, 8, 7, 1, 1, 5, 0,
8, 7, //zak256
};
static inline uint colorWeight(int red, int green, int blue) {
return 3 * red * red + 6 * green * green + 2 * blue * blue;
}
void Scumm::getGraphicsPerformance() {
int i;
for (i = 10; i != 0; i--) {
initScreens(0, 0, _realWidth, _realHeight);
}
if (!(_features & GF_SMALL_HEADER)) // Variable is reserved for game scripts in earlier games
_vars[VAR_PERFORMANCE_1] = 0;
for (i = 10; i != 0; i--) {
setDirtyRange(0, 0, _realHeight); //ender
drawDirtyScreenParts();
}
if (!(_features & GF_SMALL_HEADER)) // Variable is reserved for game scripts in earlier games
_vars[VAR_PERFORMANCE_2] = 0;
if (_features & GF_AFTER_V7)
initScreens(0, 0, _realWidth, _realHeight);
else
initScreens(0, 16, _realWidth, 144);
}
void Scumm::initScreens(int a, int b, int w, int h) {
int i;
for (i = 0; i < 3; i++) {
nukeResource(rtBuffer, i + 1);
nukeResource(rtBuffer, i + 5);
}
if (!getResourceAddress(rtBuffer, 4)) {
if (_features & GF_AFTER_V7) {
initVirtScreen(3, 0, (_realHeight / 2) - 10, _realWidth, 13, false, false);
} else {
initVirtScreen(3, 0, 80, _realWidth, 13, false, false);
}
}
initVirtScreen(0, 0, b, _realWidth, h - b, true, true);
initVirtScreen(1, 0, 0, _realWidth, b, false, false);
initVirtScreen(2, 0, h, _realWidth, _realHeight - h, false, false);
_screenB = b;
_screenH = h;
}
void Scumm::initVirtScreen(int slot, int number, int top, int width, int height, bool twobufs,
bool scrollable) {
VirtScreen *vs = &virtscr[slot];
int size;
assert(height >= 0);
assert(slot >= 0 && slot < 4);
if (_features & GF_AFTER_V7) {
if ((!slot) && (_scrHeight != 0))
height = _scrHeight;
}
vs->number = slot;
vs->width = _realWidth;
vs->topline = top;
vs->height = height;
vs->alloctwobuffers = twobufs;
vs->scrollable = scrollable;
vs->xstart = 0;
size = vs->width * vs->height;
vs->size = size;
vs->backBuf = NULL;
if (vs->scrollable) {
if (_features & GF_AFTER_V7) {
size += _realWidth * 8;
} else {
size += _realWidth * 4;
}
}
createResource(rtBuffer, slot + 1, size);
vs->screenPtr = getResourceAddress(rtBuffer, slot + 1);
memset(vs->screenPtr, 0, size); // reset background
if (twobufs) {
createResource(rtBuffer, slot + 5, size);
}
if (slot != 3) {
setDirtyRange(slot, 0, height);
}
}
VirtScreen *Scumm::findVirtScreen(int y) {
VirtScreen *vs = virtscr;
int i;
for (i = 0; i < 3; i++, vs++) {
if (y >= vs->topline && y < vs->topline + vs->height) {
return vs;
}
}
return NULL;
}
void Scumm::updateDirtyRect(int virt, int left, int right, int top, int bottom, int dirtybit) {
VirtScreen *vs = &virtscr[virt];
int lp, rp;
if (top > vs->height || left > vs->width || right < 0 || bottom < 0)
return;
if (top < 0)
top = 0;
if (left < 0)
left = 0;
if (bottom > vs->height)
bottom = vs->height;
if (right > vs->width)
right = vs->width;
if (virt == 0 && dirtybit) {
lp = (left >> 3) + _screenStartStrip;
if (lp < 0)
lp = 0;
if (_features & GF_AFTER_V7) {
#ifdef V7_SMOOTH_SCROLLING_HACK
rp = (right + vs->xstart) >> 3;
#else
rp = (right >> 3) + _screenStartStrip;
#endif
if (rp > 409)
rp = 409;
} else {
rp = (right >> 3) + _screenStartStrip;
if (rp >= 200)
rp = 200;
}
for (; lp <= rp; lp++)
setGfxUsageBit(lp, dirtybit);
}
setVirtscreenDirty(vs, left, top, right, bottom);
}
void Scumm::setVirtscreenDirty(VirtScreen *vs, int left, int top, int right, int bottom) {
int lp = left >> 3;
int rp = right >> 3;
if ((lp >= gdi._numStrips) || (rp < 0))
return;
if (lp < 0)
lp = 0;
if (rp >= gdi._numStrips)
rp = gdi._numStrips - 1;
while (lp <= rp) {
if (top < vs->tdirty[lp])
vs->tdirty[lp] = top;
if (bottom > vs->bdirty[lp])
vs->bdirty[lp] = bottom;
lp++;
}
}
void Scumm::setDirtyRange(int slot, int top, int bottom) {
int i;
VirtScreen *vs = &virtscr[slot];
for (i = 0; i < gdi._numStrips; i++) {
vs->tdirty[i] = top;
vs->bdirty[i] = bottom;
}
}
void Scumm::drawDirtyScreenParts() {
int i;
VirtScreen *vs;
byte *src;
updateDirtyScreen(2);
if (_features & GF_AFTER_V3)
updateDirtyScreen(1);
if (camera._last.x == camera._cur.x && (camera._last.y == camera._cur.y || !(_features & GF_AFTER_V7))) {
updateDirtyScreen(0);
} else {
vs = &virtscr[0];
src = vs->screenPtr + vs->xstart + _screenTop * _realWidth;
_system->copy_rect(src, _realWidth, 0, vs->topline, _realWidth, vs->height - _screenTop);
for (i = 0; i < gdi._numStrips; i++) {
vs->tdirty[i] = vs->height;
vs->bdirty[i] = 0;
}
}
/* Handle shaking */
if (_shakeEnabled) {
_shakeFrame = (_shakeFrame + 1) & (NUM_SHAKE_POSITIONS - 1);
_system->set_shake_pos(shake_positions[_shakeFrame]);
} else if (!_shakeEnabled &&_shakeFrame != 0) {
_shakeFrame = 0;
_system->set_shake_pos(shake_positions[_shakeFrame]);
}
}
void Scumm::updateDirtyScreen(int slot) {
gdi.updateDirtyScreen(&virtscr[slot]);
}
// Blit the data from the given VirtScreen to the display. If the camera moved,
// a full blit is done, otherwise only the visible dirty areas are updated.
void Gdi::updateDirtyScreen(VirtScreen *vs) {
if (vs->height == 0)
return;
if (_vm->_features & GF_AFTER_V7 && (_vm->camera._cur.y != _vm->camera._last.y)) {
drawStripToScreen(vs, 0, _numStrips << 3, 0, vs->height);
} else {
int i;
int start, w, top, bottom;
w = 8;
start = 0;
for (i = 0; i < _numStrips; i++) {
bottom = vs->bdirty[i];
if (bottom) {
top = vs->tdirty[i];
vs->tdirty[i] = vs->height;
vs->bdirty[i] = 0;
if (i != (_numStrips - 1) && vs->bdirty[i + 1] == bottom && vs->tdirty[i + 1] == top) {
// Simple optimizations: if two or more neighbouring strips form one bigger rectangle,
// blit them all at once.
w += 8;
continue;
}
// handle vertically scrolling rooms
if (_vm->_features & GF_AFTER_V7)
drawStripToScreen(vs, start * 8, w, 0, vs->height);
else
drawStripToScreen(vs, start * 8, w, top, bottom);
w = 8;
}
start = i + 1;
}
}
}
// Blit the specified rectangle from the given virtual screen to the display.
void Gdi::drawStripToScreen(VirtScreen *vs, int x, int w, int t, int b) {
byte *ptr;
int height;
if (b <= t)
return;
if (t > vs->height)
t = 0;
if (b > vs->height)
b = vs->height;
height = b - t;
if (height > _vm->_realHeight)
height = _vm->_realHeight;
// Normally, _vm->_screenTop should always be >= 0, but for some old save games
// it is not, hence we check & correct it here.
if (_vm->_screenTop < 0)
_vm->_screenTop = 0;
ptr = vs->screenPtr + (x + vs->xstart) + (_vm->_screenTop + t) * _vm->_realWidth;
_vm->_system->copy_rect(ptr, _vm->_realWidth, x, vs->topline + t, w, height);
}
void Gdi::clearUpperMask() {
memset(_vm->getResourceAddress(rtBuffer, 9), 0, _imgBufOffs[1] - _imgBufOffs[0]);
}
// Reset the background behind an actor or blast object
void Gdi::resetBackground(int top, int bottom, int strip) {
VirtScreen *vs = &_vm->virtscr[0];
byte *backbuff_ptr, *bgbak_ptr;
int offs, numLinesToProcess;
if (top < vs->tdirty[strip])
vs->tdirty[strip] = top;
if (bottom > vs->bdirty[strip])
vs->bdirty[strip] = bottom;
offs = (top * _numStrips + _vm->_screenStartStrip + strip);
_mask_ptr = _vm->getResourceAddress(rtBuffer, 9) + offs;
bgbak_ptr = _vm->getResourceAddress(rtBuffer, 5) + (offs << 3);
backbuff_ptr = vs->screenPtr + (offs << 3);
numLinesToProcess = bottom - top;
if (numLinesToProcess) {
if ((_vm->_features & GF_AFTER_V6) || (_vm->_vars[_vm->VAR_CURRENT_LIGHTS] & LIGHTMODE_screen)) {
if (_vm->hasCharsetMask(strip << 3, top, (strip + 1) << 3, bottom))
draw8ColWithMasking(backbuff_ptr, bgbak_ptr, numLinesToProcess, _mask_ptr);
else
draw8Col(backbuff_ptr, bgbak_ptr, numLinesToProcess);
} else {
clear8Col(backbuff_ptr, numLinesToProcess);
}
}
}
void Scumm::blit(byte *dst, byte *src, int w, int h) {
assert(h > 0);
assert(src != NULL);
assert(dst != NULL);
do {
memcpy(dst, src, w);
dst += _realWidth;
src += _realWidth;
} while (--h);
}
#pragma mark -
void Scumm::initBGBuffers(int height) {
byte *ptr;
int size, itemsize, i;
byte *room;
if (_features & GF_AFTER_V7) {
initVirtScreen(0, 0, virtscr[0].topline, _realWidth, height, 1, 1);
}
room = getResourceAddress(rtRoom, _roomResource);
if ((_features & GF_AFTER_V2) || (_features & GF_AFTER_V3)) {
gdi._numZBuffer = 2;
} else if (_features & GF_SMALL_HEADER) {
int off;
ptr = findResourceData(MKID('SMAP'), room);
gdi._numZBuffer = 0;
if (_gameId == GID_MONKEY_EGA)
off = READ_LE_UINT16(ptr);
else
off = READ_LE_UINT32(ptr);
while (off && gdi._numZBuffer < 4) {
gdi._numZBuffer++;
ptr += off;
off = READ_LE_UINT16(ptr);
}
} else if (_features & GF_AFTER_V8) {
// in V8 there is no RMIH and num z buffers is in RMHD
ptr = findResource(MKID('RMHD'), room);
gdi._numZBuffer = READ_LE_UINT32(ptr + 24) + 1;
} else {
ptr = findResource(MKID('RMIH'), findResource(MKID('RMIM'), room));
gdi._numZBuffer = READ_LE_UINT16(ptr + 8) + 1;
}
assert(gdi._numZBuffer >= 1 && gdi._numZBuffer <= 8);
if (_features & GF_AFTER_V7)
itemsize = (_scrHeight + 10) * gdi._numStrips;
else
itemsize = (_scrHeight + 4) * gdi._numStrips;
size = itemsize * gdi._numZBuffer;
memset(createResource(rtBuffer, 9, size), 0, size);
for (i = 0; i < (int)ARRAYSIZE(gdi._imgBufOffs); i++) {
if (i < gdi._numZBuffer)
gdi._imgBufOffs[i] = i * itemsize;
else
gdi._imgBufOffs[i] = (gdi._numZBuffer - 1) * itemsize;
}
}
void Scumm::drawFlashlight() {
int i, j, offset, x, y;
// Remove the flash light first if it was previously drawn
if (_flashlightIsDrawn) {
updateDirtyRect(0, _flashlight.x, _flashlight.x + _flashlight.w,
_flashlight.y, _flashlight.y + _flashlight.h, USAGE_BIT_DIRTY);
if (_flashlight.buffer) {
i = _flashlight.h;
do {
memset(_flashlight.buffer, 0, _flashlight.w);
_flashlight.buffer += _realWidth;
} while (--i);
}
_flashlightIsDrawn = false;
}
if (_flashlightXStrips == 0 || _flashlightYStrips == 0)
return;
// Calculate the area of the flashlight
if (_gameId == GID_ZAK256) {
x = _virtual_mouse_x;
y = _virtual_mouse_y;
} else {
Actor *a = a = derefActorSafe(_vars[VAR_EGO], "drawFlashlight");
x = a->x;
y = a->y;
}
_flashlight.w = _flashlightXStrips * 8;
_flashlight.h = _flashlightYStrips * 8;
_flashlight.x = x - _flashlight.w / 2 - _screenStartStrip * 8;
_flashlight.y = y - _flashlight.h / 2;
if (_gameId == GID_LOOM || _gameId == GID_LOOM256)
_flashlight.y -= 12;
// Clip the flashlight at the borders
if (_flashlight.x < 0)
_flashlight.x = 0;
else if (_flashlight.x + _flashlight.w > gdi._numStrips * 8)
_flashlight.x = gdi._numStrips * 8 - _flashlight.w;
if (_flashlight.y < 0)
_flashlight.y = 0;
else if (_flashlight.y + _flashlight.h> virtscr[0].height)
_flashlight.y = virtscr[0].height - _flashlight.h;
// Redraw any actors "under" the flashlight
for (i = _flashlight.x / 8; i < (_flashlight.x + _flashlight.w) / 8; i++) {
setGfxUsageBit(_screenStartStrip + i, USAGE_BIT_DIRTY);
virtscr[0].tdirty[i] = 0;
virtscr[0].bdirty[i] = virtscr[0].height;
}
byte *bgbak;
offset = _flashlight.y * _realWidth + virtscr[0].xstart + _flashlight.x;
_flashlight.buffer = virtscr[0].screenPtr + offset;
bgbak = getResourceAddress(rtBuffer, 5) + offset;
blit(_flashlight.buffer, bgbak, _flashlight.w, _flashlight.h);
// Round the corners. To do so, we simply hard-code a set of nicely
// rounded corners.
int corner_data[] = { 8, 6, 4, 3, 2, 2, 1, 1 };
int minrow = 0;
int maxcol = _flashlight.w - 1;
int maxrow = (_flashlight.h - 1) * _realWidth;
for (i = 0; i < 8; i++, minrow += _realWidth, maxrow -= _realWidth) {
int d = corner_data[i];
for (j = 0; j < d; j++) {
_flashlight.buffer[minrow + j] = 0;
_flashlight.buffer[minrow + maxcol - j] = 0;
_flashlight.buffer[maxrow + j] = 0;
_flashlight.buffer[maxrow + maxcol - j] = 0;
}
}
_flashlightIsDrawn = true;
}
// Redraw background as needed, i.e. the left/right sides if scrolling took place etc.
// Note that this only updated the virtual screen, not the actual display.
void Scumm::redrawBGAreas() {
int i;
int val;
int diff;
if (!(_features & GF_AFTER_V7))
if (camera._cur.x != camera._last.x && _charset->_hasMask)
stopTalk();
val = 0;
// Redraw parts of the background which are marked as dirty.
if (!_fullRedraw && _BgNeedsRedraw) {
for (i = 0; i != gdi._numStrips; i++) {
if (testGfxUsageBit(_screenStartStrip + i, USAGE_BIT_DIRTY)) {
redrawBGStrip(i, 1);
}
}
}
if (_features & GF_AFTER_V7) {
diff = (camera._cur.x >> 3) - (camera._last.x >> 3);
if (_fullRedraw == 0 && diff == 1) {
val = 2;
redrawBGStrip(gdi._numStrips - 1, 1);
} else if (_fullRedraw == 0 && diff == -1) {
val = 1;
redrawBGStrip(0, 1);
} else if (_fullRedraw != 0 || diff != 0) {
_BgNeedsRedraw = false;
redrawBGStrip(0, gdi._numStrips);
}
} else {
if (_fullRedraw == 0 && camera._cur.x - camera._last.x == 8) {
val = 2;
redrawBGStrip(gdi._numStrips - 1, 1);
} else if (_fullRedraw == 0 && camera._cur.x - camera._last.x == -8) {
val = 1;
redrawBGStrip(0, 1);
} else if (_fullRedraw != 0 || camera._cur.x != camera._last.x) {
_BgNeedsRedraw = false;
_flashlightIsDrawn = false;
redrawBGStrip(0, gdi._numStrips);
}
}
drawRoomObjects(val);
_BgNeedsRedraw = false;
}
void Scumm::redrawBGStrip(int start, int num) {
int s = _screenStartStrip + start;
assert(s >= 0 && (size_t) s < sizeof(gfxUsageBits) / (3 * sizeof(gfxUsageBits[0])));
for (int i = 0; i < num; i++)
setGfxUsageBit(s + i, USAGE_BIT_DIRTY);
gdi.drawBitmap(getResourceAddress(rtRoom, _roomResource) + _IM00_offs,
&virtscr[0], s, 0, virtscr[0].height, s, num, 0);
}
void Scumm::restoreCharsetBg() {
if (gdi._mask_left != -1) {
restoreBG(gdi._mask_left, gdi._mask_top, gdi._mask_right, gdi._mask_bottom);
_charset->_hasMask = false;
gdi._mask_left = -1;
_charset->_strLeft = -1;
_charset->_left = -1;
}
_charset->_nextLeft = _string[0].xpos;
_charset->_nextTop = _string[0].ypos;
}
void Scumm::restoreBG(int left, int top, int right, int bottom, byte backColor) {
VirtScreen *vs;
int topline, height, width;
byte *backbuff, *bgbak;
bool lightsOn;
if (left == right || top == bottom)
return;
if (top < 0)
top = 0;
if ((vs = findVirtScreen(top)) == NULL)
return;
topline = vs->topline;
height = topline + vs->height;
if (left < 0)
left = 0;
if (right < 0)
right = 0;
if (left > _realWidth)
return;
if (right > _realWidth)
right = _realWidth;
if (bottom >= height)
bottom = height;
updateDirtyRect(vs->number, left, right, top - topline, bottom - topline, USAGE_BIT_RESTORED);
int offset = (top - topline) * _realWidth + vs->xstart + left;
backbuff = vs->screenPtr + offset;
bgbak = getResourceAddress(rtBuffer, vs->number + 5) + offset;
height = bottom - top;
width = right - left;
// Check whether lights are turned on or not
lightsOn = (_features & GF_AFTER_V6) || (vs->number != 0) || (_vars[VAR_CURRENT_LIGHTS] & LIGHTMODE_screen);
if (vs->alloctwobuffers && _currentRoom != 0 && lightsOn ) {
blit(backbuff, bgbak, width, height);
if (vs->number == 0 && _charset->_hasMask && height) {
byte *mask;
int mask_width = (width >> 3);
if (width & 0x07)
mask_width++;
mask = getResourceAddress(rtBuffer, 9) + top * gdi._numStrips + (left >> 3) + _screenStartStrip;
if (vs->number == 0)
mask += vs->topline * gdi._numStrips;
do {
memset(mask, 0, mask_width);
mask += gdi._numStrips;
} while (--height);
}
} else {
while (height--) {
memset(backbuff, backColor, width);
backbuff += _realWidth;
}
}
}
int Scumm::hasCharsetMask(int x, int y, int x2, int y2) {
if (!_charset->_hasMask || y > gdi._mask_bottom || x > gdi._mask_right ||
y2 < gdi._mask_top || x2 < gdi._mask_left)
return 0;
return 1;
}
byte Scumm::isMaskActiveAt(int l, int t, int r, int b, byte *mem) {
int w, h, i;
l >>= 3;
if (l < 0)
l = 0;
if (t < 0)
t = 0;
r >>= 3;
if (r > gdi._numStrips - 1)
r = gdi._numStrips - 1;
mem += l + t * gdi._numStrips;
w = r - l;
h = b - t + 1;
do {
for (i = 0; i <= w; i++)
if (mem[i]) {
return true;
}
mem += gdi._numStrips;
} while (--h);
return false;
}
void Gdi::drawBitmap(byte *ptr, VirtScreen *vs, int x, int y, const int h,
int stripnr, int numstrip, byte flag) {
assert(ptr);
assert(h > 0);
byte *backbuff_ptr, *bgbak_ptr, *smap_ptr;
int i;
byte *zplane_list[9];
int bottom;
int numzbuf;
int sx;
bool lightsOn;
bool useOrDecompress;
// Check whether lights are turned on or not
lightsOn = (_vm->_features & GF_AFTER_V6) || (vs->number != 0) || (_vm->_vars[_vm->VAR_CURRENT_LIGHTS] & LIGHTMODE_screen);
CHECK_HEAP;
if (_vm->_features & GF_SMALL_HEADER)
smap_ptr = ptr;
else if (_vm->_features & GF_AFTER_V8)
smap_ptr = ptr;
else
smap_ptr = findResource(MKID('SMAP'), ptr);
assert(smap_ptr);
byte *roomptr = _vm->getResourceAddress(rtRoom, _vm->_roomResource);
zplane_list[0] = smap_ptr;
if (_disable_zbuffer)
numzbuf = 0;
else if (_numZBuffer <= 1)
numzbuf = _numZBuffer;
else {
numzbuf = _numZBuffer;
assert(numzbuf <= (int)ARRAYSIZE(zplane_list));
if (_vm->_features & GF_OLD256) {
zplane_list[1] = smap_ptr + READ_LE_UINT32(smap_ptr);
if (0 == READ_LE_UINT32(zplane_list[1]))
zplane_list[1] = 0;
} else if (_vm->_features & GF_SMALL_HEADER) {
if (_vm->_features & GF_16COLOR)
zplane_list[1] = smap_ptr + READ_LE_UINT16(smap_ptr);
else
zplane_list[1] = smap_ptr + READ_LE_UINT32(smap_ptr);
for (i = 2; i < numzbuf; i++) {
zplane_list[i] = zplane_list[i-1] + READ_LE_UINT16(zplane_list[i-1]);
}
} else if (_vm->_features & GF_AFTER_V8) {
// Find the OFFS chunk of the ZPLN chunk
byte *zplnOffsChunkStart = smap_ptr + READ_BE_UINT32(smap_ptr + 12) + 24;
// Each ZPLN contains a WRAP chunk, which has (as always) an OFFS subchunk pointing
// at ZSTR chunks. These once more contain a WRAP chunk which contains nothing but
// an OFFS chunk. The content of this OFFS chunk contains the offsets to the
// Z-planes.
// We do not directly make use of this, but rather hard code offsets (like we do
// for all other Scumm-versions, too). Clearly this is a bit hackish, but works
// well enough, and there is no reason to assume that there are any cases where it
// might fail. Still, doing this properly would have the advantage of catching
// invalid/damaged data files, and allow us to exit gracefully instead of segfaulting.
for (i = 1; i < numzbuf; i++) {
zplane_list[i] = zplnOffsChunkStart + READ_LE_UINT32(zplnOffsChunkStart + 4 + i*4) + 16;
}
} else {
const uint32 zplane_tags[] = {
MKID('ZP00'),
MKID('ZP01'),
MKID('ZP02'),
MKID('ZP03'),
MKID('ZP04')
};
for (i = 1; i < numzbuf; i++) {
zplane_list[i] = findResource(zplane_tags[i], ptr);
}
}
}
if (_vm->_features & GF_AFTER_V8) {
// A small hack to skip to the BSTR->WRAP->OFFS chunk. Note: order matters, we do this
// *after* the Z buffer code because that assumes' the orginal value of smap_ptr.
smap_ptr += 24;
}
bottom = y + h;
if (bottom > vs->height) {
warning("Gdi::drawBitmap, strip drawn to %d below window bottom %d", bottom, vs->height);
}
_vertStripNextInc = h * _vm->_realWidth - 1;
do {
CHECK_HEAP;
sx = x;
if (vs->scrollable)
sx -= vs->xstart >> 3;
if (sx < 0)
goto next_iter;
if (sx >= _numStrips)
return;
if (y < vs->tdirty[sx])
vs->tdirty[sx] = y;
if (bottom > vs->bdirty[sx])
vs->bdirty[sx] = bottom;
backbuff_ptr = vs->screenPtr + (y * _numStrips + x) * 8;
if (vs->alloctwobuffers)
bgbak_ptr = _vm->getResourceAddress(rtBuffer, vs->number + 5) + (y * _numStrips + x) * 8;
else
bgbak_ptr = backbuff_ptr;
_mask_ptr = _vm->getResourceAddress(rtBuffer, 9) + (y * _numStrips + x);
if (_vm->_features & GF_SMALL_HEADER) {
if (_vm->_features & GF_AFTER_V2) {
decodeStripOldEGA(bgbak_ptr, roomptr + _vm->_egaStripOffsets[stripnr], h, stripnr);
useOrDecompress = false;
} else if (_vm->_features & GF_16COLOR) {
decodeStripEGA(bgbak_ptr, smap_ptr + READ_LE_UINT16(smap_ptr + stripnr * 2 + 2), h);
useOrDecompress = false;
} else {
useOrDecompress = decompressBitmap(bgbak_ptr, smap_ptr + READ_LE_UINT32(smap_ptr + stripnr * 4 + 4), h);
}
} else {
useOrDecompress = decompressBitmap(bgbak_ptr, smap_ptr + READ_LE_UINT32(smap_ptr + stripnr * 4 + 8), h);
}
CHECK_HEAP;
if (vs->alloctwobuffers) {
if (_vm->hasCharsetMask(sx << 3, y, (sx + 1) << 3, bottom)) {
if (flag & dbClear || !lightsOn)
clear8ColWithMasking(backbuff_ptr, h, _mask_ptr);
else
draw8ColWithMasking(backbuff_ptr, bgbak_ptr, h, _mask_ptr);
} else {
if (flag & dbClear || !lightsOn)
clear8Col(backbuff_ptr, h);
else
draw8Col(backbuff_ptr, bgbak_ptr, h);
}
}
CHECK_HEAP;
// Sam & Max uses dbDrawMaskOnAll for things like the inventory
// box and the speech icons. While these objects only have one
// mask, it should be applied to all the Z-planes in the room,
// i.e. they should mask every actor.
//
// This flag used to be called dbDrawMaskOnBoth, and all it
// would do was to mask Z-plane 0. (Z-plane 1 would also be
// masked, because what is now the else-clause used to be run
// always.) While this seems to be the only way there is to
// mask Z-plane 0, this wasn't good enough since actors in
// Z-planes >= 2 would not be masked.
//
// The flag is also used by The Dig and Full Throttle, but I
// don't know what for. At the time of writing, these games
// are still too unstable for me to investigate.
if (flag & dbDrawMaskOnAll) {
byte *z_plane_ptr;
if (_vm->_features & GF_AFTER_V8)
z_plane_ptr = zplane_list[1] + READ_LE_UINT32(zplane_list[1] + stripnr * 4 + 8);
else
z_plane_ptr = zplane_list[1] + READ_LE_UINT16(zplane_list[1] + stripnr * 2 + 8);
for (i = 0; i < numzbuf; i++) {
_mask_ptr_dest = _vm->getResourceAddress(rtBuffer, 9) + y * _numStrips + x + _imgBufOffs[i];
if (useOrDecompress && (flag & dbAllowMaskOr))
decompressMaskImgOr(_mask_ptr_dest, z_plane_ptr, h);
else
decompressMaskImg(_mask_ptr_dest, z_plane_ptr, h);
}
} else {
for (i = 1; i < numzbuf; i++) {
uint16 offs;
if (!zplane_list[i])
continue;
if (_vm->_features & GF_AFTER_V2)
offs = 0;
else if (_vm->_features & GF_OLD_BUNDLE)
offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2);
else if (_vm->_features & GF_OLD256)
offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2 + 4);
else if (_vm->_features & GF_SMALL_HEADER)
offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2 + 2);
else if (_vm->_features & GF_AFTER_V8)
offs = (uint16) READ_LE_UINT32(zplane_list[i] + stripnr * 4 + 8);
else
offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2 + 8);
_mask_ptr_dest = _vm->getResourceAddress(rtBuffer, 9) + y * _numStrips + x + _imgBufOffs[i];
if (offs) {
byte *z_plane_ptr = zplane_list[i] + offs;
if (_vm->_features & GF_AFTER_V2)
decompressMaskImgOld(_mask_ptr_dest, roomptr + _vm->_egaStripZOffsets[stripnr], stripnr);
else if (useOrDecompress && (flag & dbAllowMaskOr)) {
decompressMaskImgOr(_mask_ptr_dest, z_plane_ptr, h);
} else {
decompressMaskImg(_mask_ptr_dest, z_plane_ptr, h);
}
} else {
if (!(useOrDecompress && (flag & dbAllowMaskOr)))
for (int height = 0; height < h; height++)
_mask_ptr_dest[height * _numStrips] = 0;
/* needs better abstraction, FIXME */
}
}
}
next_iter:
CHECK_HEAP;
x++;
stripnr++;
} while (--numstrip);
}
void Gdi::decodeStripEGA(byte *dst, byte *src, int height) {
byte color = 0;
int run = 0, x = 0, y = 0, z;
while(x < 8) {
color = *src++;
if(color & 0x80) {
run = color & 0x3f;
if(color & 0x40) {
color = *src++;
if(run == 0) {
run = *src++;
}
const register byte colors[2] = { color >> 4, color & 0xf };
for(z = 0; z < run; z++) {
*(dst + y * _vm->_realWidth + x) = colors[z&1];
y++;
if(y >= height) {
y = 0;
x++;
}
}
} else {
if(run == 0) {
run = *src++;
}
for(z = 0; z < run; z++) {
*(dst + y * _vm->_realWidth + x) = *(dst + y * _vm->_realWidth + x - 1);
y++;
if(y >= height) {
y = 0;
x++;
}
}
}
} else {
run = color >> 4;
if(run == 0) {
run = *src++;
}
for(z = 0; z < run; z++) {
*(dst + y * _vm->_realWidth + x) = color & 0xf;
y++;
if(y >= height) {
y = 0;
x++;
}
}
}
}
}
void Scumm::buildStripOffsets() {
byte *roomptr = getResourceAddress(rtRoom, _roomResource);
byte *bitmap = roomptr + READ_LE_UINT16(roomptr + 10);
byte *zplane = roomptr + READ_LE_UINT16(roomptr + 12);
int room_width = READ_LE_UINT16(roomptr + 4) >> 3;
byte color = 0, data = 0;
int x, y, length = 0;
int run = 1;
for (x = 0 ; x < room_width << 3; x++) {
if ((x % 8) == 0) {
_egaStripRun[x >> 3] = run;
_egaStripColor[x >> 3] = color;
_egaStripOffsets[x >> 3] = bitmap - roomptr;
}
for (y = 0; y < 128; y++) {
if (--run == 0) {
data = *bitmap++;
if (data & 0x80) {
run = data & 0x7f;
} else {
run = data >> 4;
}
if (run == 0) {
run = *bitmap++;
}
color = data & 0x0f;
}
}
}
x = 0;
y = 128;
for (;;) {
length = *zplane++;
if (length & 0x80) {
length &= 0x7f;
data = *zplane++;
do {
if (y == 128) {
_egaStripZOffsets[x] = zplane - roomptr - 1;
_egaStripZRun[x] = length | 0x80;
}
if (--y == 0) {
if (--room_width == 0)
return;
x++;
y = 128;
}
} while (--length);
} else {
do {
data = *zplane++;
if (y == 128) {
_egaStripZOffsets[x] = zplane - roomptr - 1;
_egaStripZRun[x] = length;
}
if (--y == 0) {
if (--room_width == 0)
return;
x++;
y = 128;
}
} while (--length);
}
}
}
void Gdi::decodeStripOldEGA(byte *dst, byte *src, int height, int stripnr) {
byte color = _vm->_egaStripColor[stripnr];
int run = _vm->_egaStripRun[stripnr];
bool dither = false;
byte dither_table[128];
byte data = 0;
int x = 4;
do {
byte *ptr_dither_table = dither_table;
int y = 128;
do {
if (--run == 0) {
data = *src++;
if (data & 0x80) {
run = data & 0x7f;
dither = true;
} else {
run = data >> 4;
dither = false;
}
if (run == 0) {
run = *src++;
}
color = data & 0x0f;
}
if (!dither) {
*ptr_dither_table = color;
}
*dst = *ptr_dither_table++;
dst += _vm->_realWidth;
} while (--y);
dst -= _vm->_realWidth * 128;
dst++;
ptr_dither_table = dither_table;
y = 128;
do {
if (--run == 0) {
data = *src++;
if (data & 0x80) {
run = data & 0x7f;
dither = true;
} else {
run = data >> 4;
dither = false;
}
if (run == 0) {
run = *src++;
}
color = data & 0x0f;
}
if (!dither) {
*ptr_dither_table = color;
}
*dst = *ptr_dither_table++;
dst += _vm->_realWidth;
} while (--y);
dst -= _vm->_realWidth * 128;
dst++;
} while (--x);
}
void Gdi::decompressMaskImgOld(byte *dst, byte *src, int stripnr) {
int run = _vm->_egaStripRun[stripnr];
int y = 128;
byte data = 0;
for (;;) {
if (run & 0x80) {
run &= 0x7f;
data = *src++;
do {
*dst++ = data;
dst += _numStrips;
if (--y == 0)
return;
} while (--run);
} else {
do {
data = *src++;
*dst++ = data;
dst += _numStrips;
if (--y == 0)
return;
} while (--run);
}
run = *src++;
}
}
bool Gdi::decompressBitmap(byte *bgbak_ptr, byte *smap_ptr, int numLinesToProcess) {
assert(numLinesToProcess);
byte code = *smap_ptr++;
if (_vm->_features & GF_AMIGA)
_palette_mod = 16;
else
_palette_mod = 0;
bool useOrDecompress = false;
_decomp_shr = code % 10;
_decomp_mask = 0xFF >> (8 - _decomp_shr);
switch (code) {
case 1:
unkDecode7(bgbak_ptr, smap_ptr, numLinesToProcess);
break;
case 2:
unkDecode8(bgbak_ptr, smap_ptr, numLinesToProcess); /* Ender - Zak256/Indy256 */
break;
case 3:
unkDecode9(bgbak_ptr, smap_ptr, numLinesToProcess); /* Ender - Zak256/Indy256 */
break;
case 4:
unkDecode10(bgbak_ptr, smap_ptr, numLinesToProcess); /* Ender - Zak256/Indy256 */
break;
case 7:
unkDecode11(bgbak_ptr, smap_ptr, numLinesToProcess); /* Ender - Zak256/Indy256 */
break;
case 14:
case 15:
case 16:
case 17:
case 18:
unkDecodeC(bgbak_ptr, smap_ptr, numLinesToProcess);
break;
case 24:
case 25:
case 26:
case 27:
case 28:
unkDecodeB(bgbak_ptr, smap_ptr, numLinesToProcess);
break;
case 34:
case 35:
case 36:
case 37:
case 38:
useOrDecompress = true;
unkDecodeC_trans(bgbak_ptr, smap_ptr, numLinesToProcess);
break;
case 44:
case 45:
case 46:
case 47:
case 48:
useOrDecompress = true;
unkDecodeB_trans(bgbak_ptr, smap_ptr, numLinesToProcess);
break;
case 64:
case 65:
case 66:
case 67:
case 68:
case 104:
case 105:
case 106:
case 107:
case 108:
unkDecodeA(bgbak_ptr, smap_ptr, numLinesToProcess);
break;
case 84:
case 85:
case 86:
case 87:
case 88:
case 124:
case 125:
case 126:
case 127:
case 128:
useOrDecompress = true;
unkDecodeA_trans(bgbak_ptr, smap_ptr, numLinesToProcess);
break;
default:
error("Gdi::decompressBitmap: default case %d", code);
}
return useOrDecompress;
}
void Gdi::draw8ColWithMasking(byte *dst, byte *src, int height, byte *mask) {
byte maskbits;
do {
maskbits = *mask;
if (maskbits) {
if (!(maskbits & 0x80))
dst[0] = src[0];
if (!(maskbits & 0x40))
dst[1] = src[1];
if (!(maskbits & 0x20))
dst[2] = src[2];
if (!(maskbits & 0x10))
dst[3] = src[3];
if (!(maskbits & 0x08))
dst[4] = src[4];
if (!(maskbits & 0x04))
dst[5] = src[5];
if (!(maskbits & 0x02))
dst[6] = src[6];
if (!(maskbits & 0x01))
dst[7] = src[7];
} else {
#if defined(SCUMM_NEED_ALIGNMENT)
memcpy(dst, src, 8);
#else
((uint32 *)dst)[0] = ((uint32 *)src)[0];
((uint32 *)dst)[1] = ((uint32 *)src)[1];
#endif
}
src += _vm->_realWidth;
dst += _vm->_realWidth;
mask += _numStrips;
} while (--height);
}
void Gdi::clear8ColWithMasking(byte *dst, int height, byte *mask) {
byte maskbits;
do {
maskbits = *mask;
if (maskbits) {
if (!(maskbits & 0x80))
dst[0] = 0;
if (!(maskbits & 0x40))
dst[1] = 0;
if (!(maskbits & 0x20))
dst[2] = 0;
if (!(maskbits & 0x10))
dst[3] = 0;
if (!(maskbits & 0x08))
dst[4] = 0;
if (!(maskbits & 0x04))
dst[5] = 0;
if (!(maskbits & 0x02))
dst[6] = 0;
if (!(maskbits & 0x01))
dst[7] = 0;
} else {
#if defined(SCUMM_NEED_ALIGNMENT)
memset(dst, 0, 8);
#else
((uint32 *)dst)[0] = 0;
((uint32 *)dst)[1] = 0;
#endif
}
dst += _vm->_realWidth;
mask += _numStrips;
} while (--height);
}
void Gdi::draw8Col(byte *dst, byte *src, int height) {
do {
#if defined(SCUMM_NEED_ALIGNMENT)
memcpy(dst, src, 8);
#else
((uint32 *)dst)[0] = ((uint32 *)src)[0];
((uint32 *)dst)[1] = ((uint32 *)src)[1];
#endif
dst += _vm->_realWidth;
src += _vm->_realWidth;
} while (--height);
}
void Gdi::clear8Col(byte *dst, int height)
{
do {
#if defined(SCUMM_NEED_ALIGNMENT)
memset(dst, 0, 8);
#else
((uint32 *)dst)[0] = 0;
((uint32 *)dst)[1] = 0;
#endif
dst += _vm->_realWidth;
} while (--height);
}
void Gdi::decompressMaskImg(byte *dst, byte *src, int height) {
byte b, c;
while (height) {
b = *src++;
if (b & 0x80) {
b &= 0x7F;
c = *src++;
do {
*dst = c;
dst += _numStrips;
--height;
} while (--b && height);
} else {
do {
*dst = *src++;
dst += _numStrips;
--height;
} while (--b && height);
}
}
}
void Gdi::decompressMaskImgOr(byte *dst, byte *src, int height) {
byte b, c;
while (height) {
b = *src++;
if (b & 0x80) {
b &= 0x7F;
c = *src++;
do {
*dst |= c;
dst += _numStrips;
--height;
} while (--b && height);
} else {
do {
*dst |= *src++;
dst += _numStrips;
--height;
} while (--b && height);
}
}
}
#define READ_BIT (cl--, bit = bits&1, bits>>=1,bit)
#define FILL_BITS do { \
if (cl <= 8) { \
bits |= (*src++ << cl); \
cl += 8; \
} \
} while (0)
void Gdi::unkDecodeA(byte *dst, byte *src, int height) {
byte color = *src++;
uint bits = *src++;
byte cl = 8;
byte bit;
byte incm, reps;
do {
int x = 8;
do {
FILL_BITS;
*dst++ = color + _palette_mod;
againPos:
if (!READ_BIT) {
} else if (!READ_BIT) {
FILL_BITS;
color = bits & _decomp_mask;
bits >>= _decomp_shr;
cl -= _decomp_shr;
} else {
incm = (bits & 7) - 4;
cl -= 3;
bits >>= 3;
if (incm) {
color += incm;
} else {
FILL_BITS;
reps = bits & 0xFF;
do {
if (!--x) {
x = 8;
dst += _vm->_realWidth - 8;
if (!--height)
return;
}
*dst++ = color + _palette_mod;
} while (--reps);
bits >>= 8;
bits |= (*src++) << (cl - 8);
goto againPos;
}
}
} while (--x);
dst += _vm->_realWidth - 8;
} while (--height);
}
void Gdi::unkDecodeA_trans(byte *dst, byte *src, int height) {
byte color = *src++;
uint bits = *src++;
byte cl = 8;
byte bit;
byte incm, reps;
do {
int x = 8;
do {
FILL_BITS;
if (color != _transparentColor)
*dst = color + _palette_mod;
dst++;
againPos:
if (!READ_BIT) {
} else if (!READ_BIT) {
FILL_BITS;
color = bits & _decomp_mask;
bits >>= _decomp_shr;
cl -= _decomp_shr;
} else {
incm = (bits & 7) - 4;
cl -= 3;
bits >>= 3;
if (incm) {
color += incm;
} else {
FILL_BITS;
reps = bits & 0xFF;
do {
if (!--x) {
x = 8;
dst += _vm->_realWidth - 8;
if (!--height)
return;
}
if (color != _transparentColor)
*dst = color + _palette_mod;
dst++;
} while (--reps);
bits >>= 8;
bits |= (*src++) << (cl - 8);
goto againPos;
}
}
} while (--x);
dst += _vm->_realWidth - 8;
} while (--height);
}
void Gdi::unkDecodeB(byte *dst, byte *src, int height) {
byte color = *src++;
uint bits = *src++;
byte cl = 8;
byte bit;
int8 inc = -1;
do {
int x = 8;
do {
FILL_BITS;
*dst++ = color + _palette_mod;
if (!READ_BIT) {
} else if (!READ_BIT) {
FILL_BITS;
color = bits & _decomp_mask;
bits >>= _decomp_shr;
cl -= _decomp_shr;
inc = -1;
} else if (!READ_BIT) {
color += inc;
} else {
inc = -inc;
color += inc;
}
} while (--x);
dst += _vm->_realWidth - 8;
} while (--height);
}
void Gdi::unkDecodeB_trans(byte *dst, byte *src, int height) {
byte color = *src++;
uint bits = *src++;
byte cl = 8;
byte bit;
int8 inc = -1;
do {
int x = 8;
do {
FILL_BITS;
if (color != _transparentColor)
*dst = color + _palette_mod;
dst++;
if (!READ_BIT) {
} else if (!READ_BIT) {
FILL_BITS;
color = bits & _decomp_mask;
bits >>= _decomp_shr;
cl -= _decomp_shr;
inc = -1;
} else if (!READ_BIT) {
color += inc;
} else {
inc = -inc;
color += inc;
}
} while (--x);
dst += _vm->_realWidth - 8;
} while (--height);
}
void Gdi::unkDecodeC(byte *dst, byte *src, int height) {
byte color = *src++;
uint bits = *src++;
byte cl = 8;
byte bit;
int8 inc = -1;
int x = 8;
do {
int h = height;
do {
FILL_BITS;
*dst = color + _palette_mod;
dst += _vm->_realWidth;
if (!READ_BIT) {
} else if (!READ_BIT) {
FILL_BITS;
color = bits & _decomp_mask;
bits >>= _decomp_shr;
cl -= _decomp_shr;
inc = -1;
} else if (!READ_BIT) {
color += inc;
} else {
inc = -inc;
color += inc;
}
} while (--h);
dst -= _vertStripNextInc;
} while (--x);
}
void Gdi::unkDecodeC_trans(byte *dst, byte *src, int height) {
byte color = *src++;
uint bits = *src++;
byte cl = 8;
byte bit;
int8 inc = -1;
int x = 8;
do {
int h = height;
do {
FILL_BITS;
if (color != _transparentColor)
*dst = color + _palette_mod;
dst += _vm->_realWidth;
if (!READ_BIT) {
} else if (!READ_BIT) {
FILL_BITS;
color = bits & _decomp_mask;
bits >>= _decomp_shr;
cl -= _decomp_shr;
inc = -1;
} else if (!READ_BIT) {
color += inc;
} else {
inc = -inc;
color += inc;
}
} while (--h);
dst -= _vertStripNextInc;
} while (--x);
}
#undef READ_BIT
#undef FILL_BITS
/* Ender - Zak256/Indy256 decoders */
#define READ_256BIT \
if ((mask <<= 1) == 256) { \
buffer = *src++; \
mask = 1; \
} \
bits = ((buffer & mask) != 0);
#define NEXT_ROW \
dst += _vm->_realWidth; \
if (--h == 0) { \
if (!--x) \
return; \
dst -= _vertStripNextInc; \
h = height; \
}
void Gdi::unkDecode7(byte *dst, byte *src, int height) {
uint h = height;
if (_vm->_features & GF_OLD256) {
int x = 8;
for (;;) {
*dst = *src++;
NEXT_ROW
}
return;
}
do {
#if defined(SCUMM_NEED_ALIGNMENT)
memcpy(dst, src, 8);
#else
((uint32 *)dst)[0] = ((uint32 *)src)[0];
((uint32 *)dst)[1] = ((uint32 *)src)[1];
#endif
dst += _vm->_realWidth;
src += 8;
} while (--height);
}
void Gdi::unkDecode8(byte *dst, byte *src, int height) {
uint h = height;
int x = 8;
for (;;) {
uint run = (*src++) + 1;
byte color = *src++;
do {
*dst = color;
NEXT_ROW
} while (--run);
}
}
void Gdi::unkDecode9(byte *dst, byte *src, int height) {
unsigned char c, bits, color, run;
int i, j;
uint buffer = 0, mask = 128;
int h = height;
i = j = run = 0;
int x = 8;
for (;;) {
c = 0;
for (i = 0; i < 4; i++) {
READ_256BIT;
c += (bits << i);
}
switch ((c >> 2)) {
case 0:
color = 0;
for (i = 0; i < 4; i++) {
READ_256BIT;
color += bits << i;
}
for (i = 0; i < ((c & 3) + 2); i++) {
*dst = (run * 16 + color);
NEXT_ROW
}
break;
case 1:
for (i = 0; i < ((c & 3) + 1); i++) {
color = 0;
for (j = 0; j < 4; j++) {
READ_256BIT;
color += bits << j;
}
*dst = (run * 16 + color);
NEXT_ROW
}
break;
case 2:
run = 0;
for (i = 0; i < 4; i++) {
READ_256BIT;
run += bits << i;
}
break;
}
}
}
void Gdi::unkDecode10(byte *dst, byte *src, int height) {
int i;
unsigned char local_palette[256], numcolors = *src++;
uint h = height;
for (i = 0; i < numcolors; i++)
local_palette[i] = *src++;
int x = 8;
for (;;) {
byte color = *src++;
if (color < numcolors) {
*dst = local_palette[color];
NEXT_ROW
} else {
uint run = color - numcolors + 1;
color = *src++;
do {
*dst = color;
NEXT_ROW
} while (--run);
}
}
}
void Gdi::unkDecode11(byte *dst, byte *src, int height) {
int bits, i;
uint buffer = 0, mask = 128;
unsigned char inc = 1, color = *src++;
int x = 8;
do {
int h = height;
do {
*dst = color;
dst += _vm->_realWidth;
for (i = 0; i < 3; i++) {
READ_256BIT
if (!bits)
break;
}
switch (i) {
case 1:
inc = -inc;
color -= inc;
break;
case 2:
color -= inc;
break;
case 3:
color = 0;
inc = 1;
for (i = 0; i < 8; i++) {
READ_256BIT
color += bits << i;
}
break;
}
} while (--h);
dst -= _vertStripNextInc;
} while (--x);
}
#undef NEXT_ROW
#undef READ_256BIT
#pragma mark -
#pragma mark --- Camera ---
#pragma mark -
void Scumm::setCameraAtEx(int at) {
if (!(_features & GF_AFTER_V7)) {
camera._mode = CM_NORMAL;
camera._cur.x = at;
setCameraAt(at, 0);
camera._movingToActor = false;
}
}
void Scumm::setCameraAt(int pos_x, int pos_y) {
if (_features & GF_AFTER_V7) {
ScummPoint old;
old = camera._cur;
camera._cur.x = pos_x;
camera._cur.y = pos_y;
clampCameraPos(&camera._cur);
camera._dest = camera._cur;
assert(camera._cur.x >= (_realWidth / 2) && camera._cur.y >= (_realHeight / 2));
if ((camera._cur.x != old.x || camera._cur.y != old.y)
&& _vars[VAR_SCROLL_SCRIPT]) {
_vars[VAR_CAMERA_POS_X] = camera._cur.x;
_vars[VAR_CAMERA_POS_Y] = camera._cur.y;
runScript(_vars[VAR_SCROLL_SCRIPT], 0, 0, 0);
}
} else {
if (camera._mode != CM_FOLLOW_ACTOR || abs(pos_x - camera._cur.x) > (_realWidth / 2)) {
camera._cur.x = pos_x;
}
camera._dest.x = pos_x;
if (camera._cur.x < _vars[VAR_CAMERA_MIN_X])
camera._cur.x = _vars[VAR_CAMERA_MIN_X];
if (camera._cur.x > _vars[VAR_CAMERA_MAX_X])
camera._cur.x = _vars[VAR_CAMERA_MAX_X];
if (_vars[VAR_SCROLL_SCRIPT]) {
_vars[VAR_CAMERA_POS_X] = camera._cur.x;
runScript(_vars[VAR_SCROLL_SCRIPT], 0, 0, 0);
}
if (camera._cur.x != camera._last.x && _charset->_hasMask)
stopTalk();
}
}
void Scumm::setCameraFollows(Actor *a) {
if (_features & GF_AFTER_V7) {
byte oldfollow = camera._follows;
int ax, ay;
camera._follows = a->number;
if (!a->isInCurrentRoom()) {
startScene(a->getRoom(), 0, 0);
}
ax = abs(a->x - camera._cur.x);
ay = abs(a->y - camera._cur.y);
if (ax > _vars[VAR_CAMERA_THRESHOLD_X] || ay > _vars[VAR_CAMERA_THRESHOLD_Y] || ax > (_realWidth / 2) || ay > (_realHeight / 2)) {
setCameraAt(a->x, a->y);
}
if (a->number != oldfollow)
runHook(0);
} else {
int t, i;
camera._mode = CM_FOLLOW_ACTOR;
camera._follows = a->number;
if (!a->isInCurrentRoom()) {
startScene(a->getRoom(), 0, 0);
camera._mode = CM_FOLLOW_ACTOR;
camera._cur.x = a->x;
setCameraAt(camera._cur.x, 0);
}
t = (a->x >> 3);
if (t - _screenStartStrip < camera._leftTrigger || t - _screenStartStrip > camera._rightTrigger)
setCameraAt(a->x, 0);
for (i = 1; i < NUM_ACTORS; i++) {
a = derefActor(i);
if (a->isInCurrentRoom())
a->needRedraw = true;
}
runHook(0);
}
}
void Scumm::clampCameraPos(ScummPoint *pt) {
if (pt->x < _vars[VAR_CAMERA_MIN_X])
pt->x = _vars[VAR_CAMERA_MIN_X];
if (pt->x > _vars[VAR_CAMERA_MAX_X])
pt->x = _vars[VAR_CAMERA_MAX_X];
if (pt->y < _vars[VAR_CAMERA_MIN_Y])
pt->y = _vars[VAR_CAMERA_MIN_Y];
if (pt->y > _vars[VAR_CAMERA_MAX_Y])
pt->y = _vars[VAR_CAMERA_MAX_Y];
}
void Scumm::moveCamera() {
if (_features & GF_AFTER_V7) {
ScummPoint old = camera._cur;
Actor *a = NULL;
if (camera._follows) {
a = derefActorSafe(camera._follows, "moveCamera");
if (abs(camera._cur.x - a->x) > _vars[VAR_CAMERA_THRESHOLD_X] ||
abs(camera._cur.y - a->y) > _vars[VAR_CAMERA_THRESHOLD_Y]) {
camera._movingToActor = true;
if (_vars[VAR_CAMERA_THRESHOLD_X] == 0)
camera._cur.x = a->x;
if (_vars[VAR_CAMERA_THRESHOLD_Y] == 0)
camera._cur.y = a->y;
clampCameraPos(&camera._cur);
}
} else {
camera._movingToActor = false;
}
if (camera._movingToActor) {
camera._dest.x = a->x;
camera._dest.y = a->y;
}
assert(camera._cur.x >= (_realWidth / 2) && camera._cur.y >= (_realHeight / 2));
clampCameraPos(&camera._dest);
if (camera._cur.x < camera._dest.x) {
camera._cur.x += _vars[VAR_CAMERA_SPEED_X];
if (camera._cur.x > camera._dest.x)
camera._cur.x = camera._dest.x;
}
if (camera._cur.x > camera._dest.x) {
camera._cur.x -= _vars[VAR_CAMERA_SPEED_X];
if (camera._cur.x < camera._dest.x)
camera._cur.x = camera._dest.x;
}
if (camera._cur.y < camera._dest.y) {
camera._cur.y += _vars[VAR_CAMERA_SPEED_Y];
if (camera._cur.y > camera._dest.y)
camera._cur.y = camera._dest.y;
}
if (camera._cur.y > camera._dest.y) {
camera._cur.y -= _vars[VAR_CAMERA_SPEED_Y];
if (camera._cur.y < camera._dest.y)
camera._cur.y = camera._dest.y;
}
if (camera._cur.x == camera._dest.x && camera._cur.y == camera._dest.y) {
camera._movingToActor = false;
camera._accel.x = camera._accel.y = 0;
_vars[VAR_CAMERA_SPEED_X] = _vars[VAR_CAMERA_SPEED_Y] = 0;
} else {
camera._accel.x += _vars[VAR_CAMERA_ACCEL_X];
camera._accel.y += _vars[VAR_CAMERA_ACCEL_Y];
_vars[VAR_CAMERA_SPEED_X] += camera._accel.x / 100;
_vars[VAR_CAMERA_SPEED_Y] += camera._accel.y / 100;
if (_vars[VAR_CAMERA_SPEED_X] < 8)
_vars[VAR_CAMERA_SPEED_X] = 8;
if (_vars[VAR_CAMERA_SPEED_Y] < 8)
_vars[VAR_CAMERA_SPEED_Y] = 8;
}
cameraMoved();
if (camera._cur.x != old.x || camera._cur.y != old.y) {
_vars[VAR_CAMERA_POS_X] = camera._cur.x;
_vars[VAR_CAMERA_POS_Y] = camera._cur.y;
_vars[VAR_CAMERA_DEST_X] = camera._dest.x;
_vars[VAR_CAMERA_DEST_Y] = camera._dest.y;
_vars[VAR_CAMERA_FOLLOWED_ACTOR] = camera._follows;
if (_vars[VAR_SCROLL_SCRIPT])
runScript(_vars[VAR_SCROLL_SCRIPT], 0, 0, 0);
}
} else {
int pos = camera._cur.x;
int actorx, t;
Actor *a = NULL;
camera._cur.x &= 0xFFF8;
if (camera._cur.x < _vars[VAR_CAMERA_MIN_X]) {
if (_vars[VAR_CAMERA_FAST_X])
camera._cur.x = _vars[VAR_CAMERA_MIN_X];
else
camera._cur.x += 8;
cameraMoved();
return;
}
if (camera._cur.x > _vars[VAR_CAMERA_MAX_X]) {
if (_vars[VAR_CAMERA_FAST_X])
camera._cur.x = _vars[VAR_CAMERA_MAX_X];
else
camera._cur.x -= 8;
cameraMoved();
return;
}
if (camera._mode == CM_FOLLOW_ACTOR) {
a = derefActorSafe(camera._follows, "moveCamera");
actorx = a->x;
t = (actorx >> 3) - _screenStartStrip;
if (t < camera._leftTrigger || t > camera._rightTrigger) {
if (_vars[VAR_CAMERA_FAST_X]) {
if (t > 35)
camera._dest.x = actorx + 80;
if (t < 5)
camera._dest.x = actorx - 80;
} else
camera._movingToActor = true;
}
}
if (camera._movingToActor) {
a = derefActorSafe(camera._follows, "moveCamera(2)");
camera._dest.x = a->x;
}
if (camera._dest.x < _vars[VAR_CAMERA_MIN_X])
camera._dest.x = _vars[VAR_CAMERA_MIN_X];
if (camera._dest.x > _vars[VAR_CAMERA_MAX_X])
camera._dest.x = _vars[VAR_CAMERA_MAX_X];
if (_vars[VAR_CAMERA_FAST_X]) {
camera._cur.x = camera._dest.x;
} else {
if (camera._cur.x < camera._dest.x)
camera._cur.x += 8;
if (camera._cur.x > camera._dest.x)
camera._cur.x -= 8;
}
/* a is set a bit above */
if (camera._movingToActor && (camera._cur.x >> 3) == (a->x >> 3)) {
camera._movingToActor = false;
}
cameraMoved();
if (pos != camera._cur.x && _vars[VAR_SCROLL_SCRIPT]) {
_vars[VAR_CAMERA_POS_X] = camera._cur.x;
runScript(_vars[VAR_SCROLL_SCRIPT], 0, 0, 0);
}
}
}
void Scumm::cameraMoved() {
if (_features & GF_AFTER_V7) {
assert(camera._cur.x >= (_realWidth / 2) && camera._cur.y >= (_realHeight / 2));
} else {
if (camera._cur.x < (_realWidth / 2)) {
camera._cur.x = (_realWidth / 2);
} else if (camera._cur.x > _scrWidth - (_realWidth / 2)) {
camera._cur.x = _scrWidth - (_realWidth / 2);
}
}
_screenStartStrip = (camera._cur.x - (_realWidth / 2)) >> 3;
_screenEndStrip = _screenStartStrip + gdi._numStrips - 1;
_screenTop = camera._cur.y - (_realHeight / 2);
if (_features & GF_AFTER_V7) {
_screenLeft = camera._cur.x - (_realWidth / 2);
} else {
_screenLeft = _screenStartStrip << 3;
}
#ifdef V7_SMOOTH_SCROLLING_HACK
virtscr[0].xstart = _screenLeft;
#else
virtscr[0].xstart = _screenStartStrip << 3;
#endif
}
void Scumm::panCameraTo(int x, int y) {
if (_features & GF_AFTER_V7) {
camera._follows = 0;
camera._dest.x = x;
camera._dest.y = y;
} else {
camera._dest.x = x;
camera._mode = CM_PANNING;
camera._movingToActor = false;
}
}
void Scumm::actorFollowCamera(int act) {
if (!(_features & GF_AFTER_V7)) {
int old;
/* mi1 compatibilty */
if (act == 0) {
camera._mode = CM_NORMAL;
camera._follows = 0;
camera._movingToActor = false;
return;
}
old = camera._follows;
setCameraFollows(derefActorSafe(act, "actorFollowCamera"));
if (camera._follows != old)
runHook(0);
camera._movingToActor = false;
}
}
#pragma mark -
#pragma mark --- Transition effects ---
#pragma mark -
void Scumm::fadeIn(int effect) {
updatePalette();
switch (effect) {
case 1:
case 2:
case 3:
case 4:
transitionEffect(effect - 1);
break;
case 128:
unkScreenEffect6();
break;
case 130:
case 131:
case 132:
case 133:
scrollEffect(133 - effect);
break;
case 134:
dissolveEffect(1, 1);
break;
case 135:
unkScreenEffect5(1);
break;
case 129:
break;
default:
warning("Unknown screen effect, %d", effect);
}
_screenEffectFlag = true;
}
void Scumm::fadeOut(int effect) {
VirtScreen *vs;
updatePalette();
setDirtyRange(0, 0, 0);
if (!(_features & GF_AFTER_V7))
camera._last.x = camera._cur.x;
if (!_screenEffectFlag)
return;
_screenEffectFlag = false;
if (effect == 0)
return;
// Fill screen 0 with black
vs = &virtscr[0];
memset(vs->screenPtr + vs->xstart, 0, vs->size);
// Fade to black with the specified effect, if any.
switch (effect) {
case 1:
case 2:
case 3:
case 4:
transitionEffect(effect - 1);
break;
case 128:
unkScreenEffect6();
break;
case 129:
// Just blit screen 0 to the display (i.e. display will be black)
setDirtyRange(0, 0, vs->height);
updateDirtyScreen(0);
break;
case 134:
dissolveEffect(1, 1);
break;
case 135:
unkScreenEffect5(1);
break;
default:
warning("fadeOut: default case %d", effect);
}
}
/* Transition effect. There are four different effects possible,
* indicated by the value of a:
* 0: Iris effect
* 1: Box wipe (a black box expands from the upper-left corner to the lower-right corner)
* 2: Box wipe (a black box expands from the lower-right corner to the upper-left corner)
* 3: Inverse box wipe
* All effects operate on 8x8 blocks of the screen. These blocks are updated
* in a certain order; the exact order determines how the effect appears to the user.
*/
void Scumm::transitionEffect(int a) {
int delta[16]; // Offset applied during each iteration
int tab_2[16];
int i, j;
int bottom;
int l, t, r, b;
for (i = 0; i < 16; i++) {
delta[i] = transitionEffects[a].deltaTable[i];
j = transitionEffects[a].stripTable[i];
if (j == 24)
j = (virtscr[0].height >> 3) - 1;
tab_2[i] = j;
}
bottom = virtscr[0].height >> 3;
for (j = 0; j < transitionEffects[a].numOfIterations; j++) {
for (i = 0; i < 4; i++) {
l = tab_2[i * 4];
t = tab_2[i * 4 + 1];
r = tab_2[i * 4 + 2];
b = tab_2[i * 4 + 3];
if (t == b) {
while (l <= r) {
if (l >= 0 && l < gdi._numStrips && (uint) t < (uint) bottom) {
virtscr[0].tdirty[l] = t << 3;
virtscr[0].bdirty[l] = (t + 1) << 3;
}
l++;
}
} else {
if (l < 0 || l >= gdi._numStrips || b <= t)
continue;
if (b > bottom)
b = bottom;
virtscr[0].tdirty[l] = t << 3;
virtscr[0].bdirty[l] = (b + 1) << 3;
}
updateDirtyScreen(0);
}
for (i = 0; i < 16; i++)
tab_2[i] += delta[i];
// Draw the current state to the screen and wait half a sec so the user
// can watch the effect taking place.
_system->update_screen();
waitForTimer(30);
}
}
// Update width x height areas of the screen, in random order, until the whole
// screen has been updated. For instance:
//
// dissolveEffect(1, 1) produces a pixel-by-pixel dissolve
// dissolveEffect(8, 8) produces a square-by-square dissolve
// dissolveEffect(virtsrc[0].width, 1) produces a line-by-line dissolve
void Scumm::dissolveEffect(int width, int height) {
VirtScreen *vs = &virtscr[0];
int *offsets;
int blits_before_refresh, blits;
int x, y;
int w, h;
int i;
// There's probably some less memory-hungry way of doing this. But
// since we're only dealing with relatively small images, it shouldn't
// be too bad.
w = vs->width / width;
h = vs->height / height;
// When used used correctly, vs->width % width and vs->height % height
// should both be zero, but just to be safe...
if (vs->width % width)
w++;
if (vs->height % height)
h++;
offsets = (int *) malloc(w * h * sizeof(int));
if (offsets == NULL) {
warning("dissolveEffect: out of memory");
return;
}
// Create a permutation of offsets into the frame buffer
if (width == 1 && height == 1) {
// Optimized case for pixel-by-pixel dissolve
for (i = 0; i < vs->size; i++)
offsets[i] = i;
for (i = 1; i < w * h; i++) {
int j;
j = _rnd.getRandomNumber(i - 1);
offsets[i] = offsets[j];
offsets[j] = i;
}
} else {
int *offsets2;
for (i = 0, x = 0; x < vs->width; x += width)
for (y = 0; y < vs->height; y += height)
offsets[i++] = y * vs->width + x;
offsets2 = (int *) malloc(w * h * sizeof(int));
if (offsets2 == NULL) {
warning("dissolveEffect: out of memory");
free(offsets);
return;
}
memcpy(offsets2, offsets, w * h * sizeof(int));
for (i = 1; i < w * h; i++) {
int j;
j = _rnd.getRandomNumber(i - 1);
offsets[i] = offsets[j];
offsets[j] = offsets2[i];
}
free(offsets2);
}
// Blit the image piece by piece to the screen. The idea here is that
// the whole update should take about a quarter of a second, assuming
// most of the time is spent in waitForTimer(). It looks good to me,
// but might still need some tuning.
blits = 0;
blits_before_refresh = (3 * w * h) / 25;
// Speed up the effect for Loom
if (_gameId == GID_LOOM256)
blits_before_refresh *= 4;
for (i = 0; i < w * h; i++) {
x = offsets[i] % vs->width;
y = offsets[i] / vs->width;
_system->copy_rect(vs->screenPtr + vs->xstart + y * vs->width + x, vs->width, x, y + vs->topline, width, height);
if (++blits >= blits_before_refresh) {
blits = 0;
_system->update_screen();
waitForTimer(30);
}
}
free(offsets);
if (blits != 0) {
_system->update_screen();
waitForTimer(30);
}
}
void Scumm::scrollEffect(int dir) {
VirtScreen *vs = &virtscr[0];
int x, y;
int step;
if ((dir == 0) || (dir == 1))
step = vs->height;
else
step = vs->width;
step = (step * kPictureDelay) / kScrolltime;
switch (dir) {
case 0:
//up
y = 1 + step;
while (y < vs->height) {
_system->move_screen(0, -step, vs->height);
_system->copy_rect(vs->screenPtr + vs->xstart + (y - step) * vs->width,
vs->width,
0, vs->height - step,
vs->width, step);
_system->update_screen();
waitForTimer(kPictureDelay);
y += step;
}
break;
case 1:
// down
y = 1 + step;
while (y < vs->height) {
_system->move_screen(0, step, vs->height);
_system->copy_rect(vs->screenPtr + vs->xstart + vs->width * (vs->height-y),
vs->width,
0, 0,
vs->width, step);
_system->update_screen();
waitForTimer(kPictureDelay);
y += step;
}
break;
case 2:
// left
x = 1 + step;
while (x < vs->width) {
_system->move_screen(-step, 0, vs->height);
_system->copy_rect(vs->screenPtr + vs->xstart + x - step,
vs->width,
vs->width - step, 0,
step, vs->height);
_system->update_screen();
waitForTimer(kPictureDelay);
x += step;
}
break;
case 3:
// right
x = 1 + step;
while (x < vs->width) {
_system->move_screen(step, 0, vs->height);
_system->copy_rect(vs->screenPtr + vs->xstart + vs->width - x,
vs->width,
0, 0,
step, vs->height);
_system->update_screen();
waitForTimer(kPictureDelay);
x += step;
}
break;
}
}
void Scumm::unkScreenEffect6() {
if (_gameId == GID_LOOM256)
dissolveEffect(1, 1);
else
dissolveEffect(8, 4);
}
void Scumm::unkScreenEffect5(int a) {
// unkScreenEffect5(0), which is used by FOA during the opening
// cutscene when Indy opens the small statue, has been replaced by
// dissolveEffect(1, 1).
//
// I still don't know what unkScreenEffect5(1) is supposed to do.
/* XXX: not implemented */
warning("stub unkScreenEffect(%d)", a);
}
void Scumm::setShake(int mode) {
if (_shakeEnabled != (mode != 0))
_fullRedraw = true;
_shakeEnabled = mode != 0;
_shakeFrame = 0;
_system->set_shake_pos(0);
}
#pragma mark -
#pragma mark --- Palette ---
#pragma mark -
void Scumm::setupEGAPalette() {
setPalColor( 0, 0, 0, 0);
setPalColor( 1, 0, 0, 168);
setPalColor( 2, 0, 168, 0);
setPalColor( 3, 0, 168, 168);
setPalColor( 4, 168, 0, 0);
setPalColor( 5, 168, 0, 168);
setPalColor( 6, 168, 84, 0);
setPalColor( 7, 168, 168, 168);
setPalColor( 8, 84, 84, 84);
setPalColor( 9, 84, 84, 168);
setPalColor(10, 0, 252, 0);
setPalColor(11, 0, 252, 252);
setPalColor(12, 252, 84, 84);
setPalColor(13, 252, 0, 252);
setPalColor(14, 252, 252, 0);
setPalColor(15, 252, 252, 252);
}
void Scumm::setPaletteFromPtr(byte *ptr) {
int i;
byte *dest, r, g, b;
int numcolor;
if (_features & GF_SMALL_HEADER) {
if (_features & GF_OLD256)
numcolor = 256;
else
numcolor = READ_LE_UINT16(ptr + 6) / 3;
ptr += 8;
} else {
numcolor = getResourceDataSize(ptr) / 3;
}
checkRange(256, 0, numcolor, "Too many colors (%d) in Palette");
dest = _currentPalette;
for (i = 0; i < numcolor; i++) {
r = *ptr++;
g = *ptr++;
b = *ptr++;
// This comparison might look wierd, but it's what the disassembly (DOTT) says!
// FIXME: Fingolfin still thinks it looks weird: the value 252 = 4*63 clearly comes from
// the days 6/6/6 palettes were used, OK. But it breaks MonkeyVGA, so I had to add a
// check for that. And somebody before me added a check for V7 games, turning this
// off there, too... I wonder if it hurts other games, too? What exactly is broken
// if we remove this patch?
if ((_gameId == GID_MONKEY_VGA) || (_features & GF_AFTER_V7) || (i <= 15 || r < 252 || g < 252 || b < 252)) {
*dest++ = r;
*dest++ = g;
*dest++ = b;
} else {
dest += 3;
}
}
setDirtyColors(0, numcolor - 1);
}
void Scumm::setPaletteFromRes() {
byte *ptr;
ptr = getResourceAddress(rtRoom, _roomResource) + _CLUT_offs;
setPaletteFromPtr(ptr);
}
void Scumm::setDirtyColors(int min, int max) {
if (_palDirtyMin > min)
_palDirtyMin = min;
if (_palDirtyMax < max)
_palDirtyMax = max;
}
void Scumm::initCycl(byte *ptr) {
int j;
ColorCycle *cycl;
memset(_colorCycle, 0, sizeof(_colorCycle));
while ((j = *ptr++) != 0) {
if (j < 1 || j > 16) {
error("Invalid color cycle index %d", j);
}
cycl = &_colorCycle[j - 1];
ptr += 2;
cycl->counter = 0;
cycl->delay = 16384 / READ_BE_UINT16_UNALIGNED(ptr);
ptr += 2;
cycl->flags = READ_BE_UINT16_UNALIGNED(ptr);
ptr += 2;
cycl->start = *ptr++;
cycl->end = *ptr++;
}
}
void Scumm::stopCycle(int i) {
ColorCycle *cycl;
checkRange(16, 0, i, "Stop Cycle %d Out Of Range");
if (i != 0) {
_colorCycle[i - 1].delay = 0;
return;
}
for (i = 0, cycl = _colorCycle; i < 16; i++, cycl++)
cycl->delay = 0;
}
void Scumm::cyclePalette() {
ColorCycle *cycl;
int valueToAdd;
int i, num;
byte *start, *end;
byte tmp[3];
valueToAdd = _vars[VAR_TIMER];
if (valueToAdd < _vars[VAR_TIMER_NEXT])
valueToAdd = _vars[VAR_TIMER_NEXT];
if (!_colorCycle) // FIXME
return;
for (i = 0, cycl = _colorCycle; i < 16; i++, cycl++) {
if (cycl->delay && (cycl->counter += valueToAdd) >= cycl->delay) {
do {
cycl->counter -= cycl->delay;
} while (cycl->delay <= cycl->counter);
setDirtyColors(cycl->start, cycl->end);
moveMemInPalRes(cycl->start, cycl->end, cycl->flags & 2);
start = &_currentPalette[cycl->start * 3];
end = &_currentPalette[cycl->end * 3];
num = cycl->end - cycl->start;
if (!(cycl->flags & 2)) {
memmove(tmp, end, 3);
memmove(start + 3, start, num * 3);
memmove(start, tmp, 3);
} else {
memmove(tmp, start, 3);
memmove(start, start + 3, num * 3);
memmove(end, tmp, 3);
}
}
}
}
// Perform color cycling on the palManipulate data, too, otherwise
// color cycling will be disturbed by the palette fade.
void Scumm::moveMemInPalRes(int start, int end, byte direction) {
byte *startptr, *endptr;
byte *startptr2, *endptr2;
int num;
byte tmp[6];
if (!_palManipCounter)
return;
startptr = _palManipPalette + start * 3;
endptr = _palManipPalette + end * 3;
startptr2 = _palManipIntermediatePal + start * 6;
endptr2 = _palManipIntermediatePal + end * 6;
num = end - start;
if (!endptr) {
warning("moveMemInPalRes(%d,%d): Bad end pointer\n", start, end);
return;
}
if (!direction) {
memmove(tmp, endptr, 3);
memmove(startptr + 3, startptr, num * 3);
memmove(startptr, tmp, 3);
memmove(tmp, endptr2, 6);
memmove(startptr2 + 6, startptr2, num * 6);
memmove(startptr2, tmp, 6);
} else {
memmove(tmp, startptr, 3);
memmove(startptr, startptr + 3, num * 3);
memmove(endptr, tmp, 3);
memmove(tmp, startptr2, 6);
memmove(startptr2, startptr2 + 6, num * 6);
memmove(endptr2, tmp, 6);
}
}
void Scumm::palManipulateInit(int start, int end, int string_id, int time) {
byte *pal, *target, *between;
byte *string1, *string2, *string3;
int i;
string1 = getStringAddress(string_id);
string2 = getStringAddress(string_id + 1);
string3 = getStringAddress(string_id + 2);
if (!string1 || !string2 || !string3) {
warning("palManipulateInit(%d,%d,%d,%d): Cannot obtain string resources %d, %d and %d\n",
start, end, string_id, time, string_id, string_id + 1, string_id + 2);
return;
}
string1+=start;
string2+=start;
string3+=start;
_palManipStart = start;
_palManipEnd = end;
_palManipCounter = 0;
if (!_palManipPalette)
_palManipPalette = (byte *)calloc(0x300, 1);
if (!_palManipIntermediatePal)
_palManipIntermediatePal = (byte *)calloc(0x600, 1);
pal = _currentPalette + start * 3;
target = _palManipPalette + start * 3;
between = _palManipIntermediatePal + start * 6;
for (i = start; i < end; ++i) {
*target++ = *string1++;
*target++ = *string2++;
*target++ = *string3++;
*(uint16 *)between = ((uint16) *pal++) << 8;
between += 2;
*(uint16 *)between = ((uint16) *pal++) << 8;
between += 2;
*(uint16 *)between = ((uint16) *pal++) << 8;
between += 2;
}
_palManipCounter = time;
}
void Scumm::palManipulate() {
byte *target, *pal, *between;
int i, j;
if (!_palManipCounter || !_palManipPalette || !_palManipIntermediatePal)
return;
target = _palManipPalette + _palManipStart * 3;
pal = _currentPalette + _palManipStart * 3;
between = _palManipIntermediatePal + _palManipStart * 6;
for (i = _palManipStart; i < _palManipEnd; ++i) {
j = (*((uint16 *)between) += ((*target++ << 8) - *((uint16 *)between)) / _palManipCounter);
*pal++ = j >> 8;
between += 2;
j = (*((uint16 *)between) += ((*target++ << 8) - *((uint16 *)between)) / _palManipCounter);
*pal++ = j >> 8;
between += 2;
j = (*((uint16 *)between) += ((*target++ << 8) - *((uint16 *)between)) / _palManipCounter);
*pal++ = j >> 8;
between += 2;
}
setDirtyColors(_palManipStart, _palManipEnd);
_palManipCounter--;
}
void Scumm::setupShadowPalette(int slot, int redScale, int greenScale, int blueScale, int startColor, int endColor) {
byte *table;
int i;
byte *curpal;
if (slot < 0 || slot > 7)
error("setupShadowPalette: invalid slot %d", slot);
if (startColor < 0 || startColor > 255 || endColor < 0 || startColor > 255 || endColor < startColor)
error("setupShadowPalette: invalid range from %d to %d", startColor, endColor);
table = _shadowPalette + slot * 256;
for (i = 0; i < 256; i++)
table[i] = i;
table += startColor;
curpal = _currentPalette + startColor * 3;
for (i = startColor; i <= endColor; i++) {
*table++ = remapPaletteColor((curpal[0] * redScale) >> 8,
(curpal[1] * greenScale) >> 8,
(curpal[2] * blueScale) >> 8,
(uint) - 1);
curpal += 3;
}
}
void Scumm::setupShadowPalette(int redScale, int greenScale, int blueScale, int startColor, int endColor) {
byte *basepal = getPalettePtr();
byte *pal = basepal;
byte *compareptr;
byte *table = _shadowPalette;
int i;
// This is a correction of the patch supplied for BUG #588501.
// It has been tested in all four known rooms where unkRoomFunc3 is used:
//
// 1) FOA Room 53: subway departing Knossos for Atlantis.
// 2) FOA Room 48: subway crashing into the Atlantis entrance area
// 3) FOA Room 82: boat/sub shadows while diving near Thera
// 4) FOA Room 23: the big machine room inside Atlantis
//
// The implementation behaves well in all tests.
// Pixel comparisons show that the resulting palette entries being
// derived from the shadow palette generated here occassionally differ
// slightly from the ones derived in the LEC executable.
// Not sure yet why, but the differences are VERY minor.
//
// There seems to be no explanation for why this function is called
// from within Room 23 (the big machine), as it has no shadow effects
// and thus doesn't result in any visual differences.
for (i = 0; i <= 255; i++) {
int r = (int) (*pal++ * redScale) >> 8;
int g = (int) (*pal++ * greenScale) >> 8;
int b = (int) (*pal++ * blueScale) >> 8;
// The following functionality is similar to remapPaletteColor, except
// 1) we have to work off the original CLUT rather than the current palette, and
// 2) the target shadow palette entries must be bounded to the upper and lower
// bounds provided by the opcode. (This becomes significant in Room 48, but
// is not an issue in all other known case studies.)
int j;
int ar, ag, ab;
uint sum, bestsum, bestitem = 0;
if (r > 255)
r = 255;
if (g > 255)
g = 255;
if (b > 255)
b = 255;
bestsum = (uint)-1;
r &= ~3;
g &= ~3;
b &= ~3;
compareptr = basepal + startColor * 3;
for (j = startColor; j <= endColor; j++, compareptr += 3) {
ar = compareptr[0] & ~3;
ag = compareptr[1] & ~3;
ab = compareptr[2] & ~3;
if (ar == r && ag == g && ab == b) {
bestitem = j;
break;
}
sum = colorWeight(ar - r, ag - g, ab - b);
if (sum < bestsum) {
bestsum = sum;
bestitem = j;
}
}
*table++ = bestitem;
}
}
/* Yazoo: This function create the specialPalette used for semi-transparency in SamnMax */
void Scumm::createSpecialPalette(int16 from, int16 to, int16 redScale, int16 greenScale, int16 blueScale,
int16 startColor, int16 endColor) {
byte *palPtr;
byte *curPtr;
byte *searchPtr;
uint bestResult;
uint currentResult;
byte currentIndex;
int i, j;
palPtr = getPalettePtr();
for (i = 0; i < 256; i++)
_proc_special_palette[i] = i;
curPtr = palPtr + startColor * 3;
for (i = startColor; i < endColor; i++) {
int r = (int) (*curPtr++ * redScale) >> 8;
int g = (int) (*curPtr++ * greenScale) >> 8;
int b = (int) (*curPtr++ * blueScale) >> 8;
searchPtr = palPtr;
bestResult = 32000;
currentIndex = 0;
for (j = from; j < to; j++) {
int ar = (*searchPtr++);
int ag = (*searchPtr++);
int ab = (*searchPtr++);
currentResult = colorWeight(ar - r, ag - g, ab - b);
if (currentResult < bestResult) {
_proc_special_palette[i] = currentIndex;
bestResult = currentResult;
}
currentIndex++;
}
}
}
void Scumm::darkenPalette(int redScale, int greenScale, int blueScale, int startColor, int endColor) {
if (_roomResource == 0) // FIXME - HACK to get COMI demo working
return;
if (startColor <= endColor) {
byte *cptr, *cur;
int j;
int color;
cptr = getPalettePtr() + startColor * 3;
cur = _currentPalette + startColor * 3;
for (j = startColor; j <= endColor; j++) {
color = *cptr++;
color = color * redScale / 0xFF;
if (color > 255)
color = 255;
*cur++ = color;
color = *cptr++;
color = color * greenScale / 0xFF;
if (color > 255)
color = 255;
*cur++ = color;
color = *cptr++;
color = color * blueScale / 0xFF;
if (color > 255)
color = 255;
*cur++ = color;
}
setDirtyColors(startColor, endColor);
}
}
static double value(double n1, double n2, double hue)
{
if (hue > 360.0)
hue = hue - 360.0;
else if (hue < 0.0)
hue = hue + 360.0;
if (hue < 60.0)
return n1 + (n2 - n1) * hue / 60.0;
if (hue < 180.0)
return n2;
if (hue < 240.0)
return n1 + (n2 - n1) * (240.0 - hue) / 60.0;
return n1;
}
void Scumm::desaturatePalette(int hueScale, int satScale, int lightScale, int startColor, int endColor)
{
// This function scales the HSL (Hue, Saturation and Lightness)
// components of the palette colours. It's used in CMI when Guybrush
// walks from the beach towards the swamp.
//
// I don't know if this function is correct, but the output seems to
// match the original fairly closely.
//
// FIXME: Rewrite using integer arithmetics only?
if (startColor <= endColor) {
byte *cptr, *cur;
int j;
cptr = getPalettePtr() + startColor * 3;
cur = _currentPalette + startColor * 3;
for (j = startColor; j <= endColor; j++) {
double R, G, B;
double H, S, L;
double min, max;
int red, green, blue;
R = ((double) *cptr++) / 255.0;
G = ((double) *cptr++) / 255.0;
B = ((double) *cptr++) / 255.0;
// RGB to HLS (Foley and VanDam)
min = MIN(R, MIN(G, B));
max = MAX(R, MAX(G, B));
L = (max + min) / 2.0;
if (max != min) {
if (L <= 0.5)
S = (max - min) / (max + min);
else
S = (max - min) / (2.0 - max - min);
if (R == max)
H = (G - B) / (max - min);
else if (G == max)
H = 2.0 + (B - R) / (max - min);
else
H = 4.0 + (R - G) / (max - min);
H = H * 60.0;
if (H < 0.0)
H = H + 360.0;
} else {
S = 0.0;
H = 0.0; // undefined
}
// Scale the result
H = (H * hueScale) / 255.0;
S = (S * satScale) / 255.0;
L = (L * lightScale) / 255.0;
// HLS to RGB (Foley and VanDam)
double m1, m2;
if (min != max) {
if (L <= 0.5)
m2 = L * (1 + S);
else
m2 = L + S - L * S;
m1 = 2.0 * L - m2;
R = value(m1, m2, H + 120);
G = value(m1, m2, H);
B = value(m1, m2, H - 120);
} else {
R = L;
G = L;
B = L;
}
red = (int) (255.0 * R + 0.5);
green = (int) (255.0 * G + 0.5);
blue = (int) (255.0 * B + 0.5);
*cur++ = red;
*cur++ = green;
*cur++ = blue;
}
setDirtyColors(startColor, endColor);
}
}
int Scumm::remapPaletteColor(int r, int g, int b, uint threshold) {
int i;
int ar, ag, ab;
uint sum, bestsum, bestitem = 0;
byte *pal = _currentPalette;
if (r > 255)
r = 255;
if (g > 255)
g = 255;
if (b > 255)
b = 255;
bestsum = (uint) - 1;
r &= ~3;
g &= ~3;
b &= ~3;
for (i = 0; i < 256; i++, pal += 3) {
ar = pal[0] & ~3;
ag = pal[1] & ~3;
ab = pal[2] & ~3;
if (ar == r && ag == g && ab == b)
return i;
sum = colorWeight(ar - r, ag - g, ab - b);
if (sum < bestsum) {
bestsum = sum;
bestitem = i;
}
}
if (threshold != (uint) - 1 && bestsum > colorWeight(threshold, threshold, threshold)) {
// Best match exceeded threshold. Try to find an unused palette entry and
// use it for our purpose.
pal = _currentPalette + (256 - 2) * 3;
for (i = 254; i > 48; i--, pal -= 3) {
if (pal[0] >= 252 && pal[1] >= 252 && pal[2] >= 252) {
setPalColor(i, r, g, b);
return i;
}
}
}
return bestitem;
}
void Scumm::swapPalColors(int a, int b) {
byte *ap, *bp;
byte t;
if ((uint) a >= 256 || (uint) b >= 256)
error("swapPalColors: invalid values, %d, %d", a, b);
ap = &_currentPalette[a * 3];
bp = &_currentPalette[b * 3];
t = ap[0];
ap[0] = bp[0];
bp[0] = t;
t = ap[1];
ap[1] = bp[1];
bp[1] = t;
t = ap[2];
ap[2] = bp[2];
bp[2] = t;
setDirtyColors(a, a);
setDirtyColors(b, b);
}
void Scumm::copyPalColor(int dst, int src) {
byte *dp, *sp;
if ((uint) dst >= 256 || (uint) src >= 256)
error("copyPalColor: invalid values, %d, %d", dst, src);
dp = &_currentPalette[dst * 3];
sp = &_currentPalette[src * 3];
dp[0] = sp[0];
dp[1] = sp[1];
dp[2] = sp[2];
setDirtyColors(dst, dst);
}
void Scumm::setPalColor(int idx, int r, int g, int b) {
_currentPalette[idx * 3 + 0] = r;
_currentPalette[idx * 3 + 1] = g;
_currentPalette[idx * 3 + 2] = b;
setDirtyColors(idx, idx);
}
void Scumm::setPalette(int palindex) {
byte *pals;
_curPalIndex = palindex;
pals = getPalettePtr();
setPaletteFromPtr(pals);
}
byte *Scumm::findPalInPals(byte *pal, int idx) {
byte *offs;
uint32 size;
pal = findResource(MKID('WRAP'), pal);
if (pal == NULL)
return NULL;
offs = findResourceData(MKID('OFFS'), pal);
if (offs == NULL)
return NULL;
size = getResourceDataSize(offs) >> 2;
if ((uint32)idx >= (uint32)size)
return NULL;
return offs + READ_LE_UINT32(offs + idx * sizeof(uint32));
}
byte *Scumm::getPalettePtr() {
byte *cptr;
cptr = getResourceAddress(rtRoom, _roomResource);
assert(cptr);
if (_CLUT_offs) {
cptr += _CLUT_offs;
} else {
cptr = findPalInPals(cptr + _PALS_offs, _curPalIndex);
}
assert(cptr);
return cptr;
}
#pragma mark -
#pragma mark --- Cursor ---
#pragma mark -
void Scumm::grabCursor(int x, int y, int w, int h) {
VirtScreen *vs = findVirtScreen(y);
if (vs == NULL) {
warning("grabCursor: invalid Y %d", y);
return;
}
grabCursor(vs->screenPtr + (y - vs->topline) * _realWidth + x, w, h);
}
void Scumm::grabCursor(byte *ptr, int width, int height) {
uint size;
byte *dst;
size = width * height;
if (size > sizeof(_grabbedCursor))
error("grabCursor: grabbed cursor too big");
_cursor.width = width;
_cursor.height = height;
_cursor.animate = 0;
dst = _grabbedCursor;
for (; height; height--) {
memcpy(dst, ptr, width);
dst += width;
ptr += _realWidth;
}
updateCursor();
}
void Scumm::useIm01Cursor(byte *im, int w, int h) {
VirtScreen *vs = &virtscr[0];
w <<= 3;
h <<= 3;
drawBox(0, 0, w - 1, h - 1, 0xFF);
vs->alloctwobuffers = false;
gdi._disable_zbuffer = true;
gdi.drawBitmap(im, vs, _screenStartStrip, 0, h, 0, w >> 3, 0);
vs->alloctwobuffers = true;
gdi._disable_zbuffer = false;
grabCursor(vs->screenPtr + vs->xstart, w, h);
blit(vs->screenPtr + vs->xstart, getResourceAddress(rtBuffer, 5) + vs->xstart, w, h);
}
void Scumm::setCursor(int cursor) {
if (cursor >= 0 && cursor <= 3)
_currentCursor = cursor;
else
warning("setCursor(%d)", cursor);
}
void Scumm::setCursorHotspot(int x, int y) {
_cursor.hotspotX = x;
_cursor.hotspotY = y;
// FIXME this hacks around offset cursor in the humongous games
if (_features & GF_HUMONGOUS) {
_cursor.hotspotX += 15;
_cursor.hotspotY += 15;
}
}
void Scumm::updateCursor() {
_system->set_mouse_cursor(_grabbedCursor, _cursor.width, _cursor.height,
_cursor.hotspotX, _cursor.hotspotY);
}
void Scumm::animateCursor() {
if (_cursor.animate) {
if (!(_cursor.animateIndex & 0x3)) {
decompressDefaultCursor((_cursor.animateIndex >> 2) & 3);
}
_cursor.animateIndex++;
}
}
void Scumm::useBompCursor(byte *im, int width, int height) {
uint size;
width <<= 3;
height <<= 3;
size = width * height;
if (size > sizeof(_grabbedCursor))
error("useBompCursor: cursor too big (%d)", size);
_cursor.width = width;
_cursor.height = height;
_cursor.animate = 0;
decompressBomp(_grabbedCursor, im, width, height);
updateCursor();
}
void Scumm::decompressDefaultCursor(int idx) {
int i, j;
byte color;
memset(_grabbedCursor, 0xFF, sizeof(_grabbedCursor));
color = default_cursor_colors[idx];
// FIXME: None of the stock cursors are right for Loom. Why is that?
if ((_gameId == GID_LOOM256) || (_gameId == GID_LOOM)) {
int w = 0;
_cursor.width = 8;
_cursor.height = 8;
_cursor.hotspotX = 0;
_cursor.hotspotY = 0;
for (i = 0; i < 8; i++) {
w += (i >= 6) ? -2 : 1;
for (j = 0; j < w; j++)
_grabbedCursor[i * 8 + j] = color;
}
} else {
byte currentCursor = _currentCursor;
#ifdef __PALM_OS__
if (_gameId == GID_ZAK256 && currentCursor == 0)
currentCursor = 4;
#endif
_cursor.width = 16;
_cursor.height = 16;
_cursor.hotspotX = default_cursor_hotspots[2 * currentCursor];
_cursor.hotspotY = default_cursor_hotspots[2 * currentCursor + 1];
for (i = 0; i < 16; i++) {
for (j = 0; j < 16; j++) {
if (default_cursor_images[currentCursor][i] & (1 << j))
_grabbedCursor[16 * i + 15 - j] = color;
}
}
}
updateCursor();
}
void Scumm::makeCursorColorTransparent(int a) {
int i, size;
size = _cursor.width * _cursor.height;
for (i = 0; i < size; i++)
if (_grabbedCursor[i] == (byte)a)
_grabbedCursor[i] = 0xFF;
updateCursor();
}
#pragma mark -
#pragma mark --- Bomp ---
#pragma mark -
int32 Scumm::bompDecodeLineMode0(byte *src, byte *line_buffer, int32 size) {
if (size <= 0)
return size;
for (int32 l = 0; l < size; l++) {
*(line_buffer++) = *(src++);
}
return size;
}
int32 Scumm::bompDecodeLineMode1(byte *src, byte *line_buffer, int32 size) {
int32 t_size = READ_LE_UINT16(src) + 2;
if (size <= 0)
return t_size;
int32 len = size;
src += 2;
while (len) {
byte code = *src++;
int32 num = (code >> 1) + 1;
if (num > len)
num = len;
len -= num;
if (code & 1) {
byte color = *src++;
do
*line_buffer++ = color;
while (--num);
} else {
do
*line_buffer++ = *src++;
while (--num);
}
}
return t_size;
}
int32 Scumm::bompDecodeLineMode3(byte *src, byte *line_buffer, int32 size) {
int32 t_size = READ_LE_UINT16(src) + 2;
line_buffer += size;
if (size <= 0)
return t_size;
int32 len = size;
src += 2;
while (len) {
byte code = *src++;
int32 num = (code >> 1) + 1;
if (num > len)
num = len;
len -= num;
if (code & 1) {
byte color = *src++;
do
*--line_buffer = color;
while (--num);
} else {
do
*--line_buffer = *src++;
while (--num);
}
}
return t_size;
}
void Scumm::bompApplyMask(byte *line_buffer, byte *mask_src, byte bits, int32 size) {
while(1) {
byte tmp = *(mask_src++);
do {
if (size-- == 0)
return;
if (tmp & bits) {
*(line_buffer) = 255;
}
line_buffer++;
bits >>= 1;
} while (bits);
bits = 128;
}
}
void Scumm::bompApplyShadow0(byte *line_buffer, byte *dst, int32 size) {
while(1) {
if (size-- == 0)
return;
byte tmp = *(line_buffer++);
if (tmp != 255) {
*(dst) = tmp;
}
dst++;
}
}
void Scumm::bompApplyShadow1(byte *line_buffer, byte *dst, int32 size) {
while(1) {
if (size-- == 0)
return;
byte tmp = *(line_buffer++);
if (tmp != 255) {
if (tmp == 13) {
tmp = _shadowPalette[*(dst)];
}
*(dst) = tmp;
}
dst++;
}
}
void Scumm::bompApplyShadow3(byte *line_buffer, byte *dst, int32 size) {
while(1) {
if (size-- == 0)
return;
byte tmp = *(line_buffer++);
if (tmp != 255) {
if (tmp < 8) {
tmp = _shadowPalette[*(dst) + (tmp << 8)];
}
*(dst) = tmp;
}
dst++;
}
}
void Scumm::bompApplyActorPalette(byte *line_buffer, int32 size) {
if (_bompActorPalletePtr != 0) {
*(_bompActorPalletePtr + 255) = 255;
while(1) {
if (size-- == 0)
break;
*line_buffer = *(_bompActorPalletePtr + *line_buffer);
line_buffer++;
}
}
}
void Scumm::bompScaleFuncX(byte *line_buffer, byte *scalling_x_ptr, byte skip, int32 size) {
byte * line_ptr1 = line_buffer;
byte * line_ptr2 = line_buffer;
byte tmp = *(scalling_x_ptr++);
while (size--) {
if ((skip & tmp) == 0) {
*(line_ptr1++) = *(line_ptr2);
}
line_ptr2++;
skip >>= 1;
if (skip == 0) {
skip = 128;
tmp = *(scalling_x_ptr++);
}
}
}
void Scumm::decompressBomp(byte *dst, byte *src, int w, int h) {
int len, num;
byte code, color;
// Skip the header
if (_features & GF_AFTER_V8) {
src += 16;
} else {
src += 18;
}
do {
len = w;
src += 2;
while (len) {
code = *src++;
num = (code >> 1) + 1;
if (num > len)
num = len;
len -= num;
if (code & 1) {
color = *src++;
memset(dst, color, num);
} else {
memcpy(dst, src, num);
src += num;
}
dst += num;
}
} while (--h);
}
void Scumm::drawBomp(BompDrawData *bd, int decode_mode, int mask) {
byte skip_y = 128;
byte skip_y_new = 0;
byte bits;
byte *mask_out = 0;
byte *charset_mask;
byte tmp;
int32 clip_left, clip_right, clip_top, clip_bottom, tmp_x, tmp_y, mask_offset, mask_pitch;
if (bd->x < 0) {
clip_left = -bd->x;
} else {
clip_left = 0;
}
if (bd->y < 0) {
clip_top = -bd->y;
} else {
clip_top = 0;
}
clip_right = bd->srcwidth - clip_left;
tmp_x = bd->x + bd->srcwidth;
if (tmp_x > bd->outwidth) {
clip_right -= tmp_x - bd->outwidth;
}
clip_bottom = bd->srcheight;
tmp_y = bd->y + bd->srcheight;
if (tmp_y > bd->outheight) {
clip_bottom -= tmp_y - bd->outheight;
}
byte *src = bd->dataptr;
byte *dst = bd->out + bd->y * bd->outwidth + bd->x + clip_left;
mask_pitch = _realWidth / 8;
mask_offset = _screenStartStrip + (bd->y * mask_pitch) + ((bd->x + clip_left) >> 3);
charset_mask = getResourceAddress(rtBuffer, 9) + mask_offset;
bits = 128 >> ((bd->x + clip_left) & 7);
if (mask == 1) {
mask_out = _bompMaskPtr + mask_offset;
}
if (mask == 3) {
if (_bompScallingYPtr != NULL) {
skip_y_new = *(_bompScallingYPtr++);
}
if ((clip_right + clip_left) > _bompScaleRight) {
clip_right = _bompScaleRight - clip_left;
}
if (clip_bottom > _bompScaleBottom) {
clip_bottom = _bompScaleBottom;
}
}
if ((clip_right <= 0) || (clip_bottom <= 0))
return;
int32 pos_y = 0;
byte line_buffer[1024];
byte *line_ptr = line_buffer + clip_left;
while(1) {
switch(decode_mode) {
case 0:
src += bompDecodeLineMode0(src, line_buffer, bd->srcwidth);
break;
case 1:
src += bompDecodeLineMode1(src, line_buffer, bd->srcwidth);
break;
case 3:
src += bompDecodeLineMode3(src, line_buffer, bd->srcwidth);
break;
default:
error("Unknown bomp decode_mode %d", decode_mode);
}
if (mask == 3) {
if (bd->scale_y != 255) {
tmp = skip_y_new & skip_y;
skip_y >>= 1;
if (skip_y == 0) {
skip_y = 128;
skip_y_new = *(_bompScallingYPtr++);
}
if (tmp != 0)
continue;
}
if (bd->scale_x != 255) {
bompScaleFuncX(line_buffer, _bompScallingXPtr, 128, bd->srcwidth);
}
}
if (clip_top > 0) {
clip_top--;
} else {
if (mask == 1) {
bompApplyMask(line_ptr, mask_out, bits, clip_right);
}
bompApplyMask(line_ptr, charset_mask, bits, clip_right);
bompApplyActorPalette(line_ptr, clip_right);
switch(bd->shadowMode) {
case 0:
bompApplyShadow0(line_ptr, dst, clip_right);
break;
case 1:
bompApplyShadow1(line_ptr, dst, clip_right);
break;
case 3:
bompApplyShadow3(line_ptr, dst, clip_right);
break;
default:
error("Unknown bomp shadowMode %d", bd->shadowMode);
}
}
mask_out += mask_pitch;
charset_mask += mask_pitch;
pos_y++;
dst += bd->outwidth;
if (pos_y >= clip_bottom)
break;
}
}
#ifdef __PALM_OS__
#include "scumm_globals.h" // init globals
void Gfx_initGlobals() {
GSETPTR(transitionEffects, GBVARS_TRANSITIONEFFECTS_INDEX, TransitionEffect, GBVARS_SCUMM)
}
void Gfx_releaseGlobals() { GRELEASEPTR(GBVARS_TRANSITIONEFFECTS_INDEX, GBVARS_SCUMM)}
#endif