scummvm/engines/saga2/interp.cpp

1908 lines
53 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*
* Based on the original sources
* Faery Tale II -- The Halls of the Dead
* (c) 1993-1996 The Wyrmkeep Entertainment Co.
*/
#include "common/debug.h"
#include "saga2/saga2.h"
#include "saga2/fta.h"
#include "saga2/script.h"
#include "saga2/code.h"
#include "saga2/tile.h"
#include "saga2/mission.h"
#include "saga2/hresmgr.h"
#include "saga2/saveload.h"
namespace Saga2 {
#define IMMED_WORD(w) ((w = *pc++),(w |= (*pc++)<<8))
#define BRANCH(w) pc = codeSeg + (w)
const uint32 sagaID = MKTAG('S', 'A', 'G', 'A'),
dataSegID = MKTAG('_', '_', 'D', 'A'),
exportSegID = MKTAG('_', 'E', 'X', 'P');
const int initialStackFrameSize = 10;
static bool lookupExport(uint16 entry, uint16 &segNum, uint16 &segOff);
uint8 *segmentAddress(uint16 segment, uint16 offset);
Thread *thisThread;
struct ModuleEntry *moduleList; // loaded from resource
int16 moduleBaseResource,
moduleCount;
uint16 dataSegIndex; // saved index of data seg
byte *dataSegment, // loaded in data
*exportSegment; // export table from SAGA
int32 dataSegSize; // bytes in data segment
long exportCount; // number of exported syms
// An extended script is running -- suspend all background processing.
int16 extendedThreadLevel;
int16 lastExport;
extern hResource *scriptResFile; // script resources
hResContext *scriptRes; // script resource handle
void script_error(const char *msg) {
thisThread->flags |= Thread::aborted;
WriteStatusF(0, msg);
}
static Common::String seg2str(int16 segment) {
switch (segment) {
case builtinTypeObject:
return "GameObject";
case builtinTypeTAG:
return "TAG";
case builtinAbstract:
return Common::String::format("Abstract%d", segment);
case builtinTypeMission:
return "Mission";
default:
return Common::String::format("%d", segment);
}
}
//-----------------------------------------------------------------------
// Return the address of a builtin object, such as an Actor or a TAG,
// given a segment number and an index
uint8 *builtinObjectAddress(int16 segment, uint16 index) {
uint16 segNum, segOff;
switch (segment) {
case builtinTypeObject:
return (uint8 *)(&GameObject::objectAddress(index)->_data);
case builtinTypeTAG:
return (uint8 *)(&ActiveItem::activeItemAddress(index)->_data);
case builtinAbstract:
assert(index > 0);
if (lookupExport(index, segNum, segOff) == false)
error("SAGA: Cannot take address of abtract class");
return segmentAddress(segNum, segOff);
case builtinTypeMission:
return (uint8 *)(&ActiveMission::missionAddress(index)->_data);
default:
error("Invalid builtin object segment number: %d\n", segment);
}
}
//-----------------------------------------------------------------------
// Given the builtin object type (SAGA segment number), and the adress
// from builtinObjectAddress(), return the address of the virtual
// function table for the class associated with this object. Also
// return the address of the C function call table for this builtin
// class.
uint16 *builtinVTableAddress(int16 btype, uint8 *addr, CallTable **callTab) {
GameObject *obj;
ActiveItem *aItem;
ActiveMission *aMission;
uint16 script,
vtSeg,
vtOffset;
switch (btype) {
case builtinTypeObject:
// Get the address of a game object using the ID
obj = ((ObjectData *)addr)->obj;
script = obj->scriptClass();
*callTab = &actorCFuncs;
if (script <= 0)
error("SAGA failure: GameObject %d (%s) has no script.\n", obj->thisID(), obj->proto() ? obj->objName() : "Unknown");
break;
case builtinTypeTAG:
aItem = (ActiveItem *)addr;
script = aItem->_data.scriptClassID;
*callTab = &tagCFuncs;
if (script <= 0)
error("SAGA failure: TAG has no script.\n");
break;
case builtinTypeMission:
aMission = (ActiveMission *)addr;
script = aMission->getScript();
*callTab = &missionCFuncs;
if (script <= 0)
error("SAGA failure: Mission Object has no script.\n");
break;
case builtinAbstract:
*callTab = NULL;
return (uint16 *)addr;
default:
error("SAGA Failure: Attempt to call member function of invalid builtin type.\n");
}
// Look up the vtable in the export table.
if (script != 0 && lookupExport(script, vtSeg, vtOffset)) {
return (uint16 *)segmentAddress(vtSeg, vtOffset);
} else
return NULL;
}
uint8 *segmentAddress(uint16 segment, uint16 offset) {
byte *segHandle = nullptr;
// A segment number of less than zero means that this is
// a "builtin" object, in other words the game engine itself
if ((int16)segment < 0)
return builtinObjectAddress(segment, offset);
segHandle = scriptRes->loadIndexResource(segment, "object segment");
if (segHandle == nullptr)
return nullptr;
return segHandle + offset;
}
uint8 *segmentArrayAddress(uint16 segment, uint16 index) {
byte *segHandle = nullptr;
if ((int16)segment < 0)
return builtinObjectAddress(segment, index);
segHandle = scriptRes->loadIndexResource(segment, "object array segment");
if (segHandle == nullptr)
return nullptr;
return segHandle + sizeof(uint16) + (index * READ_LE_INT16(segHandle));
}
// Returns the address of a byte given an addressing mode
uint8 *byteAddress(Thread *th, uint8 **pcPtr) {
uint8 *pc = *pcPtr,
*addr;
uint16 seg,
offset, offset2,
index,
*arg;
switch (*pc++) {
case addr_data:
IMMED_WORD(offset);
debugC(3, kDebugScripts, "byteAddress: data[%d] = %d", offset, dataSegment[offset]);
*pcPtr = pc;
return &dataSegment[offset];
case addr_near:
IMMED_WORD(offset);
debugC(3, kDebugScripts, "byteAddress: near[%d] = %d", offset, th->codeSeg[offset]);
*pcPtr = pc;
return th->codeSeg + offset;
case addr_far:
IMMED_WORD(seg);
IMMED_WORD(offset);
debugC(3, kDebugScripts, "byteAddress: far[%s:%d] = %d", seg2str(seg).c_str(), offset, *segmentAddress(seg, offset));
*pcPtr = pc;
return segmentAddress(seg, offset);
case addr_array:
IMMED_WORD(seg);
IMMED_WORD(offset);
addr = segmentArrayAddress(seg, offset);
IMMED_WORD(offset2);
debugC(3, kDebugScripts, "byteAddress: array[%s:%d:%d] = %d", seg2str(seg).c_str(), offset, offset2, addr[offset2]);
*pcPtr = pc;
return addr + offset2;
case addr_stack:
IMMED_WORD(offset);
debugC(3, kDebugScripts, "byteAddress: stack[%d] = %d", offset, *(th->stackBase + th->framePtr + (int16)offset));
*pcPtr = pc;
return th->stackBase + th->framePtr + (int16)offset;
case addr_thread:
IMMED_WORD(offset);
debugC(3, kDebugScripts, "byteAddress: thread[%d] = %d", offset, *((uint8 *)&th->threadArgs + offset));
*pcPtr = pc;
return (uint8 *)&th->threadArgs + offset;
case addr_this:
IMMED_WORD(offset);
arg = (uint16 *)(th->stackBase + th->framePtr + 8);
*pcPtr = pc;
if (arg[0] == dataSegIndex) {
debugC(3, kDebugScripts, "byteAddress: thisD[%d:%d] = %d", arg[1], offset, dataSegment[arg[1] + offset]);
return &dataSegment[arg[1] + offset];
}
debugC(3, kDebugScripts, "byteAddress: thisS[%s:%d:%d] = %d", seg2str(arg[0]).c_str(), arg[1], offset, *(segmentArrayAddress(arg[0], arg[1]) + offset));
return segmentArrayAddress(arg[0], arg[1]) + offset;
case addr_deref:
// First, get the address of the reference.
*pcPtr = pc;
addr = byteAddress(th, pcPtr);
pc = *pcPtr;
// Get the offset from the reference variable.
index = *(uint16 *)addr;
// Get the segment to dereference from, and the offset
// within the object.
IMMED_WORD(seg);
IMMED_WORD(offset);
debugC(3, kDebugScripts, "byteAddress: deref[%s:%d:%d] = %d", seg2str(seg).c_str(), index, offset, *(segmentAddress(seg, index) + offset));
*pcPtr = pc;
// Compute address of object
return segmentAddress(seg, index) + offset;
}
error("byteAddress: Invalid addressing mode: %d.\n", **pcPtr);
}
// Returns the address of an object given an addressing mode
uint8 *objectAddress(
Thread *th,
uint8 **pcPtr,
uint16 &segNum, // segment of start of object
uint16 &offs) { // offset of start of object
uint8 *pc = *pcPtr,
*addr;
uint16 seg,
offset = 0,
index,
*arg;
switch (*pc++) {
case addr_data:
IMMED_WORD(index);
seg = dataSegIndex;
addr = &dataSegment[index];
debugC(3, kDebugScripts, "objectAddress: data[%s:%d] = %d", seg2str(seg).c_str(), index, *addr);
break;
case addr_far:
IMMED_WORD(seg);
IMMED_WORD(index);
addr = segmentAddress(seg, index);
debugC(3, kDebugScripts, "objectAddress: far[%s:%d] = %d", seg2str(seg).c_str(), index, *addr);
break;
case addr_array:
IMMED_WORD(seg);
IMMED_WORD(index);
IMMED_WORD(offset);
addr = segmentArrayAddress(seg, index) + offset;
debugC(3, kDebugScripts, "objectAddress: array[%s:%d:%d] = %d", seg2str(seg).c_str(), index, offset, *addr);
break;
case addr_this:
IMMED_WORD(offset);
arg = (uint16 *)(th->stackBase + th->framePtr + 8);
seg = arg[0];
index = arg[1];
if (seg == dataSegIndex) {
debugC(3, kDebugScripts, "objectAddress: thisD[%d:%d] = %d", index, offset, dataSegment[index + offset]);
return &dataSegment[index + offset];
}
addr = segmentArrayAddress(seg, index) + offset;
debugC(3, kDebugScripts, "objectAddress: thisS[%s:%d:%d] = %d", seg2str(seg).c_str(), index, offset, *addr);
break;
case addr_deref:
// First, get the address of the reference.
*pcPtr = pc;
addr = byteAddress(th, pcPtr);
pc = *pcPtr;
// Get the offset from the reference variable.
index = *(uint16 *)addr;
// Get the segment to dereference from, and the offset
// within the object.
IMMED_WORD(seg);
IMMED_WORD(offset);
// Compute address of object
addr = segmentAddress(seg, index) + offset;
debugC(3, kDebugScripts, "objectAddress: deref[%s:%d:%d] = %d", seg2str(seg).c_str(), index, offset, *addr);
break;
default:
error("objectAddress: Invalid addressing mode: %d.\n", **pcPtr);
}
offs = index;
segNum = seg;
*pcPtr = pc;
return addr;
}
// Returns the address and access mask of a bit, given addressing mode
uint8 *bitAddress(Thread *th, uint8 **pcPtr, int16 *mask) {
uint8 *pc = *pcPtr,
*addr;
uint16 seg,
offset;
switch (*pc++) {
case addr_data:
IMMED_WORD(offset);
*pcPtr = pc;
*mask = (1 << (offset & 7));
debugC(3, kDebugScripts, "bitAddress: data[%d] = %d", offset, (dataSegment[offset >> 3] & *mask) != 0);
return &dataSegment[(offset >> 3)];
case addr_near:
IMMED_WORD(offset);
*pcPtr = pc;
*mask = (1 << (offset & 7));
debugC(3, kDebugScripts, "bitAddress: near[%d] = %d", offset, (*(th->codeSeg + (offset >> 3)) & *mask) != 0);
return th->codeSeg + (offset >> 3);
case addr_far:
IMMED_WORD(seg);
IMMED_WORD(offset);
*pcPtr = pc;
*mask = (1 << (offset & 7));
debugC(3, kDebugScripts, "bitAddress: far[%s:%d] = %d", seg2str(seg).c_str(), offset, (*segmentAddress(seg, offset >> 3) & *mask) != 0);
return segmentAddress(seg, (offset >> 3));
case addr_array:
IMMED_WORD(seg);
IMMED_WORD(offset);
addr = segmentArrayAddress(seg, offset);
IMMED_WORD(offset);
*pcPtr = pc;
*mask = (1 << (offset & 7));
debugC(3, kDebugScripts, "bitAddress: array[%s:%d:%d] = %d", seg2str(seg).c_str(), offset, offset, (addr[offset >> 3] & *mask) != 0);
return addr + (offset >> 3);
case addr_stack:
IMMED_WORD(offset);
*pcPtr = pc;
*mask = (1 << (offset & 7));
debugC(3, kDebugScripts, "bitAddress: stack[%d] = %d", offset, (*(th->stackBase + th->framePtr + (offset >>3)) & *mask) != 0);
return th->stackBase + th->framePtr + (offset >> 3);
case addr_thread:
IMMED_WORD(offset);
*pcPtr = pc;
*mask = (1 << (offset & 7));
debugC(3, kDebugScripts, "bitAddress: thread[%d] = %d", offset, (*((uint8 *)&th->threadArgs + (offset >> 3)) & *mask) != 0);
return (uint8 *)&th->threadArgs + (offset >> 3);
case addr_this:
error("Addressing relative to 'this' not supported just yet.\n");
}
error("bitAddress: Invalid addressing mode: %d.\n", **pcPtr);
}
// Returns the address of a string
uint8 *Thread::strAddress(int strNum) {
uint16 seg = READ_LE_INT16(codeSeg + 2);
uint16 offset = READ_LE_INT16(codeSeg + 4);
uint8 *strSeg = segmentAddress(seg, offset);
assert(strNum >= 0);
assert(codeSeg);
assert(strSeg);
return strSeg + READ_LE_INT16(strSeg + 2 * strNum);
}
//-----------------------------------------------------------------------
// RandomGenerator class - a random number generator class for function
// objects which each maintain a local seed.
class RandomGenerator {
uint32 a; // seed
static const uint32 b; // arbitrary constant
public:
RandomGenerator(void) : a(1) {
}
RandomGenerator(uint16 seed) {
a = (uint32)seed << 16;
}
void seed(uint16 seed) {
a = (uint32)seed << 16;
}
uint16 operator()(void) {
a = (a * b) + 1;
return a >> 16;
}
};
const uint32 RandomGenerator::b = 31415821;
//-----------------------------------------------------------------------
// A restricted random function
int16 RRandom(int16 c, int16 s, int16 id) {
// Create a local random number generator with a seed calculated
// with a non-deterministic portion generated by the standard
// library rand() function and a deterministic potion based upon
// the "id" argument
RandomGenerator rnd(g_vm->_rnd->getRandomNumber(s - 1) + (id * s));
return rnd() % c;
}
/* ============================================================================ *
Main interpreter
* ============================================================================ */
void print_script_name(uint8 *codePtr, const char *descr = NULL) {
char scriptName[32];
uint8 *sym = codePtr - 1;
uint8 length = MIN<uint>(*sym, sizeof scriptName - 1);
memcpy(scriptName, sym - *sym, length);
scriptName[length] = '\0';
if (descr)
debugC(1, kDebugScripts, "Scripts: %d op_enter: [%s].%s ", lastExport, descr, scriptName);
else
debugC(1, kDebugScripts, "Scripts: %d op_enter: ::%s ", lastExport, scriptName);
}
const char *objectName(int16 segNum, uint16 segOff) {
//static nameBuf[64];
if (segNum >= 0)
return "SagaObject";
switch (segNum) {
case builtinTypeObject:
return GameObject::objectAddress(segOff)->objName();
case builtinTypeTAG:
return "Tag";
case builtinAbstract:
return "@";
case builtinTypeMission:
return "Mission";
}
return "???";
}
#define STACK_PRINT_DEPTH 30
static void print_stack(int16 *stackBase, int16 *stack) {
int16 *end = (int16 *)((byte *)stackBase + kStackSize - initialStackFrameSize);
int size = end - stack;
if (size > STACK_PRINT_DEPTH)
end = stack + STACK_PRINT_DEPTH;
debugCN(3, kDebugScripts, "stack size: %d: [", size);
for (int16 *i = stack; i < end; i++)
debugCN(3, kDebugScripts, "%d ", *i);
if (size > STACK_PRINT_DEPTH)
debugCN(3, kDebugScripts, "... ");
debugC(3, kDebugScripts, "]");
}
#define D_OP(x) debugC(1, kDebugScripts, "[%04ld 0x%04lx]: %s", (pc - codeSeg - 1), (pc - codeSeg - 1), #x)
bool Thread::interpret(void) {
uint8 *pc,
*addr;
int16 *stack = (int16 *)stackPtr;
int16 instruction_count;
uint8 op;
int16 w,
n;
C_Call *cfunc;
pc = (codeSeg) + programCounter.offset;
thisThread = this; // set current thread address
for (instruction_count = 0; instruction_count < maxTimeSlice; instruction_count++) {
print_stack((int16 *)stackBase, stack);
switch (op = *pc++) {
case op_dup:
D_OP(op_dup);
--stack;
*stack = stack[1]; // duplicate value on stack
break;
case op_drop: // drop word on stack
D_OP(op_drop);
stack++;
break;
case op_zero: // constant integer of zero
D_OP(op_zero);
*--stack = 0; // push integer on stack
break;
case op_one: // constant integer of one
D_OP(op_one);
*--stack = 1; // push integer on stack
break;
case op_strlit: // string literal (also pushes word)
case op_constint: // constant integer
D_OP(op_strlit);
IMMED_WORD(w); // pick up word after opcode
*--stack = w; // push integer on stack
break;
case op_getflag: // get a flag
D_OP(op_getflag);
addr = bitAddress(this, &pc, &w); // get address of bit
*--stack = ((*addr) & w) ? 1 : 0; // true or false if bit set
break;
case op_getint: // read from integer field (mode)
D_OP(op_getint);
addr = byteAddress(this, &pc); // get address of integer
*--stack = *(uint16 *)addr; // get integer from address
break;
case op_getbyte: // read from integer field (mode)
D_OP(op_getbyte);
addr = byteAddress(this, &pc); // get address of integer
*--stack = *addr; // get byte from address
break;
// Note that in the current implementation, "put" ops leave
// the value that was stored on the stack. We mat also do a
// 'vput' which consumes the variable.
case op_putflag: // put to flag bit (mode)
D_OP(op_putflag);
addr = bitAddress(this, &pc, &w); // get address of bit
if (*stack) *addr |= w; // set bit if stack non-zero
else *addr &= ~w; // else clear it
break;
case op_putflag_v: // put to flag bit (mode)
D_OP(op_putflag_v);
addr = bitAddress(this, &pc, &w); // get address of bit
if (*stack++) *addr |= w; // set bit if stack non-zero
else *addr &= ~w; // else clear it
break;
case op_putint: // put to integer field (mode)
D_OP(op_putint);
addr = byteAddress(this, &pc); // get address of integer
*(uint16 *)addr = *stack; // put integer to address
break;
case op_putint_v: // put to integer field (mode)
D_OP(op_putint_v);
addr = byteAddress(this, &pc); // get address of integer
*(uint16 *)addr = *stack++; // put integer to address
break;
case op_putbyte: // put to byte field (mode)
D_OP(op_putbyte);
addr = byteAddress(this, &pc); // get address of integer
*addr = *stack; // put integer to address
break;
case op_putbyte_v: // put to byte field (mode)
D_OP(op_putbyte_v);
addr = byteAddress(this, &pc); // get address of integer
*addr = *stack++; // put integer to address
break;
case op_enter:
D_OP(op_enter);
print_script_name(pc - 1);
*--stack = framePtr; // save old frame ptr on stack
framePtr = (uint8 *)stack - stackBase; // new frame pointer
IMMED_WORD(w); // pick up word after address
stack -= w / 2; // make room for the locals!
break;
// function calls
case op_return: // return with value
D_OP(op_return);
returnVal = *stack++;
// fall through
case op_return_v: // return with void
D_OP(op_return_v);
stack = (int16 *)(stackBase + framePtr); // pop autos
framePtr = *stack++; // restore frame pointer
if (stack >= (int16 *)(stackBase + stackSize - initialStackFrameSize)) {
// Halt the thread here, wait for death
programCounter.offset = (pc - (codeSeg));
stackPtr = (uint8 *)stack;
flags |= finished;
return true;
} else {
programCounter.segment = *stack++;
programCounter.offset = *stack++;
//RUnlockHandle((RHANDLE)codeSeg);
codeSeg = scriptRes->loadIndexResource(programCounter.segment, "saga code segment");
pc = (codeSeg) + programCounter.offset;
n = *stack++; // get argument count from call
stack += n; // pop that many args
if (op == op_return) // if not void
*--stack = returnVal;// push return value
}
break;
case op_call_near: // call function in same seg
D_OP(op_call_near);
n = *pc++; // get argument count
programCounter.offset = (pc + 2 - codeSeg);
*--stack = n; // push number of args (16 bits)
// push the program counter
*--stack = programCounter.offset;
*--stack = programCounter.segment;
IMMED_WORD(w); // pick up segment offset
programCounter.offset = w; // store into pc
pc = codeSeg + w; // calculate PC address
print_script_name(pc);
break;
case op_call_far: // call function in other seg
D_OP(op_call_far);
n = *pc++; // get argument count
programCounter.offset = (pc + 4 - codeSeg);
*--stack = n; // push number of args (16 bits)
// push the program counter
*--stack = programCounter.offset;
*--stack = programCounter.segment;
IMMED_WORD(w); // pick up segment number
programCounter.segment = w; // set current segment
//RUnlockHandle((RHANDLE)codeSeg);
codeSeg = scriptRes->loadIndexResource(w, "saga code segment");
IMMED_WORD(w); // pick up segment offset
programCounter.offset = w; // store into pc
pc = codeSeg + w; // calculate PC address
print_script_name(pc);
break;
case op_ccall: // call C function
case op_ccall_v: // call C function
if (op == op_ccall)
D_OP(op_ccall);
else
D_OP(op_call_v);
n = *pc++; // get argument count
IMMED_WORD(w); // get function number
if (w < 0 || w >= globalCFuncs.numEntries)
error("Invalid function number");
cfunc = globalCFuncs.table[w];
argCount = n;
returnVal = cfunc(stack); // call the function
stack += n; // pop args of of the stack
if (op == op_ccall) { // push the return value
*--stack = returnVal; // onto the stack
flags |= expectResult; // script expecting result
} else flags &= ~expectResult; // script not expecting result
// if the thread is asleep, then no more instructions
if (flags & asleep)
instruction_count = maxTimeSlice; // break out of loop!
break;
case op_call_member: // call member function
case op_call_member_v: // call member function (void)
if (op == op_call_member)
D_OP(op_call_member);
else
D_OP(op_call_member_v);
n = *pc++; // get argument count
w = *pc++; // index of member function
{
uint16 *vtable,
*vtableEntry,
seg,
offset;
// REM: We need a more deterministic way to
// set up the c function tables.
CallTable *callTab = &globalCFuncs;
// Get the address of the object
addr = objectAddress(this, &pc, seg, offset);
// Handle the case of a builtin object which computes the
// vtable address in a different way.
if ((int16)seg < 0) {
vtable = builtinVTableAddress((int16)seg, addr, &callTab);
} else {
vtable = (uint16 *)segmentAddress(((int16 *)addr)[0],
((int16 *)addr)[1]);
}
vtableEntry = vtable + (w * 2);
if (vtable == NULL) {
// Do nothing...
} else if (vtableEntry[0] != 0xffff) { // It's a SAGA func
programCounter.offset = (pc - codeSeg);
// Push the address of the object
*--stack = offset;
*--stack = seg;
// Push number of args. including 'this'
*--stack = n + 2;
// push the program counter
*--stack = programCounter.offset;
*--stack = programCounter.segment;
// Get the segment of the member function, and
// determine it's real address (save segment number
// into thread).
w = vtableEntry[0];
programCounter.segment = w;
//RUnlockHandle((RHANDLE)codeSeg);
codeSeg = scriptRes->loadIndexResource(w, "saga code segment");
// store pc-offset into pc
programCounter.offset = vtableEntry[1];
// calculate PC address
pc = (codeSeg) + programCounter.offset;
print_script_name(pc, objectName(seg, offset));
break;
} else if (vtableEntry[1] != 0xffff) { // It's a C func
// Save the ID of the invoked object
ObjectID saveID = threadArgs.invokedObject;
// Get the function number
w = vtableEntry[1];
if (w < 0 || w >= callTab->numEntries)
error("Invalid member function number");
// Set up thread-specific vars
thisObject = ((ObjectData *)addr)->obj;
argCount = n;
threadArgs.invokedObject = offset;
// Get address of function and call it.
cfunc = callTab->table[w];
returnVal = cfunc(stack); // call the function
// Restore object ID from thread args
threadArgs.invokedObject = saveID;
// Pop args off of the stack
stack += n;
// Push the return value onto the stack if it's
// not a 'void' call.
if (op == op_call_member) {
*--stack = returnVal; // onto the stack
flags |= expectResult; // script expecting result
} else flags &= ~expectResult; // script not expecting result
// if the thread is asleep, then break interpret loop
if (flags & asleep) instruction_count = maxTimeSlice;
break;
}
// else it's a NULL function (i.e. pure virtual)
}
// REM: Call the member function
if (op == op_call_member) // push the return value
*--stack = 0; // onto the stack
break;
case op_jmp_true_v:
D_OP(op_jmp_true_v);
IMMED_WORD(w); // pick up word after address
if (*stack++ != 0) BRANCH(w); // if stack is non-zero, jump
break;
case op_jmp_false_v:
D_OP(op_jmp_false_v);
IMMED_WORD(w); // pick up word after address
if (*stack++ == 0) BRANCH(w); // if stack is zero, jump
break;
case op_jmp_true:
D_OP(op_true);
IMMED_WORD(w); // pick up word after address
if (*stack != 0) BRANCH(w); // if stack is non-zero. jump
break;
case op_jmp_false:
D_OP(op_false);
IMMED_WORD(w); // pick up word after address
if (*stack == 0) BRANCH(w); // if stack is zero, jump
break;
case op_jmp:
D_OP(op_jmp);
IMMED_WORD(w); // pick up word after address
BRANCH(w); // jump relative to module
break;
case op_jmp_switch:
D_OP(op_jmp_switch);
IMMED_WORD(n); // n = number of cases
w = *stack++; // w = value on stack
{
uint16 val,
jmp;
while (n--) {
IMMED_WORD(val); // val = case value
IMMED_WORD(jmp); // jmp = address to jump to
if (w == val) { // if case values match
BRANCH(jmp); // jump to case
break;
}
}
if (n < 0) {
IMMED_WORD(jmp); // def = jump offset for default
BRANCH(jmp); // take default jump
}
}
break;
case op_jmp_seedrandom: // seeded random jump
case op_jmp_random: // random jump
if (op == op_jmp_seedrandom)
D_OP(op_jmp_seedrandom);
else
D_OP(op_random);
if (op == op_jmp_random) {
IMMED_WORD(n); // n = number of cases
IMMED_WORD(n); // total probability
n = (uint16)(g_vm->_rnd->getRandomNumber(n - 1)); // random number between 0 and n-1
} else {
int16 seed,
r;
seed = *stack++; // the seed value
IMMED_WORD(r); // n = restriction
IMMED_WORD(n); // n = number of cases
IMMED_WORD(n); // total probability
n = RRandom(n, r, seed);
}
for (;;) {
uint16 val,
jmp;
IMMED_WORD(val); // val = probability of this case
IMMED_WORD(jmp); // jmp = address to jump to
n -= val; // subtract prob from overall prob
if (n < 0) { // if number within range
BRANCH(jmp); // jump to prob
break;
}
}
break;
case op_negate:
D_OP(op_negate);
*stack = - *stack;
break; // negate TOS
case op_not:
D_OP(op_not);
*stack = ! *stack;
break; // not TOS
case op_compl:
D_OP(op_compl);
*stack = ~ *stack;
break; // complement TOS
case op_inc_v:
D_OP(op_inc_v);
addr = byteAddress(this, &pc); // get address of integer
*(uint16 *)addr += 1; // bump value by one
break;
case op_dec_v:
D_OP(op_dec_v);
addr = byteAddress(this, &pc); // get address of integer
*(uint16 *)addr -= 1; // bump value by one
break;
case op_postinc:
D_OP(op_postinc);
addr = byteAddress(this, &pc); // get address of integer
*--stack = *(uint16 *)addr; // get integer from address
*(uint16 *)addr += 1; // bump value by one
break;
case op_postdec:
D_OP(op_postdec);
addr = byteAddress(this, &pc); // get address of integer
*--stack = *(uint16 *)addr; // get integer from address
*(uint16 *)addr -= 1; // bump value by one
break;
// Binary ops. Since I don't know the order of evaluation of
// These C operations, I use a temp variable. Note that
// stack is incremented before storing to skip over the
// dropped variable.
case op_add:
D_OP(op_add);
w = (stack[1] + stack[0]);
*++stack = w;
break;
case op_sub:
D_OP(op_sub);
w = (stack[1] - stack[0]);
*++stack = w;
break;
case op_mul:
D_OP(op_mul);
w = (stack[1] * stack[0]);
*++stack = w;
break;
case op_div:
D_OP(op_div);
w = (stack[1] / stack[0]);
*++stack = w;
break;
case op_mod:
D_OP(op_mod);
w = (stack[1] % stack[0]);
*++stack = w;
break;
case op_eq:
D_OP(op_eq);
w = (stack[1] == stack[0]);
*++stack = w;
break;
case op_ne:
D_OP(op_ne);
w = (stack[1] != stack[0]);
*++stack = w;
break;
case op_gt:
D_OP(op_gt);
w = (stack[1] > stack[0]);
*++stack = w;
break;
case op_lt:
D_OP(op_lt);
w = (stack[1] < stack[0]);
*++stack = w;
break;
case op_ge:
D_OP(op_ge);
w = (stack[1] >= stack[0]);
*++stack = w;
break;
case op_le:
D_OP(op_le);
w = (stack[1] <= stack[0]);
*++stack = w;
break;
case op_rsh:
D_OP(op_rsh);
w = (stack[1] >> stack[0]);
*++stack = w;
break;
case op_lsh:
D_OP(op_lsh);
w = (stack[1] << stack[0]);
*++stack = w;
break;
case op_and:
D_OP(op_and);
w = (stack[1] & stack[0]);
*++stack = w;
break;
case op_or:
D_OP(op_or);
w = (stack[1] | stack[0]);
*++stack = w;
break;
case op_xor:
D_OP(op_xor);
w = (stack[1] ^ stack[0]);
*++stack = w;
break;
case op_land:
D_OP(op_land);
w = (stack[1] && stack[0]);
*++stack = w;
break;
case op_lor:
D_OP(op_lor);
w = (stack[1] || stack[0]);
*++stack = w;
break;
case op_lxor:
D_OP(op_lxor);
w = (stack[1] && !stack[0]) || (!stack[1] && stack[0]);
*++stack = w;
break;
case op_speak:
case op_dialog_begin:
case op_dialog_end:
case op_reply:
case op_animate:
script_error("Feature not implemented.\n");
break;
default:
script_error("fatal error: undefined opcode");
break;
}
}
programCounter.offset = (pc - (codeSeg));
stackPtr = (uint8 *)stack;
return false;
}
/* ============================================================================ *
ThreadList class
* ============================================================================ */
class ThreadList {
enum {
kNumThreads = 25
};
Thread *_list[kNumThreads];
public:
// Constructor
ThreadList(void) {
for (uint i = 0; i < kNumThreads; i++)
_list[i] = nullptr;
}
void read(Common::InSaveFile *in);
// Return the number of bytes needed to archive this thread list
// in an archive buffer
int32 archiveSize(void);
void write(Common::MemoryWriteStreamDynamic *out);
// Cleanup the active threads
void cleanup(void);
// Place a thread back into the inactive list
void deleteThread(Thread *p);
void newThread(Thread *p);
// Return the specified thread's ID
ThreadID getThreadID(Thread *thread) {
for (uint i = 0; i < kNumThreads; i++) {
if (_list[i] == thread)
return i;
}
error("Unknown thread address: %p", (void *)thread);
}
// Return a pointer to a thread, given an ID
Thread *getThreadAddress(ThreadID id) {
return _list[id];
}
// Return a pointer to the first active thread
Thread *first(void);
Thread *next(Thread *thread);
};
void ThreadList::read(Common::InSaveFile *in) {
int16 threadCount;
// Get the count of threads and increment the buffer pointer
threadCount = in->readSint16LE();
debugC(3, kDebugSaveload, "... threadCount = %d", threadCount);
// Iterate through the archive data, reconstructing the Threads
for (int i = 0; i < threadCount; i++) {
debugC(3, kDebugSaveload, "Saving Thread %d", i);
ThreadID id;
// Retreive the Thread's id number
id = in->readSint16LE();
debugC(4, kDebugSaveload, "...... id = %d", id);
new Thread(in);
}
}
int32 ThreadList::archiveSize(void) {
int32 size = sizeof(int16);
for (uint i = 0; i < kNumThreads; i++) {
if (_list[i])
size += sizeof(ThreadID) + _list[i]->archiveSize();
}
return size;
}
void ThreadList::write(Common::MemoryWriteStreamDynamic *out) {
int16 threadCount = 0;
Thread *th;
// Count the active threads
for (th = first(); th; th = next(th))
threadCount++;
// Store the thread count in the archive buffer
out->writeSint16LE(threadCount);
debugC(3, kDebugSaveload, "... threadCount = %d", threadCount);
// Iterate through the threads, archiving each
for (th = first(); th; th = next(th)) {
debugC(3, kDebugSaveload, "Loading ThreadID %d", getThreadID(th));
// Store the Thread's id number
out->writeSint16LE(getThreadID(th));
th->write(out);
}
}
//-------------------------------------------------------------------
// Cleanup the active threads
void ThreadList::cleanup(void) {
for (uint i = 0; i < kNumThreads; i++) {
delete _list[i];
_list[i] = nullptr;
}
}
//-------------------------------------------------------------------
// Place a thread back into the inactive list
void ThreadList::deleteThread(Thread *p) {
for (uint i = 0; i < kNumThreads; i++) {
if (_list[i] == p) {
_list[i] = nullptr;
}
}
}
void ThreadList::newThread(Thread *p) {
for (uint i = 0; i < kNumThreads; i++) {
if (!_list[i]) {
_list[i] = p;
return;
}
}
error("ThreadList::newThread(): Too many threads");
}
//-------------------------------------------------------------------
// Return a pointer to the first active thread
Thread *ThreadList::first(void) {
for (uint i = 0; i < kNumThreads; i++)
if (_list[i])
return _list[i];
return nullptr;
}
Thread *ThreadList::next(Thread *thread) {
uint i;
for (i = 0; i < kNumThreads; i++)
if (_list[i] == thread)
break;
i++;
if (i >= kNumThreads)
return nullptr;
for (; i < kNumThreads; i++)
if (_list[i])
return _list[i];
return nullptr;
}
/* ===================================================================== *
Global thread list instantiation
* ===================================================================== */
// The thread list is instantiated like this in order to keep the
// constructor from being called until it is explicitly called with
// the overloaded new operator.
static uint8 threadListBuffer[sizeof(ThreadList)];
static ThreadList &threadList = *((ThreadList *)threadListBuffer);
/* ============================================================================ *
ThreadList management functions
* ============================================================================ */
//-------------------------------------------------------------------
// Initialize the SAGA thread list
void initSAGAThreads(void) {
// Simply call the Thread List default constructor
}
void saveSAGAThreads(Common::OutSaveFile *outS) {
debugC(2, kDebugSaveload, "Saving SAGA Threads");
outS->write("SAGA", 4);
CHUNK_BEGIN;
threadList.write(out);
CHUNK_END;
}
void loadSAGAThreads(Common::InSaveFile *in, int32 chunkSize) {
debugC(2, kDebugSaveload, "Loading SAGA Threads");
if (chunkSize == 0) {
return;
}
// Reconstruct stackList from archived data
threadList.read(in);
}
//-------------------------------------------------------------------
// Dispose of the active SAGA threads
void cleanupSAGAThreads(void) {
// Simply call the ThreadList cleanup() function
threadList.cleanup();
}
//-------------------------------------------------------------------
// Dispose of an active SAGA thread
void deleteThread(Thread *thread) {
threadList.deleteThread(thread);
}
void newThread(Thread *thread) {
threadList.newThread(thread);
}
//-------------------------------------------------------------------
// Return the ID of the specified SAGA thread
ThreadID getThreadID(Thread *thread) {
return threadList.getThreadID(thread);
}
//-------------------------------------------------------------------
// Return a pointer to a SAGA thread, given a thread ID
Thread *getThreadAddress(ThreadID id) {
return threadList.getThreadAddress(id);
}
/* ============================================================================ *
Thread member functions
* ============================================================================ */
//-----------------------------------------------------------------------
// Thread constructor
Thread::Thread(uint16 segNum, uint16 segOff, scriptCallFrame &args) {
codeSeg = scriptRes->loadIndexResource(segNum, "saga code segment");
// initialize the thread
stackSize = kStackSize;
flags = 0;
returnVal = 0;
programCounter.segment = segNum;
programCounter.offset = segOff;
threadArgs = args;
stackBase = (byte *)malloc(stackSize);
stackPtr = stackBase + stackSize - initialStackFrameSize;
((uint16 *)stackPtr)[0] = 0; // 0 args
((uint16 *)stackPtr)[1] = 0; // dummy return address
((uint16 *)stackPtr)[2] = 0; // dummy return address
framePtr = stackSize;
_valid = true;
if ((codeSeg)[programCounter.offset] != op_enter) {
//warning("SAGA failure: Invalid script entry point (export=%d) [segment=%d:%d]\n", lastExport, segNum, segOff);
_valid = false;
}
newThread(this);
}
Thread::Thread(Common::SeekableReadStream *stream) {
int16 stackOffset;
programCounter.segment = stream->readUint16LE();
programCounter.offset = stream->readUint16LE();
stackSize = stream->readSint16LE();
flags = stream->readSint16LE();
framePtr = stream->readSint16LE();
returnVal = stream->readSint16LE();
waitAlarm.read(stream);
stackOffset = stream->readSint16LE();
debugC(4, kDebugSaveload, "...... stackSize = %d", stackSize);
debugC(4, kDebugSaveload, "...... flags = %d", flags);
debugC(4, kDebugSaveload, "...... framePtr = %d", framePtr);
debugC(4, kDebugSaveload, "...... returnVal = %d", returnVal);
debugC(4, kDebugSaveload, "...... stackOffset = %d", stackOffset);
codeSeg = scriptRes->loadIndexResource(programCounter.segment, "saga code segment");
stackBase = (byte *)malloc(stackSize);
stackPtr = stackBase + stackSize - stackOffset;
stream->read(stackPtr, stackOffset);
newThread(this);
}
//-----------------------------------------------------------------------
// Thread destructor
Thread::~Thread() {
// Clear extended bit if it was set
clearExtended();
// Free the thread's code segment
//RUnlockHandle((RHANDLE)codeSeg);
// Deallocate the thread stack
free(stackBase);
deleteThread(this);
}
//-----------------------------------------------------------------------
// Return the number of bytes need to archive this thread in an arhive
// buffer
int32 Thread::archiveSize(void) {
return sizeof(programCounter)
+ sizeof(stackSize)
+ sizeof(flags)
+ sizeof(framePtr)
+ sizeof(returnVal)
+ sizeof(waitAlarm)
+ sizeof(int16) // stack offset
+ (stackBase + stackSize) - stackPtr;
}
void Thread::write(Common::MemoryWriteStreamDynamic *out) {
int16 stackOffset;
out->writeUint16LE(programCounter.segment);
out->writeUint16LE(programCounter.offset);
out->writeSint16LE(stackSize);
out->writeSint16LE(flags);
out->writeSint16LE(framePtr);
out->writeSint16LE(returnVal);
waitAlarm.write(out);
warning("STUB: Thread::write: Pointer arithmetic");
stackOffset = (stackBase + stackSize) - stackPtr;
out->writeSint16LE(stackOffset);
out->write(stackPtr, stackOffset);
debugC(4, kDebugSaveload, "...... stackSize = %d", stackSize);
debugC(4, kDebugSaveload, "...... flags = %d", flags);
debugC(4, kDebugSaveload, "...... framePtr = %d", framePtr);
debugC(4, kDebugSaveload, "...... returnVal = %d", returnVal);
debugC(4, kDebugSaveload, "...... stackOffset = %d", stackOffset);
}
//-----------------------------------------------------------------------
// Thread dispatcher
void Thread::dispatch(void) {
Thread *th,
*nextThread;
int numThreads = 0,
numExecute = 0,
numWaitDelay = 0,
numWaitFrames = 0,
numWaitSemi = 0,
numWaitOther = 0;
for (th = threadList.first(); th; th = threadList.next(th)) {
if (th->flags & waiting) {
switch (th->waitType) {
case waitDelay:
numWaitDelay++;
break;
case waitFrameDelay:
numWaitFrames++;
break;
case waitTagSemaphore:
numWaitSemi++;
break;
default:
numWaitOther++;
break;
}
} else numExecute++;
numThreads++;
}
debugC(9, kDebugScripts, "Threads:%d X:%d D:%d F:%d T:%d O:%d", numThreads, numExecute, numWaitDelay, numWaitFrames, numWaitSemi, numWaitOther);
for (th = threadList.first(); th; th = nextThread) {
nextThread = threadList.next(th);
if (th->flags & (finished | aborted)) {
delete th;
continue;
}
if (th->flags & waiting) {
switch (th->waitType) {
case waitDelay:
// Wake up the thread!
if (th->waitAlarm.check())
th->flags &= ~waiting;
break;
case waitFrameDelay:
if (th->waitFrameAlarm.check())
th->flags &= ~waiting;
break;
case waitTagSemaphore:
if (th->waitParam->isExclusive() == false) {
th->flags &= ~waiting;
th->waitParam->setExclusive(true);
}
break;
default:
break;
}
}
do {
if (th->flags & (waiting | finished | aborted))
break;
if (th->interpret())
goto break_thread_loop;
} while (th->flags & synchronous);
}
break_thread_loop:
;
}
//-----------------------------------------------------------------------
// Run scripts which are on the queue
void dispatchScripts(void) {
Thread::dispatch();
}
//-----------------------------------------------------------------------
// Run a script until finished
scriptResult Thread::run(void) {
int i = 4000;
while (i--) {
// If script stopped, then return
if (flags & (waiting | finished | aborted)) {
if (flags & finished) return scriptResultFinished;
if (flags & waiting) return scriptResultAsync;
return scriptResultAborted;
// can't ever fall thru here...
}
// run the script some more...
interpret();
}
error("Thread timed out!\n");
}
//-----------------------------------------------------------------------
// Convert to extended thread
void Thread::setExtended(void) {
if (!(flags & extended)) {
flags |= extended;
extendedThreadLevel++;
}
}
//-----------------------------------------------------------------------
// Convert back to regular thread
void Thread::clearExtended(void) {
if (flags & extended) {
flags &= ~extended;
extendedThreadLevel--;
}
}
/* ============================================================================ *
Script Management functions
* ============================================================================ */
void initScripts(void) {
// Open the script resource group
scriptRes = scriptResFile->newContext(sagaID, "script resources");
if (scriptRes == NULL)
error("Unable to open script resource file!\n");
// Load the data segment
dataSegment = scriptRes->loadResource(dataSegID, "saga data segment");
if (dataSegment == NULL)
error("Unable to load the SAGA data segment");
dataSegSize = scriptRes->getSize(dataSegID, "saga data segment");
debugC(2, kDebugScripts, "dataSegment loaded at %p: size: %d", (void*)dataSegment, dataSegSize);
// Common::hexdump(dataSegment, dataSegSize);
exportSegment = scriptRes->loadResource(exportSegID, "saga export segment");
assert(exportSegment != NULL);
// Common::hexdump(exportSegment, scriptRes->getSize(exportSegID, "saga export segment"));
exportCount = (scriptRes->getSize(exportSegID, "saga export segment") / sizeof(uint32)) + 1;
debugC(2, kDebugScripts, "exportSegment loaded at %p: size: %d, exportCount: %ld",
(void*)exportSegment, scriptRes->getSize(exportSegID, "saga export segment"), exportCount);
}
void cleanupScripts(void) {
if (exportSegment)
free(exportSegment);
if (dataSegment)
free(dataSegment);
if (scriptRes)
scriptResFile->disposeContext(scriptRes);
scriptRes = NULL;
}
//-----------------------------------------------------------------------
// Load the SAGA data segment from the resource file
void initSAGADataSeg(void) {
// Load the data segment
scriptRes->seek(dataSegID);
scriptRes->read(dataSegment, dataSegSize);
}
void saveSAGADataSeg(Common::OutSaveFile *outS) {
debugC(2, kDebugSaveload, "Saving Data Segment");
outS->write("SDTA", 4);
CHUNK_BEGIN;
out->write(dataSegment, dataSegSize);
CHUNK_END;
}
void loadSAGADataSeg(Common::InSaveFile *in) {
in->read(dataSegment, dataSegSize);
}
//-----------------------------------------------------------------------
// Look up an entry in the SAGA export table
static bool lookupExport(
uint16 entry,
uint16 &segNum,
uint16 &segOff) {
uint32 segRef;
assert(entry > 0);
assert(entry <= exportCount);
segRef = READ_LE_INT32(exportSegment + 4 * entry - 2);
segOff = segRef >> 16,
segNum = segRef & 0x0000ffff;
lastExport = entry;
if (segNum > 1000)
error("SAGA failure: Bad data in export table entry #%d (see scripts.r)", entry);
return true;
}
//-----------------------------------------------------------------------
// Run a script to completion (or until it forks)
scriptResult runScript(uint16 exportEntryNum, scriptCallFrame &args) {
uint16 segNum,
segOff;
Thread *th;
scriptResult result;
Thread *saveThread = thisThread;
assert(exportEntryNum > 0);
lookupExport(exportEntryNum, segNum, segOff);
// Create a new thread
th = new Thread(segNum, segOff, args);
thisThread = th;
// FIXME: We should probably just use an error(), but this will work for mass debugging
if (th == nullptr) {
debugC(4, kDebugScripts, "Couldn't allocate memory for Thread(%d, %d)", segNum, segOff);
return scriptResultNoScript;
} else if (!th->_valid) {
debugC(4, kDebugScripts, "Scripts: %d is not valid", lastExport);
return scriptResultNoScript;
}
print_script_name((th->codeSeg) + th->programCounter.offset, objectName(segNum, segOff));
// Run the thread to completion
result = th->run();
args.returnVal = th->returnVal;
// If the thread is not still running, then delete it
if (result != scriptResultAsync) delete th;
// restore "thisThread" ptr.
thisThread = saveThread;
return result;
}
//-----------------------------------------------------------------------
// Run a class member function to completion (or until it forks)
scriptResult runMethod(
uint16 scriptClassID, // which script class
int16 bType, // builtin type
uint16 index, // object index
uint16 methodNum,
scriptCallFrame &args) {
uint16 segNum,
segOff;
uint16 *vTable;
Thread *th;
scriptResult result = scriptResultNoScript;
Thread *saveThread = thisThread;
// For abstract classes, the object index is also the class
// index.
if (bType == builtinAbstract)
index = scriptClassID;
lookupExport(scriptClassID, segNum, segOff);
// Get address of class function table
vTable = (uint16 *)
segmentAddress(segNum, segOff + methodNum * sizeof(uint32));
segNum = vTable[0];
segOff = vTable[1];
if (segNum == 0xffff) { // it's a CFUNC or NULL func
if (segOff == 0xffff) { // it's a NULL function
return scriptResultNoScript;
} else { // It's a C function
int16 funcNum = segOff; // function number
int16 stack[1]; // dummy stack argument
C_Call *cfunc;
// Make sure the C function number is OK
assert(funcNum >= 0);
assert(funcNum < globalCFuncs.numEntries);
cfunc = globalCFuncs.table[funcNum];
// Build a temporary dummy thread
th = new Thread(0, 0, args);
thisThread = th;
if (th == nullptr)
return scriptResultNoScript;
else if (!th->_valid)
return scriptResultNoScript;
result = (scriptResult)cfunc(stack); // call the function
delete th;
}
} else {
// Create a new thread
th = new Thread(segNum, segOff, args);
thisThread = th;
if (th == nullptr) {
debugC(4, kDebugScripts, "Couldn't allocate memory for Thread(%d, %d)", segNum, segOff);
return scriptResultNoScript;
} else if (!th->_valid) {
debugC(4, kDebugScripts, "Scripts: %d is not valid", lastExport);
return scriptResultNoScript;
}
print_script_name((th->codeSeg) + th->programCounter.offset, objectName(bType, index));
// Put the object segment and ID onto the dummy stack frame
((uint16 *)th->stackPtr)[3] = bType;
((uint16 *)th->stackPtr)[4] = index;
// Run the thread to completion
result = th->run();
args.returnVal = th->returnVal;
if (result != scriptResultAsync) delete th;
}
thisThread = saveThread; // restore "thisThread" ptr.
return result;
}
//-----------------------------------------------------------------------
// Run a class member function to completion (or until it forks)
scriptResult runObjectMethod(
ObjectID id,
uint16 methodNum,
scriptCallFrame &args) {
GameObject *obj;
obj = GameObject::objectAddress(id);
return runMethod(obj->scriptClass(),
builtinTypeObject,
id,
methodNum,
args);
}
//-----------------------------------------------------------------------
// Run a class member function to completion (or until it forks)
scriptResult runTagMethod(
uint16 index, // tag number
uint16 methodNum,
scriptCallFrame &args) {
ActiveItemPtr aItem;
aItem = ActiveItem::activeItemAddress(index);
if (!aItem->_data.scriptClassID)
return scriptResultNoScript;
return runMethod(aItem->_data.scriptClassID,
builtinTypeTAG,
index,
methodNum,
args);
}
//-----------------------------------------------------------------------
// Wake up a thread unconditionally
void wakeUpThread(ThreadID id) {
if (id != NoThread) {
Thread *thread = getThreadAddress(id);
thread->flags &= ~Thread::waiting;
}
}
void wakeUpThread(ThreadID id, int16 returnVal) {
if (id != NoThread) {
Thread *thread = getThreadAddress(id);
if (thread->flags & Thread::expectResult) {
WriteStatusF(8, "Result %d", returnVal);
thread->returnVal = returnVal;
*(int16 *)thread->stackPtr = returnVal;
} else WriteStatusF(8, "Thread not expecting result!");
thread->flags &= ~(Thread::waiting | Thread::expectResult);
}
}
} // end of namespace Saga2