scummvm/graphics/VectorRendererSpec.cpp
Le Philousophe f06f470685 GRAPHICS: Properly take stroke width into account when drawing lines
Old code:
- didn't handle well strokes with an odd width
- didn't handle strokes widths above 1 in generic lines handler
2023-06-03 18:27:17 +02:00

4478 lines
135 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "common/util.h"
#include "common/system.h"
#include "common/frac.h"
#include "graphics/managed_surface.h"
#include "graphics/nine_patch.h"
#include "gui/ThemeEngine.h"
#include "graphics/VectorRenderer.h"
#include "graphics/VectorRendererSpec.h"
#define VECTOR_RENDERER_FAST_TRIANGLES
/** Fixed point SQUARE ROOT **/
inline frac_t fp_sqroot(uint32 x) {
#if 0
// Use the FPU to compute the square root and then convert it to fixed
// point data. On systems with a fast FPU, this can be a lot faster than
// the integer based code below - on my system roughly 50x! However, on
// systems without an FPU, the converse might be true.
// For now, we only use the integer based code.
return doubleToFrac(sqrt((double)x));
#else
// The code below wants to use a lot of registers, which is not good on
// x86 processors. By taking advantage of the fact the input value is
// an integer, it might be possible to improve this. Furthermore, we could
// take advantage of the fact that we call this function several times on
// decreasing values. By feeding it the sqrt of the previous old x, as well
// as the old x, it should be possible to compute the correct sqrt with far
// fewer than 23 iterations.
uint32 root, remHI, remLO, testDIV, count;
root = 0;
remHI = 0;
remLO = x << 16;
count = 23;
do {
remHI = (remHI << 2) | (remLO >> 30);
remLO <<= 2;
root <<= 1;
testDIV = (root << 1) + 1;
if (remHI >= testDIV) {
remHI -= testDIV;
root++;
}
} while (count--);
return root;
#endif
}
/*
HELPER MACROS for Bresenham's circle drawing algorithm
Note the proper spelling on this header.
*/
#define BE_ALGORITHM() do { \
if (f >= 0) { \
y--; \
ddF_y += 2; \
f += ddF_y; \
py -= pitch; \
} \
px += pitch; \
ddF_x += 2; \
f += ddF_x + 1; \
} while(0)
#define BE_DRAWCIRCLE_TOP(ptr1,ptr2,x,y,px,py) do { \
*(ptr1 + (y) - (px)) = color; \
*(ptr1 + (x) - (py)) = color; \
*(ptr2 - (x) - (py)) = color; \
*(ptr2 - (y) - (px)) = color; \
} while (0)
#define BE_DRAWCIRCLE_BOTTOM(ptr3,ptr4,x,y,px,py) do { \
*(ptr3 - (y) + (px)) = color; \
*(ptr3 - (x) + (py)) = color; \
*(ptr4 + (x) + (py)) = color; \
*(ptr4 + (y) + (px)) = color; \
} while (0)
#define BE_DRAWCIRCLE(ptr1,ptr2,ptr3,ptr4,x,y,px,py) do { \
BE_DRAWCIRCLE_TOP(ptr1,ptr2,x,y,px,py); \
BE_DRAWCIRCLE_BOTTOM(ptr3,ptr4,x,y,px,py); \
} while (0)
#define BE_DRAWCIRCLE_TOP_CLIP(ptr1,ptr2,x,y,px,py,realX1,realY1,realX2,realY2) do { \
if (IS_IN_CLIP((realX1) + (y), (realY1) - (x))) \
*(ptr1 + (y) - (px)) = color; \
if (IS_IN_CLIP((realX1) + (x), (realY1) - (y))) \
*(ptr1 + (x) - (py)) = color; \
if (IS_IN_CLIP((realX2) - (x), (realY2) - (y))) \
*(ptr2 - (x) - (py)) = color; \
if (IS_IN_CLIP((realX2) - (y), (realY2) - (x))) \
*(ptr2 - (y) - (px)) = color; \
} while (0)
#define BE_DRAWCIRCLE_BOTTOM_CLIP(ptr3,ptr4,x,y,px,py,realX3,realY3,realX4,realY4) do { \
if (IS_IN_CLIP((realX3) - (y), (realY3) + (x))) \
*(ptr3 - (y) + (px)) = color; \
if (IS_IN_CLIP((realX3) - (x), (realY3) + (y))) \
*(ptr3 - (x) + (py)) = color; \
if (IS_IN_CLIP((realX4) + (x), (realY4) + (y))) \
*(ptr4 + (x) + (py)) = color; \
if (IS_IN_CLIP((realX4) + (y), (realY4) + (x))) \
*(ptr4 + (y) + (px)) = color; \
} while (0)
#define BE_DRAWCIRCLE_CLIP(ptr1,ptr2,ptr3,ptr4,x,y,px,py,realX1,realY1,realX2,realY2,realX3,realY3,realX4,realY4) do { \
BE_DRAWCIRCLE_TOP_CLIP(ptr1,ptr2,x,y,px,py,realX1,realY1,realX2,realY2); \
BE_DRAWCIRCLE_BOTTOM_CLIP(ptr3,ptr4,x,y,px,py,realX3,realY3,realX4,realY4); \
} while (0)
#define BE_DRAWCIRCLE_BCOLOR(ptr1,ptr2,ptr3,ptr4,x,y,px,py) do { \
*(ptr1 + (y) - (px)) = color1; \
*(ptr1 + (x) - (py)) = color1; \
*(ptr2 - (x) - (py)) = color1; \
*(ptr2 - (y) - (px)) = color1; \
*(ptr3 - (y) + (px)) = color1; \
*(ptr3 - (x) + (py)) = color1; \
*(ptr4 + (x) + (py)) = color2; \
*(ptr4 + (y) + (px)) = color2; \
} while (0)
#define BE_DRAWCIRCLE_BCOLOR_CLIP(ptr1,ptr2,ptr3,ptr4,x,y,px,py,realX1,realY1,realX2,realY2,realX3,realY3,realX4,realY4) do { \
if (IS_IN_CLIP((realX1) + (y), (realY1) - (x))) \
*(ptr1 + (y) - (px)) = color1; \
if (IS_IN_CLIP((realX1) + (x), (realY1) - (y))) \
*(ptr1 + (x) - (py)) = color1; \
if (IS_IN_CLIP((realX2) - (x), (realY2) - (y))) \
*(ptr2 - (x) - (py)) = color1; \
if (IS_IN_CLIP((realX2) - (y), (realY2) - (x))) \
*(ptr2 - (y) - (px)) = color1; \
if (IS_IN_CLIP((realX3) - (y), (realY3) + (x))) \
*(ptr3 - (y) + (px)) = color1; \
if (IS_IN_CLIP((realX3) - (x), (realY3) + (y))) \
*(ptr3 - (x) + (py)) = color1; \
if (IS_IN_CLIP((realX4) + (x), (realY4) + (y))) \
*(ptr4 + (x) + (py)) = color2; \
if (IS_IN_CLIP((realX4) + (y), (realY4) + (x))) \
*(ptr4 + (y) + (px)) = color2; \
} while (0)
#define BE_DRAWCIRCLE_BCOLOR_TR_CW(ptr,x,y,px,py,a) do { \
this->blendPixelPtr(ptr + (y) - (px), color, a); \
} while (0)
#define BE_DRAWCIRCLE_BCOLOR_TR_CCW(ptr,x,y,px,py,a) do { \
this->blendPixelPtr(ptr + (x) - (py), color, a); \
} while (0)
#define BE_DRAWCIRCLE_BCOLOR_TR_CW_CLIP(ptr,x,y,px,py,a,realX,realY) do { \
if (IS_IN_CLIP((realX) + (y), (realY) - (x))) \
this->blendPixelPtr(ptr + (y) - (px), color, a); \
} while (0)
#define BE_DRAWCIRCLE_BCOLOR_TR_CCW_CLIP(ptr,x,y,px,py,a,realX,realY) do { \
if (IS_IN_CLIP((realX) + (x), (realY) - (y))) \
this->blendPixelPtr(ptr + (x) - (py), color, a); \
} while (0)
#define BE_DRAWCIRCLE_BCOLOR_TL_CW(ptr,x,y,px,py,a) do { \
this->blendPixelPtr(ptr - (x) - (py), color, a); \
} while (0)
#define BE_DRAWCIRCLE_BCOLOR_TL_CCW(ptr,x,y,px,py,a) do { \
this->blendPixelPtr(ptr - (y) - (px), color, a); \
} while (0)
#define BE_DRAWCIRCLE_BCOLOR_TL_CW_CLIP(ptr,x,y,px,py,a,realX,realY) do { \
if (IS_IN_CLIP((realX) - (x), (realY) - (y))) \
this->blendPixelPtr(ptr - (x) - (py), color, a); \
} while (0)
#define BE_DRAWCIRCLE_BCOLOR_TL_CCW_CLIP(ptr,x,y,px,py,a,realX,realY) do { \
if (IS_IN_CLIP((realX) - (y), (realY) - (x))) \
this->blendPixelPtr(ptr - (y) - (px), color, a); \
} while (0)
#define BE_DRAWCIRCLE_BCOLOR_BL_CW(ptr,x,y,px,py,a) do { \
this->blendPixelPtr(ptr - (y) + (px), color, a); \
} while (0)
#define BE_DRAWCIRCLE_BCOLOR_BL_CCW(ptr,x,y,px,py,a) do { \
this->blendPixelPtr(ptr - (x) + (py), color, a); \
} while (0)
#define BE_DRAWCIRCLE_BCOLOR_BL_CW_CLIP(ptr,x,y,px,py,a,realX,realY) do { \
if (IS_IN_CLIP((realX) - (y), (realY) + (x))) \
this->blendPixelPtr(ptr - (y) + (px), color, a); \
} while (0)
#define BE_DRAWCIRCLE_BCOLOR_BL_CCW_CLIP(ptr,x,y,px,py,a,realX,realY) do { \
if (IS_IN_CLIP((realX) - (x), (realY) + (y))) \
this->blendPixelPtr(ptr - (x) + (py), color, a); \
} while (0)
#define BE_DRAWCIRCLE_BCOLOR_BR_CW(ptr,x,y,px,py,a) do { \
this->blendPixelPtr(ptr + (x) + (py), color, a); \
} while (0)
#define BE_DRAWCIRCLE_BCOLOR_BR_CCW(ptr,x,y,px,py,a) do { \
this->blendPixelPtr(ptr + (y) + (px), color, a); \
} while (0)
#define BE_DRAWCIRCLE_BCOLOR_BR_CW_CLIP(ptr,x,y,px,py,a,realX,realY) do { \
if (IS_IN_CLIP((realX) + (x), (realY) + (y))) \
this->blendPixelPtr(ptr + (x) + (py), color, a); \
} while (0)
#define BE_DRAWCIRCLE_BCOLOR_BR_CCW_CLIP(ptr,x,y,px,py,a,realX,realY) do { \
if (IS_IN_CLIP((realX) + (y), (realY) + (x))) \
this->blendPixelPtr(ptr + (y) + (px), color, a); \
} while (0)
#define BE_DRAWCIRCLE_XCOLOR_TOP(ptr1,ptr2,x,y,px,py) do { \
*(ptr1 + (y) - (px)) = color1; \
*(ptr1 + (x) - (py)) = color2; \
*(ptr2 - (x) - (py)) = color2; \
*(ptr2 - (y) - (px)) = color1; \
} while (0)
#define BE_DRAWCIRCLE_XCOLOR_BOTTOM(ptr3,ptr4,x,y,px,py) do { \
*(ptr3 - (y) + (px)) = color3; \
*(ptr3 - (x) + (py)) = color4; \
*(ptr4 + (x) + (py)) = color4; \
*(ptr4 + (y) + (px)) = color3; \
} while (0)
#define BE_DRAWCIRCLE_XCOLOR(ptr1,ptr2,ptr3,ptr4,x,y,px,py) do { \
BE_DRAWCIRCLE_XCOLOR_TOP(ptr1,ptr2,x,y,px,py); \
BE_DRAWCIRCLE_XCOLOR_BOTTOM(ptr3,ptr4,x,y,px,py); \
} while (0)
#define IS_IN_CLIP(x,y) (_clippingArea.left <= (x) && (x) < _clippingArea.right \
&& _clippingArea.top <= (y) && (y) < _clippingArea.bottom)
#define BE_DRAWCIRCLE_XCOLOR_TOP_CLIP(ptr1,ptr2,x,y,px,py,realX1,realY1,realX2,realY2) do { \
if (IS_IN_CLIP((realX1) + (y), (realY1) - (x))) \
*(ptr1 + (y) - (px)) = color1; \
\
if (IS_IN_CLIP((realX1) + (x), (realY1) - (y))) \
*(ptr1 + (x) - (py)) = color2; \
\
if (IS_IN_CLIP((realX2) - (x), (realY2) - (y))) \
*(ptr2 - (x) - (py)) = color2; \
\
if (IS_IN_CLIP((realX2) - (y), (realY2) - (x))) \
*(ptr2 - (y) - (px)) = color1; \
} while (0)
#define BE_DRAWCIRCLE_XCOLOR_BOTTOM_CLIP(ptr3,ptr4,x,y,px,py,realX3,realY3,realX4,realY4) do { \
if (IS_IN_CLIP((realX3) - (y), (realY3) + (x))) \
*(ptr3 - (y) + (px)) = color3; \
\
if (IS_IN_CLIP((realX3) - (x), (realY3) + (y))) \
*(ptr3 - (x) + (py)) = color4; \
\
if (IS_IN_CLIP((realX4) + (x), (realY4) + (y))) \
*(ptr4 + (x) + (py)) = color4; \
\
if (IS_IN_CLIP((realX4) + (y), (realY4) + (x))) \
*(ptr4 + (y) + (px)) = color3; \
} while (0)
#define BE_DRAWCIRCLE_XCOLOR_CLIP(ptr1,ptr2,ptr3,ptr4,x,y,px,py,realX1,realY1,realX2,realY2,realX3,realY3,realX4,realY4) do { \
BE_DRAWCIRCLE_XCOLOR_TOP_CLIP(ptr1,ptr2,x,y,px,py,realX1,realY1,realX2,realY2); \
BE_DRAWCIRCLE_XCOLOR_BOTTOM_CLIP(ptr3,ptr4,x,y,px,py,realX3,realY3,realX4,realY4); \
} while (0)
#define BE_RESET() do { \
f = 1 - r; \
ddF_x = 0; ddF_y = -2 * r; \
x = 0; y = r; px = 0; py = pitch * r; \
} while (0)
#define TRIANGLE_MAINX() \
if (error_term >= 0) { \
ptr_right += pitch; \
ptr_left += pitch; \
error_term += dysub; \
} else { \
error_term += ddy; \
} \
ptr_right++; \
ptr_left--;
#define TRIANGLE_MAINY() \
if (error_term >= 0) { \
ptr_right++; \
ptr_left--; \
error_term += dxsub; \
} else { \
error_term += ddx; \
} \
ptr_right += pitch; \
ptr_left += pitch;
/** HELPER MACROS for WU's circle drawing algorithm **/
#define WU_DRAWCIRCLE_TOP(ptr1,ptr2,x,y,px,py,a) do { \
this->blendPixelPtr(ptr1 + (y) - (px), color, a); \
this->blendPixelPtr(ptr1 + (x) - (py), color, a); \
this->blendPixelPtr(ptr2 - (x) - (py), color, a); \
this->blendPixelPtr(ptr2 - (y) - (px), color, a); \
} while (0)
#define WU_DRAWCIRCLE_BOTTOM(ptr3,ptr4,x,y,px,py,a) do { \
this->blendPixelPtr(ptr3 - (y) + (px), color, a); \
this->blendPixelPtr(ptr3 - (x) + (py), color, a); \
this->blendPixelPtr(ptr4 + (x) + (py), color, a); \
this->blendPixelPtr(ptr4 + (y) + (px), color, a); \
} while (0)
#define WU_DRAWCIRCLE(ptr1,ptr2,ptr3,ptr4,x,y,px,py,a) do { \
WU_DRAWCIRCLE_TOP(ptr1,ptr2,x,y,px,py,a); \
WU_DRAWCIRCLE_BOTTOM(ptr3,ptr4,x,y,px,py,a); \
} while (0)
// Color depending on y
// Note: this is only for the outer pixels
#define WU_DRAWCIRCLE_XCOLOR_TOP(ptr1,ptr2,x,y,px,py,a,func) do { \
this->func(ptr1 + (y) - (px), color1, a); \
this->func(ptr1 + (x) - (py), color2, a); \
this->func(ptr2 - (x) - (py), color2, a); \
this->func(ptr2 - (y) - (px), color1, a); \
} while (0)
#define WU_DRAWCIRCLE_XCOLOR_BOTTOM(ptr3,ptr4,x,y,px,py,a,func) do { \
this->func(ptr3 - (y) + (px), color3, a); \
this->func(ptr3 - (x) + (py), color4, a); \
this->func(ptr4 + (x) + (py), color4, a); \
this->func(ptr4 + (y) + (px), color3, a); \
} while (0)
#define WU_DRAWCIRCLE_XCOLOR(ptr1,ptr2,ptr3,ptr4,x,y,px,py,a,func) do { \
WU_DRAWCIRCLE_XCOLOR_TOP(ptr1,ptr2,x,y,px,py,a,func); \
WU_DRAWCIRCLE_XCOLOR_BOTTOM(ptr3,ptr4,x,y,px,py,a,func); \
} while (0)
// Color depending on corner (tl,tr,bl: color1, br: color2)
// Note: this is only for the outer pixels
#define WU_DRAWCIRCLE_BCOLOR(ptr1,ptr2,ptr3,ptr4,x,y,px,py,a) do { \
this->blendPixelPtr(ptr1 + (y) - (px), color1, a); \
this->blendPixelPtr(ptr1 + (x) - (py), color1, a); \
this->blendPixelPtr(ptr2 - (x) - (py), color1, a); \
this->blendPixelPtr(ptr2 - (y) - (px), color1, a); \
this->blendPixelPtr(ptr3 - (y) + (px), color1, a); \
this->blendPixelPtr(ptr3 - (x) + (py), color1, a); \
this->blendPixelPtr(ptr4 + (x) + (py), color2, a); \
this->blendPixelPtr(ptr4 + (y) + (px), color2, a); \
} while (0)
#define WU_DRAWCIRCLE_BCOLOR_TR_CW(ptr,x,y,px,py,a) do { \
this->blendPixelPtr(ptr + (y) - (px), color, a); \
} while (0)
#define WU_DRAWCIRCLE_BCOLOR_TR_CCW(ptr,x,y,px,py,a) do { \
this->blendPixelPtr(ptr + (x) - (py), color, a); \
} while (0)
#define WU_DRAWCIRCLE_BCOLOR_TL_CW(ptr,x,y,px,py,a) do { \
this->blendPixelPtr(ptr - (x) - (py), color, a); \
} while (0)
#define WU_DRAWCIRCLE_BCOLOR_TL_CCW(ptr,x,y,px,py,a) do { \
this->blendPixelPtr(ptr - (y) - (px), color, a); \
} while (0)
#define WU_DRAWCIRCLE_BCOLOR_BL_CW(ptr,x,y,px,py,a) do { \
this->blendPixelPtr(ptr - (y) + (px), color, a); \
} while (0)
#define WU_DRAWCIRCLE_BCOLOR_BL_CCW(ptr,x,y,px,py,a) do { \
this->blendPixelPtr(ptr - (x) + (py), color, a); \
} while (0)
#define WU_DRAWCIRCLE_BCOLOR_BR_CW(ptr,x,y,px,py,a) do { \
this->blendPixelPtr(ptr + (x) + (py), color, a); \
} while (0)
#define WU_DRAWCIRCLE_BCOLOR_BR_CCW(ptr,x,y,px,py,a) do { \
this->blendPixelPtr(ptr + (y) + (px), color, a); \
} while (0)
// optimized Wu's algorithm
#define WU_ALGORITHM() do { \
oldT = T; \
T = fp_sqroot(rsq - y*y) ^ 0xFFFF; \
py += pitch; \
if (T < oldT) { \
x--; px -= pitch; \
} \
a2 = (T >> 8); \
a1 = ~a2; \
} while (0)
namespace Graphics {
/**
* Fills several pixels in a row with a given color.
*
* This is a replacement function for Common::fill, using an unrolled
* loop to maximize performance on most architectures.
* This function may (and should) be overloaded in any child renderers
* for portable platforms with platform-specific assembly code.
*
* This fill operation is extensively used throughout the renderer, so this
* counts as one of the main bottlenecks. Please replace it with assembly
* when possible!
*
* @param first Pointer to the first pixel to fill.
* @param last Pointer to the last pixel to fill.
* @param color Color of the pixel
*/
template<typename PixelType>
void colorFill(PixelType *first, PixelType *last, PixelType color) {
int count = (last - first);
if (!count)
return;
int n = (count + 7) >> 3;
switch (count % 8) {
default:
case 0: do {
*first++ = color; // fall through
case 7: *first++ = color; // fall through
case 6: *first++ = color; // fall through
case 5: *first++ = color; // fall through
case 4: *first++ = color; // fall through
case 3: *first++ = color; // fall through
case 2: *first++ = color; // fall through
case 1: *first++ = color;
} while (--n > 0);
}
}
template<typename PixelType>
void colorFillClip(PixelType *first, PixelType *last, PixelType color, int realX, int realY, Common::Rect &clippingArea) {
if (realY < clippingArea.top || realY >= clippingArea.bottom)
return;
int count = (last - first);
if (realX > clippingArea.right || realX + count < clippingArea.left)
return;
if (realX < clippingArea.left) {
int diff = (clippingArea.left - realX);
realX += diff;
first += diff;
count -= diff;
}
if (clippingArea.right <= realX + count) {
int diff = (realX + count - clippingArea.right);
count -= diff;
}
if (!count)
return;
int n = (count + 7) >> 3;
switch (count % 8) {
default:
case 0: do {
*first++ = color; // fall through
case 7: *first++ = color; // fall through
case 6: *first++ = color; // fall through
case 5: *first++ = color; // fall through
case 4: *first++ = color; // fall through
case 3: *first++ = color; // fall through
case 2: *first++ = color; // fall through
case 1: *first++ = color;
} while (--n > 0);
}
}
/**
* Fills several pixels in a column with a given color.
*
* @param first Pointer to the first pixel to fill.
* @param last Pointer to the last pixel to fill.
* @param pitch Number of pixels in a line.
* @param color Color of the pixel
*/
template<typename PixelType>
void colorVFill(PixelType *first, PixelType *last, int pitch, PixelType color) {
int count = (last - first) / pitch;
if (!count)
return;
for (PixelType *p = first; count; p+= pitch, count--) {
*p = color;
}
}
template<typename PixelType>
void colorVFillClip(PixelType *first, PixelType *last, int pitch, PixelType color, int realX, int realY, Common::Rect &clippingArea) {
if (realX < clippingArea.left || realX >= clippingArea.right)
return;
int count = (last - first) / pitch;
if (realY > clippingArea.bottom || realY + count < clippingArea.top)
return;
if (realY < clippingArea.top) {
int diff = (clippingArea.top - realY);
realY += diff;
first += diff * pitch;
count -= diff;
}
if (clippingArea.bottom <= realY + count) {
int diff = (realY + count - clippingArea.bottom);
count -= diff;
}
if (!count)
return;
for (PixelType *p = first; count; p+= pitch, count--) {
*p = color;
}
}
VectorRenderer *createRenderer(int mode) {
#ifdef DISABLE_FANCY_THEMES
assert(mode == GUI::ThemeEngine::kGfxStandard);
#endif
PixelFormat format = g_system->getOverlayFormat();
switch (mode) {
case GUI::ThemeEngine::kGfxStandard:
if (g_system->getOverlayFormat().bytesPerPixel == 4)
return new VectorRendererSpec<uint32>(format);
else if (g_system->getOverlayFormat().bytesPerPixel == 2)
return new VectorRendererSpec<uint16>(format);
else if (g_system->getOverlayFormat().bytesPerPixel == 1)
return new VectorRendererSpec<uint8>(format);
break;
#ifndef DISABLE_FANCY_THEMES
case GUI::ThemeEngine::kGfxAntialias:
if (g_system->getOverlayFormat().bytesPerPixel == 4)
return new VectorRendererAA<uint32>(format);
else if (g_system->getOverlayFormat().bytesPerPixel == 2)
return new VectorRendererAA<uint16>(format);
// No AA with 8-bit
else if (g_system->getOverlayFormat().bytesPerPixel == 1)
return new VectorRendererSpec<uint8>(format);
break;
#endif
default:
break;
}
return 0;
}
template<typename PixelType>
VectorRendererSpec<PixelType>::
VectorRendererSpec(PixelFormat format) :
_format(format),
_redMask((0xFF >> format.rLoss) << format.rShift),
_greenMask((0xFF >> format.gLoss) << format.gShift),
_blueMask((0xFF >> format.bLoss) << format.bShift),
_alphaMask((0xFF >> format.aLoss) << format.aShift) {
_clippingArea = Common::Rect(0, 0, 32767, 32767);
_fgColor = _bgColor = _bevelColor = 0;
_gradientStart = _gradientEnd = 0;
}
/****************************
* Gradient-related methods *
****************************/
template<typename PixelType>
void VectorRendererSpec<PixelType>::
setGradientColors(uint8 r1, uint8 g1, uint8 b1, uint8 r2, uint8 g2, uint8 b2) {
_gradientEnd = _format.RGBToColor(r2, g2, b2);
_gradientStart = _format.RGBToColor(r1, g1, b1);
if (sizeof(PixelType) == 4) {
_gradientBytes[0] = ((_gradientEnd & _redMask) >> _format.rShift) - ((_gradientStart & _redMask) >> _format.rShift);
_gradientBytes[1] = ((_gradientEnd & _greenMask) >> _format.gShift) - ((_gradientStart & _greenMask) >> _format.gShift);
_gradientBytes[2] = ((_gradientEnd & _blueMask) >> _format.bShift) - ((_gradientStart & _blueMask) >> _format.bShift);
} else {
_gradientBytes[0] = (_gradientEnd & _redMask) - (_gradientStart & _redMask);
_gradientBytes[1] = (_gradientEnd & _greenMask) - (_gradientStart & _greenMask);
_gradientBytes[2] = (_gradientEnd & _blueMask) - (_gradientStart & _blueMask);
}
}
template<typename PixelType>
inline PixelType VectorRendererSpec<PixelType>::
calcGradient(uint32 pos, uint32 max) {
PixelType output = 0;
pos = (MIN(pos * Base::_gradientFactor, max) << 12) / max;
if (sizeof(PixelType) == 4) {
output |= ((_gradientStart & _redMask) + (((_gradientBytes[0] * pos) >> 12) << _format.rShift)) & _redMask;
output |= ((_gradientStart & _greenMask) + (((_gradientBytes[1] * pos) >> 12) << _format.gShift)) & _greenMask;
output |= ((_gradientStart & _blueMask) + (((_gradientBytes[2] * pos) >> 12) << _format.bShift)) & _blueMask;
} else {
output |= ((_gradientStart & _redMask) + ((_gradientBytes[0] * pos) >> 12)) & _redMask;
output |= ((_gradientStart & _greenMask) + ((_gradientBytes[1] * pos) >> 12)) & _greenMask;
output |= ((_gradientStart & _blueMask) + ((_gradientBytes[2] * pos) >> 12)) & _blueMask;
}
output |= _alphaMask;
return output;
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
precalcGradient(int h) {
PixelType prevcolor = 0, color;
_gradCache.resize(0);
_gradIndexes.resize(0);
for (int i = 0; i < h + 2; i++) {
color = calcGradient(i, h);
if (color != prevcolor || i == 0 || i > h - 1) {
prevcolor = color;
_gradCache.push_back(color);
_gradIndexes.push_back(i);
}
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
gradientFill(PixelType *ptr, int width, int x, int y) {
bool ox = ((y & 1) == 1);
int curGrad = 0;
while (_gradIndexes[curGrad + 1] <= y)
curGrad++;
// precalcGradient assures that _gradIndexes entries always differ in
// their value. This assures stripSize is always different from zero.
int stripSize = _gradIndexes[curGrad + 1] - _gradIndexes[curGrad];
int grad = (((y - _gradIndexes[curGrad]) % stripSize) << 2) / stripSize;
// Dithering:
// +--+ +--+ +--+ +--+
// | | | | | *| | *|
// | | | *| |* | |**|
// +--+ +--+ +--+ +--+
// 0 1 2 3
if (grad == 0 ||
_gradCache[curGrad] == _gradCache[curGrad + 1] || // no color change
stripSize < 2) { // the stip is small
colorFill<PixelType>(ptr, ptr + width, _gradCache[curGrad]);
} else if (grad == 3 && ox) {
colorFill<PixelType>(ptr, ptr + width, _gradCache[curGrad + 1]);
} else {
for (int j = x; j < x + width; j++, ptr++) {
bool oy = ((j & 1) == 1);
if ((ox && oy) ||
((grad == 2 || grad == 3) && ox && !oy) ||
(grad == 3 && oy))
*ptr = _gradCache[curGrad + 1];
else
*ptr = _gradCache[curGrad];
}
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
gradientFillClip(PixelType *ptr, int width, int x, int y, int realX, int realY) {
if (realY < _clippingArea.top || realY >= _clippingArea.bottom) return;
bool ox = ((y & 1) == 1);
int curGrad = 0;
while (_gradIndexes[curGrad + 1] <= y)
curGrad++;
// precalcGradient assures that _gradIndexes entries always differ in
// their value. This assures stripSize is always different from zero.
int stripSize = _gradIndexes[curGrad + 1] - _gradIndexes[curGrad];
int grad = (((y - _gradIndexes[curGrad]) % stripSize) << 2) / stripSize;
// Dithering:
// +--+ +--+ +--+ +--+
// | | | | | *| | *|
// | | | *| |* | |**|
// +--+ +--+ +--+ +--+
// 0 1 2 3
if (grad == 0 ||
_gradCache[curGrad] == _gradCache[curGrad + 1] || // no color change
stripSize < 2) { // the stip is small
colorFillClip<PixelType>(ptr, ptr + width, _gradCache[curGrad], realX, realY, _clippingArea);
} else if (grad == 3 && ox) {
colorFillClip<PixelType>(ptr, ptr + width, _gradCache[curGrad + 1], realX, realY, _clippingArea);
} else {
for (int j = x; j < x + width; j++, ptr++) {
if (realX + j - x < _clippingArea.left || realX + j - x >= _clippingArea.right) continue;
bool oy = ((j & 1) == 1);
if ((ox && oy) ||
((grad == 2 || grad == 3) && ox && !oy) ||
(grad == 3 && oy))
*ptr = _gradCache[curGrad + 1];
else
*ptr = _gradCache[curGrad];
}
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
fillSurface() {
Common::Rect drawRect(0, 0, _activeSurface->w, _activeSurface->h);
drawRect.clip(_clippingArea);
if (drawRect.isEmpty()) {
return;
}
int h = _activeSurface->h;
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
PixelType *ptr = (PixelType *)_activeSurface->getBasePtr(0, drawRect.top);
if (Base::_fillMode == kFillBackground || Base::_fillMode == kFillForeground) {
PixelType color = (Base::_fillMode == kFillBackground ? _bgColor : _fgColor);
PixelType *ptrLeft = (ptr + drawRect.left), *ptrRight = ptr + drawRect.right;
for (int i = drawRect.top; i < drawRect.bottom; i++) {
colorFill<PixelType>(ptrLeft, ptrRight, color);
ptrLeft += pitch;
ptrRight += pitch;
}
} else if (Base::_fillMode == kFillGradient) {
precalcGradient(h);
for (int i = drawRect.top; i < drawRect.bottom; i++) {
gradientFill(ptr + drawRect.left, drawRect.width(), 0, i);
ptr += pitch;
}
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
copyFrame(OSystem *sys, const Common::Rect &r) {
sys->copyRectToOverlay(
_activeSurface->getBasePtr(r.left, r.top),
_activeSurface->pitch,
r.left, r.top, r.width(), r.height()
);
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
blitSurface(const Graphics::ManagedSurface *source, const Common::Rect &r) {
assert(source->w == _activeSurface->w && source->h == _activeSurface->h);
byte *dst_ptr = (byte *)_activeSurface->getBasePtr(r.left, r.top);
const byte *src_ptr = (const byte *)source->getBasePtr(r.left, r.top);
const int dst_pitch = _activeSurface->pitch;
const int src_pitch = source->pitch;
int h = r.height();
const int w = r.width() * sizeof(PixelType);
while (h--) {
memcpy(dst_ptr, src_ptr, w);
dst_ptr += dst_pitch;
src_ptr += src_pitch;
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
blitManagedSurface(const Graphics::ManagedSurface *source, const Common::Point &p) {
Common::Rect drawRect(p.x, p.y, p.x + source->w, p.y + source->h);
drawRect.clip(_clippingArea);
drawRect.translate(-p.x, -p.y);
if (drawRect.isEmpty()) {
return;
}
Common::Point np;
if (!_clippingArea.contains(p)) {
int16 nx = CLIP(p.x, _clippingArea.left, _clippingArea.right);
int16 ny = CLIP(p.y, _clippingArea.top, _clippingArea.bottom);
np = Common::Point(nx, ny);
} else {
np = p;
}
_activeSurface->blitFrom(*source, drawRect, np);
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
applyScreenShading(GUI::ThemeEngine::ShadingStyle shadingStyle) {
int pixels = _activeSurface->w * _activeSurface->h;
PixelType *ptr = (PixelType *)_activeSurface->getPixels();
uint8 r, g, b;
uint lum;
// Mask to clear the last bit of every color component and all unused bits
const uint32 colorMask = ~((1 << _format.rShift) | (1 << _format.gShift) | (1 << _format.bShift) // R/G/B components
| (_format.aLoss == 8 ? 0 : (1 << _format.aShift)) // Alpha component
| ~(_alphaMask | _redMask | _greenMask | _blueMask)); // All unused bits
if (shadingStyle == GUI::ThemeEngine::kShadingDim) {
// TODO: Check how this interacts with kFeatureOverlaySupportsAlpha
for (int i = 0; i < pixels; ++i) {
*ptr = ((*ptr & colorMask) >> 1) | _alphaMask;
++ptr;
}
} else if (shadingStyle == GUI::ThemeEngine::kShadingLuminance) {
while (pixels--) {
_format.colorToRGB(*ptr, r, g, b);
lum = (r >> 2) + (g >> 1) + (b >> 3);
*ptr++ = _format.RGBToColor(lum, lum, lum);
}
}
}
template<typename PixelType>
inline void VectorRendererSpec<PixelType>::
blendPixelPtr(PixelType *ptr, PixelType color, uint8 alpha) {
if (alpha == 0xff) {
// fully opaque pixel, don't blend
*ptr = color | _alphaMask;
} else if (sizeof(PixelType) == 4) {
const byte sR = (color & _redMask) >> _format.rShift;
const byte sG = (color & _greenMask) >> _format.gShift;
const byte sB = (color & _blueMask) >> _format.bShift;
byte dR = (*ptr & _redMask) >> _format.rShift;
byte dG = (*ptr & _greenMask) >> _format.gShift;
byte dB = (*ptr & _blueMask) >> _format.bShift;
byte dA = (*ptr & _alphaMask) >> _format.aShift;
dR += ((sR - dR) * alpha) >> 8;
dG += ((sG - dG) * alpha) >> 8;
dB += ((sB - dB) * alpha) >> 8;
dA += ((0xff - dA) * alpha) >> 8;
*ptr = ((dR << _format.rShift) & _redMask)
| ((dG << _format.gShift) & _greenMask)
| ((dB << _format.bShift) & _blueMask)
| ((dA << _format.aShift) & _alphaMask);
} else if (sizeof(PixelType) == 2) {
int idst = *ptr;
int isrc = color;
*ptr = (PixelType)(
(_redMask & ((idst & _redMask) +
((int)(((int)(isrc & _redMask) -
(int)(idst & _redMask)) * alpha) >> 8))) |
(_greenMask & ((idst & _greenMask) +
((int)(((int)(isrc & _greenMask) -
(int)(idst & _greenMask)) * alpha) >> 8))) |
(_blueMask & ((idst & _blueMask) +
((int)(((int)(isrc & _blueMask) -
(int)(idst & _blueMask)) * alpha) >> 8))) |
(_alphaMask & ((idst & _alphaMask) +
((int)(((int)(_alphaMask) -
(int)(idst & _alphaMask)) * alpha) >> 8))));
} else if (sizeof(PixelType) == 1) {
if (alpha & 0x80)
*ptr = color;
} else {
error("Unsupported BPP format: %u", (uint)sizeof(PixelType));
}
}
template<typename PixelType>
inline void VectorRendererSpec<PixelType>::
blendPixelPtrClip(PixelType *ptr, PixelType color, uint8 alpha, int x, int y) {
if (IS_IN_CLIP(x, y))
blendPixelPtr(ptr, color, alpha);
}
template<typename PixelType>
inline void VectorRendererSpec<PixelType>::
blendPixelDestAlphaPtr(PixelType *ptr, PixelType color, uint8 alpha) {
int idst = *ptr;
// This function is only used for corner pixels in rounded rectangles, so
// the performance hit of this if shouldn't be too high.
// We're also ignoring the cases where dst has intermediate alpha.
if ((idst & _alphaMask) == 0) {
// set color and alpha channels
*ptr = (PixelType)(color & (_redMask | _greenMask | _blueMask)) |
((alpha >> _format.aLoss) << _format.aShift);
} else {
// blend color with background
blendPixelPtr(ptr, color, alpha);
}
}
template<typename PixelType>
inline void VectorRendererSpec<PixelType>::
darkenFill(PixelType *ptr, PixelType *end) {
PixelType mask = (PixelType)((3 << _format.rShift) | (3 << _format.gShift) | (3 << _format.bShift));
if (!g_system->hasFeature(OSystem::kFeatureOverlaySupportsAlpha)) {
// !kFeatureOverlaySupportsAlpha (but might have alpha bits)
mask |= _alphaMask;
while (ptr != end) {
*ptr = ((*ptr & ~mask) >> 2) | _alphaMask;
++ptr;
}
} else {
// kFeatureOverlaySupportsAlpha
// assuming at least 3 alpha bits
mask |= 3 << _format.aShift;
PixelType addA = (PixelType)(3 << (_format.aShift + 6 - _format.aLoss));
while (ptr != end) {
// Darken the color, and increase the alpha
// (0% -> 75%, 100% -> 100%)
*ptr = (PixelType)(((*ptr & ~mask) >> 2) + addA);
++ptr;
}
}
}
template<typename PixelType>
inline void VectorRendererSpec<PixelType>::
darkenFillClip(PixelType *ptr, PixelType *end, int x, int y) {
PixelType mask = (PixelType)((3 << _format.rShift) | (3 << _format.gShift) | (3 << _format.bShift));
if (!g_system->hasFeature(OSystem::kFeatureOverlaySupportsAlpha)) {
// !kFeatureOverlaySupportsAlpha (but might have alpha bits)
mask |= _alphaMask;
while (ptr != end) {
if (IS_IN_CLIP(x, y)) *ptr = ((*ptr & ~mask) >> 2) | _alphaMask;
++ptr;
++x;
}
} else {
// kFeatureOverlaySupportsAlpha
// assuming at least 3 alpha bits
mask |= 3 << _format.aShift;
PixelType addA = (PixelType)(3 << (_format.aShift + 6 - _format.aLoss));
while (ptr != end) {
// Darken the color, and increase the alpha
// (0% -> 75%, 100% -> 100%)
if (IS_IN_CLIP(x, y)) *ptr = (PixelType)(((*ptr & ~mask) >> 2) + addA);
++ptr;
++x;
}
}
}
/********************************************************************
********************************************************************
* Primitive shapes drawing - Public API calls - VectorRendererSpec *
********************************************************************
********************************************************************/
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawString(const Graphics::Font *font, const Common::U32String &text, const Common::Rect &area,
Graphics::TextAlign alignH, GUI::ThemeEngine::TextAlignVertical alignV, int deltax, bool ellipsis, const Common::Rect &textDrawableArea) {
int offset = area.top;
if (font->getFontHeight() < area.height()) {
switch (alignV) {
case GUI::ThemeEngine::kTextAlignVCenter:
offset = area.top + ((area.height() - font->getFontHeight()) >> 1);
break;
case GUI::ThemeEngine::kTextAlignVBottom:
offset = area.bottom - font->getFontHeight();
break;
default:
break;
}
}
Common::Rect drawArea;
if (textDrawableArea.isEmpty()) {
// In case no special area to draw to is given we only draw in the
// area specified by the user.
drawArea = area;
// warning("there is no text drawable area. Please set this area for clipping");
} else {
// The area we can draw to is the intersection between the allowed
// drawing area (textDrawableArea) and the area where we try to draw
// the text (area).
drawArea = textDrawableArea.findIntersectingRect(area);
}
// Better safe than sorry. We intersect with the actual surface boundaries
// to avoid any ugly clipping in _activeSurface->getSubArea which messes
// up the calculation of the x and y coordinates where to draw the string.
drawArea = drawArea.findIntersectingRect(Common::Rect(0, 0, _activeSurface->w, _activeSurface->h));
if (!drawArea.isEmpty()) {
Common::Rect textArea(area);
textArea.right -= deltax;
Surface textAreaSurface = _activeSurface->getSubArea(drawArea);
if (deltax >= 0) {
textArea.left += deltax;
deltax = 0;
}
font->drawString(&textAreaSurface, text, textArea.left - drawArea.left, offset - drawArea.top, textArea.width(), _fgColor, alignH, deltax, ellipsis);
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawLine(int x1, int y1, int x2, int y2) {
x1 = CLIP(x1, 0, (int)Base::_activeSurface->w);
x2 = CLIP(x2, 0, (int)Base::_activeSurface->w);
y1 = CLIP(y1, 0, (int)Base::_activeSurface->h);
y2 = CLIP(y2, 0, (int)Base::_activeSurface->h);
// we draw from top to bottom
if (y2 < y1) {
SWAP(x1, x2);
SWAP(y1, y2);
}
uint dx = ABS(x2 - x1);
uint dy = ABS(y2 - y1);
// this is a point, not a line. stoopid.
if (dy == 0 && dx == 0)
return;
if (Base::_strokeWidth == 0)
return;
PixelType *ptr = (PixelType *)_activeSurface->getBasePtr(x1, y1);
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
// Stroke widths before and after the coordinate
// Before is favoured in case of even stroke width
int stb = Base::_strokeWidth >> 1;
int sta = stb + (Base::_strokeWidth & 1);
bool useClippingVersions = !_clippingArea.contains(x1, y1) || !_clippingArea.contains(x2, y2);
if (dy == 0) { // horizontal lines
intptr p = -stb * pitch;
for (int i = -stb; i < sta; i++, p += pitch) {
if (useClippingVersions) {
colorFillClip<PixelType>(ptr + p, ptr + p + dx + 1, (PixelType)_fgColor, x1, y1 + i, _clippingArea);
} else {
colorFill<PixelType>(ptr + p, ptr + p + dx + 1, (PixelType)_fgColor);
}
}
} else if (dx == 0) { // vertical lines
// these ones use a static pitch increase.
while (y1 <= y2) {
if (useClippingVersions) {
colorFillClip<PixelType>(ptr - stb, ptr + sta, (PixelType)_fgColor, x1 - stb, y1, _clippingArea);
} else {
colorFill<PixelType>(ptr - stb, ptr + sta, (PixelType)_fgColor);
}
ptr += pitch;
y1++;
}
} else if (dx == dy) { // diagonal lines
// these ones also use a fixed pitch increase
pitch += (x2 > x1) ? 1 : -1;
while (dy--) {
if (useClippingVersions) {
colorFillClip<PixelType>(ptr - stb, ptr + sta, (PixelType)_fgColor, x1 - stb, y1, _clippingArea);
} else {
colorFill<PixelType>(ptr - stb, ptr + sta, (PixelType)_fgColor);
}
ptr += pitch;
y1++;
if (x2 > x1) ++x1; else --x1;
}
} else { // generic lines, use the standard algorithm...
if (useClippingVersions) {
drawLineAlgClip(x1, y1, x2, y2, dx, dy, (PixelType)_fgColor);
} else {
drawLineAlg(x1, y1, x2, y2, dx, dy, (PixelType)_fgColor);
}
}
}
/** CIRCLES **/
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawCircle(int x, int y, int r) {
if (x + r > Base::_activeSurface->w || y + r > Base::_activeSurface->h ||
x - r < 0 || y - r < 0 || x == 0 || y == 0 || r <= 0)
return;
bool useClippingVersions = !_clippingArea.contains(Common::Rect(x - r, y - r, x + r + 1, y + r + 1));
if (Base::_fillMode != kFillDisabled && Base::_shadowOffset
&& x + r + Base::_shadowOffset < Base::_activeSurface->w
&& y + r + Base::_shadowOffset < Base::_activeSurface->h) {
if (useClippingVersions)
drawCircleAlgClip(x + Base::_shadowOffset + 1, y + Base::_shadowOffset + 1, r, 0, kFillForeground);
else
drawCircleAlg(x + Base::_shadowOffset + 1, y + Base::_shadowOffset + 1, r, 0, kFillForeground);
}
switch (Base::_fillMode) {
case kFillDisabled:
if (Base::_strokeWidth) {
if (useClippingVersions)
drawCircleAlgClip(x, y, r, _fgColor, kFillDisabled);
else
drawCircleAlg(x, y, r, _fgColor, kFillDisabled);
}
break;
case kFillForeground:
if (useClippingVersions)
drawCircleAlgClip(x, y, r, _fgColor, kFillForeground);
else
drawCircleAlg(x, y, r, _fgColor, kFillForeground);
break;
case kFillBackground:
if (Base::_strokeWidth > 1) {
if (useClippingVersions) {
drawCircleAlgClip(x, y, r, _fgColor, kFillForeground);
drawCircleAlgClip(x, y, r - Base::_strokeWidth, _bgColor, kFillBackground);
} else {
drawCircleAlg(x, y, r, _fgColor, kFillForeground);
drawCircleAlg(x, y, r - Base::_strokeWidth, _bgColor, kFillBackground);
}
} else {
if (useClippingVersions) {
drawCircleAlgClip(x, y, r, _bgColor, kFillBackground);
drawCircleAlgClip(x, y, r, _fgColor, kFillDisabled);
} else {
drawCircleAlg(x, y, r, _bgColor, kFillBackground);
drawCircleAlg(x, y, r, _fgColor, kFillDisabled);
}
}
break;
case kFillGradient:
break;
default:
break;
}
}
/** SQUARES **/
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawSquare(int x, int y, int w, int h) {
if (x + w > Base::_activeSurface->w || y + h > Base::_activeSurface->h ||
w <= 0 || h <= 0 || x < 0 || y < 0)
return;
bool useClippingVersions = !_clippingArea.contains(Common::Rect(x, y, x + w, y + h));
if (Base::_fillMode != kFillDisabled && Base::_shadowOffset
&& x + w + Base::_shadowOffset < Base::_activeSurface->w
&& y + h + Base::_shadowOffset < Base::_activeSurface->h) {
if (useClippingVersions)
drawSquareShadowClip(x, y, w, h, Base::_shadowOffset);
else
drawSquareShadow(x, y, w, h, Base::_shadowOffset);
}
switch (Base::_fillMode) {
case kFillDisabled:
if (Base::_strokeWidth) {
if (useClippingVersions)
drawSquareAlgClip(x, y, w, h, _fgColor, kFillDisabled);
else
drawSquareAlg(x, y, w, h, _fgColor, kFillDisabled);
}
break;
case kFillForeground:
if (useClippingVersions)
drawSquareAlgClip(x, y, w, h, _fgColor, kFillForeground);
else
drawSquareAlg(x, y, w, h, _fgColor, kFillForeground);
break;
case kFillBackground:
if (useClippingVersions) {
drawSquareAlgClip(x, y, w, h, _bgColor, kFillBackground);
drawSquareAlgClip(x, y, w, h, _fgColor, kFillDisabled);
} else {
drawSquareAlg(x, y, w, h, _bgColor, kFillBackground);
drawSquareAlg(x, y, w, h, _fgColor, kFillDisabled);
}
break;
case kFillGradient:
VectorRendererSpec::drawSquareAlg(x, y, w, h, 0, kFillGradient);
if (Base::_strokeWidth) {
if (useClippingVersions)
drawSquareAlgClip(x, y, w, h, _fgColor, kFillDisabled);
else
drawSquareAlg(x, y, w, h, _fgColor, kFillDisabled);
}
break;
default:
break;
}
}
/** ROUNDED SQUARES **/
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawRoundedSquare(int x, int y, int r, int w, int h) {
if (x + w > Base::_activeSurface->w || y + h > Base::_activeSurface->h ||
w <= 0 || h <= 0 || x < 0 || y < 0 || r <= 0)
return;
if ((r * 2) > w || (r * 2) > h)
r = MIN(w / 2, h / 2);
if (r <= 0)
return;
bool useOriginal = _clippingArea.contains(Common::Rect(x, y, x + w + 1, y + h + 1));
if (Base::_fillMode != kFillDisabled && Base::_shadowOffset
&& x + w + Base::_shadowOffset + 1 < Base::_activeSurface->w
&& y + h + Base::_shadowOffset + 1 < Base::_activeSurface->h
&& h > (Base::_shadowOffset + 1) * 2) {
if (useOriginal) {
drawRoundedSquareShadow(x, y, r, w, h, Base::_shadowOffset, Base::_shadowIntensity);
} else {
drawRoundedSquareShadowClip(x, y, r, w, h, Base::_shadowOffset, Base::_shadowIntensity);
}
}
if (useOriginal) {
drawRoundedSquareAlg(x, y, r, w, h, _fgColor, Base::_fillMode);
} else {
drawRoundedSquareAlgClip(x, y, r, w, h, _fgColor, Base::_fillMode);
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawTab(int x, int y, int r, int w, int h, int s) {
if (x + w > Base::_activeSurface->w || y + h > Base::_activeSurface->h ||
w <= 0 || h <= 0 || x < 0 || y < 0 || r > w || r > h)
return;
bool useClippingVersions = !_clippingArea.contains(Common::Rect(x, y, x + w, y + h));
if (r == 0 && Base::_bevel > 0) {
if (useClippingVersions)
drawBevelTabAlgClip(x, y, w, h, Base::_bevel, _bevelColor, _fgColor, (Base::_dynamicData >> 16), (Base::_dynamicData & 0xFFFF));
else
drawBevelTabAlg(x, y, w, h, Base::_bevel, _bevelColor, _fgColor, (Base::_dynamicData >> 16), (Base::_dynamicData & 0xFFFF));
return;
}
if (r == 0) {
return;
}
switch (Base::_fillMode) {
case kFillDisabled:
// FIXME: Implement this
return;
case kFillGradient:
case kFillBackground:
// FIXME: This is broken for the AA renderer.
// See the rounded rect alg for how to fix it. (The border should
// be drawn before the interior, both inside drawTabAlg.)
if (useClippingVersions) {
drawTabShadowClip(x, y, w - 2, h, r, s, Base::_shadowIntensity);
drawTabAlgClip(x, y, w - 2, h, r, _bgColor, Base::_fillMode);
if (Base::_strokeWidth)
drawTabAlgClip(x, y, w, h, r, _fgColor, kFillDisabled, (Base::_dynamicData >> 16), (Base::_dynamicData & 0xFFFF));
} else {
drawTabShadow(x, y, w - 2, h, r, s, Base::_shadowIntensity);
drawTabAlg(x, y, w - 2, h, r, _bgColor, Base::_fillMode);
if (Base::_strokeWidth)
drawTabAlg(x, y, w, h, r, _fgColor, kFillDisabled, (Base::_dynamicData >> 16), (Base::_dynamicData & 0xFFFF));
}
break;
case kFillForeground:
if (useClippingVersions)
drawTabAlgClip(x, y, w, h, r, _fgColor, Base::_fillMode);
else
drawTabAlg(x, y, w, h, r, _fgColor, Base::_fillMode);
break;
default:
break;
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawTriangle(int x, int y, int w, int h, TriangleOrientation orient) {
if (x + w > Base::_activeSurface->w || y + h > Base::_activeSurface->h)
return;
PixelType color = 0;
if (Base::_strokeWidth <= 1) {
if (Base::_fillMode == kFillForeground)
color = _fgColor;
else if (Base::_fillMode == kFillBackground)
color = _bgColor;
} else {
if (Base::_fillMode == kFillDisabled)
return;
color = _fgColor;
}
if (Base::_dynamicData != 0)
orient = (TriangleOrientation)Base::_dynamicData;
bool useClippingVersions = !_clippingArea.contains(Common::Rect(x, y, x + w, y + h));
void (VectorRendererSpec<PixelType>::*drawFunc)(int x1, int y1, int w, int h, bool inverted, PixelType color, VectorRenderer::FillMode fill_m) = nullptr;
bool inverted = false;
switch (orient) {
case kTriangleUp:
case kTriangleDown:
if (useClippingVersions)
drawFunc = &VectorRendererSpec<PixelType>::drawTriangleVertAlgClip;
else
drawFunc = &VectorRendererSpec<PixelType>::drawTriangleVertAlg;
inverted = (orient == kTriangleDown);
break;
case kTriangleLeft:
case kTriangleRight:
if (useClippingVersions)
drawFunc = &VectorRendererSpec<PixelType>::drawTriangleHorzAlgClip;
else
drawFunc = &VectorRendererSpec<PixelType>::drawTriangleHorzAlg;
inverted = (orient == kTriangleRight);
break;
case kTriangleAuto:
default:
break;
}
if (drawFunc) {
(this->*drawFunc)(x, y, w, h, inverted, color, Base::_fillMode);
if (Base::_strokeWidth > 0) {
if (Base::_fillMode == kFillBackground || Base::_fillMode == kFillGradient) {
(this->*drawFunc)(x, y, w, h, inverted, _fgColor, kFillDisabled);
}
}
}
}
/********************************************************************
********************************************************************
* Aliased Primitive drawing ALGORITHMS - VectorRendererSpec
********************************************************************
********************************************************************/
/** TAB ALGORITHM - NON AA */
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawTabAlg(int x1, int y1, int w, int h, int r, PixelType color, VectorRenderer::FillMode fill_m, int baseLeft, int baseRight) {
// Don't draw anything for empty rects.
if (w <= 0 || h <= 0) {
return;
}
int f, ddF_x, ddF_y;
int x, y, px, py;
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
int sw = 0, sp = 0, hp = 0;
PixelType *ptr_tl = (PixelType *)Base::_activeSurface->getBasePtr(x1 + r, y1 + r);
PixelType *ptr_tr = (PixelType *)Base::_activeSurface->getBasePtr(x1 + w - r, y1 + r);
PixelType *ptr_fill = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1);
int real_radius = r;
int short_h = h - r;
int long_h = h;
if (fill_m == kFillDisabled) {
while (sw++ < Base::_strokeWidth) {
colorFill<PixelType>(ptr_fill + sp + r, ptr_fill + w + 1 + sp - r, color);
colorFill<PixelType>(ptr_fill + hp - sp + r, ptr_fill + w + hp + 1 - sp - r, color);
sp += pitch;
BE_RESET();
r--;
while (x++ < y) {
BE_ALGORITHM();
BE_DRAWCIRCLE_TOP(ptr_tr, ptr_tl, x, y, px, py);
if (Base::_strokeWidth > 1)
BE_DRAWCIRCLE_TOP(ptr_tr, ptr_tl, x, y, px - pitch, py);
}
}
ptr_fill += pitch * real_radius;
while (short_h--) {
colorFill<PixelType>(ptr_fill, ptr_fill + Base::_strokeWidth, color);
colorFill<PixelType>(ptr_fill + w - Base::_strokeWidth + 1, ptr_fill + w + 1, color);
ptr_fill += pitch;
}
if (baseLeft) {
sw = 0;
ptr_fill = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1 + h + 1);
while (sw++ < Base::_strokeWidth) {
colorFill<PixelType>(ptr_fill - baseLeft, ptr_fill, color);
ptr_fill += pitch;
}
}
if (baseRight) {
sw = 0;
ptr_fill = (PixelType *)Base::_activeSurface->getBasePtr(x1 + w, y1 + h + 1);
while (sw++ < Base::_strokeWidth) {
colorFill<PixelType>(ptr_fill, ptr_fill + baseRight, color);
ptr_fill += pitch;
}
}
} else {
BE_RESET();
precalcGradient(long_h);
PixelType color1, color2;
color1 = color2 = color;
while (x++ < y) {
BE_ALGORITHM();
if (fill_m == kFillGradient) {
color1 = calcGradient(real_radius - x, long_h);
color2 = calcGradient(real_radius - y, long_h);
gradientFill(ptr_tl - x - py, w - 2 * r + 2 * x, x1 + r - x - y, real_radius - y);
gradientFill(ptr_tl - y - px, w - 2 * r + 2 * y, x1 + r - y - x, real_radius - x);
BE_DRAWCIRCLE_XCOLOR_TOP(ptr_tr, ptr_tl, x, y, px, py);
} else {
colorFill<PixelType>(ptr_tl - x - py, ptr_tr + x - py, color);
colorFill<PixelType>(ptr_tl - y - px, ptr_tr + y - px, color);
BE_DRAWCIRCLE_TOP(ptr_tr, ptr_tl, x, y, px, py);
}
}
ptr_fill += pitch * r;
while (short_h--) {
if (fill_m == kFillGradient) {
gradientFill(ptr_fill, w + 1, x1, real_radius++);
} else {
colorFill<PixelType>(ptr_fill, ptr_fill + w + 1, color);
}
ptr_fill += pitch;
}
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawTabAlgClip(int x1, int y1, int w, int h, int r, PixelType color, VectorRenderer::FillMode fill_m, int baseLeft, int baseRight) {
// Don't draw anything for empty rects.
if (w <= 0 || h <= 0) {
return;
}
int f, ddF_x, ddF_y;
int x, y, px, py;
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
int sw = 0, sp = 0, hp = 0;
PixelType *ptr_tl = (PixelType *)Base::_activeSurface->getBasePtr(x1 + r, y1 + r);
PixelType *ptr_tr = (PixelType *)Base::_activeSurface->getBasePtr(x1 + w - r, y1 + r);
PixelType *ptr_fill = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1);
int tl_x = x1 + r, tl_y = y1 + r;
int tr_x = x1 + w - r, tr_y = y1 + r;
int fill_x = x1, fill_y = y1;
int real_radius = r;
int short_h = h - r;
int long_h = h;
if (fill_m == kFillDisabled) {
while (sw++ < Base::_strokeWidth) {
colorFillClip<PixelType>(ptr_fill + sp + r, ptr_fill + w + 1 + sp - r, color, fill_x + r, fill_y + sp/pitch, _clippingArea);
colorFillClip<PixelType>(ptr_fill + hp - sp + r, ptr_fill + w + hp + 1 - sp - r, color, fill_x + r, fill_y + hp / pitch - sp / pitch, _clippingArea);
sp += pitch;
BE_RESET();
r--;
while (x++ < y) {
BE_ALGORITHM();
BE_DRAWCIRCLE_TOP_CLIP(ptr_tr, ptr_tl, x, y, px, py, tr_x, tr_y, tl_x, tl_y);
if (Base::_strokeWidth > 1)
BE_DRAWCIRCLE_TOP_CLIP(ptr_tr, ptr_tl, x, y, px - pitch, py, tr_x, tr_y, tl_x, tl_y);
}
}
ptr_fill += pitch * real_radius;
fill_y += real_radius;
while (short_h--) {
colorFillClip<PixelType>(ptr_fill, ptr_fill + Base::_strokeWidth, color, fill_x, fill_y, _clippingArea);
colorFillClip<PixelType>(ptr_fill + w - Base::_strokeWidth + 1, ptr_fill + w + 1, color, fill_x + w - Base::_strokeWidth + 1, fill_y, _clippingArea);
ptr_fill += pitch;
++fill_y;
}
if (baseLeft) {
sw = 0;
ptr_fill = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1 + h + 1);
fill_x = x1;
fill_y = y1 + h + 1;
while (sw++ < Base::_strokeWidth) {
colorFillClip<PixelType>(ptr_fill - baseLeft, ptr_fill, color, fill_x - baseLeft, fill_y, _clippingArea);
ptr_fill += pitch;
++fill_y;
}
}
if (baseRight) {
sw = 0;
ptr_fill = (PixelType *)Base::_activeSurface->getBasePtr(x1 + w, y1 + h + 1);
fill_x = x1 + w;
fill_y = y1 + h + 1;
while (sw++ < Base::_strokeWidth) {
colorFillClip<PixelType>(ptr_fill, ptr_fill + baseRight, color, fill_x, fill_y, _clippingArea);
ptr_fill += pitch;
++fill_y;
}
}
} else {
BE_RESET();
precalcGradient(long_h);
PixelType color1, color2;
color1 = color2 = color;
while (x++ < y) {
BE_ALGORITHM();
if (fill_m == kFillGradient) {
color1 = calcGradient(real_radius - x, long_h);
color2 = calcGradient(real_radius - y, long_h);
gradientFillClip(ptr_tl - x - py, w - 2 * r + 2 * x, x1 + r - x - y, real_radius - y, tl_x - x, tl_y - y);
gradientFillClip(ptr_tl - y - px, w - 2 * r + 2 * y, x1 + r - y - x, real_radius - x, tl_x - y, tl_y - x);
BE_DRAWCIRCLE_XCOLOR_TOP_CLIP(ptr_tr, ptr_tl, x, y, px, py, tr_x, tr_y, tl_x, tl_y);
} else {
colorFillClip<PixelType>(ptr_tl - x - py, ptr_tr + x - py, color, tl_x - x, tl_y - y, _clippingArea);
colorFillClip<PixelType>(ptr_tl - y - px, ptr_tr + y - px, color, tl_x - y, tl_y - x, _clippingArea);
BE_DRAWCIRCLE_TOP_CLIP(ptr_tr, ptr_tl, x, y, px, py, tr_x, tr_y, tl_x, tl_y);
}
}
ptr_fill += pitch * r;
fill_y += r;
while (short_h--) {
if (fill_m == kFillGradient) {
gradientFillClip(ptr_fill, w + 1, x1, real_radius++, fill_x, fill_y);
} else {
colorFillClip<PixelType>(ptr_fill, ptr_fill + w + 1, color, fill_x, fill_y, _clippingArea);
}
ptr_fill += pitch;
++fill_y;
}
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawTabShadow(int x1, int y1, int w, int h, int r, int offset, uint32 shadowIntensity) {
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
// "Harder" shadows when having lower BPP, since we will have artifacts (greenish tint on the modern theme)
uint8 expFactor = 3;
uint16 alpha = (_activeSurface->format.bytesPerPixel > 2) ? 4 : 8;
int xstart = x1;
int ystart = y1;
int width = w;
int height = h + offset + 1;
// HACK: shadowIntensity is tailed with 16-bits mantissa. We also represent the
// offset as a 16.16 fixed point number here as termination condition to simplify
// looping logic. An additional `shadowIntensity` is added to to keep consistent
// with previous implementation.
uint32 targetOffset = (uint32)(offset << 16) + shadowIntensity;
int curOffset = 0;
for (uint32 i = shadowIntensity; i <= targetOffset; i += shadowIntensity) {
int f, ddF_x, ddF_y;
int x, y, px, py;
PixelType *ptr_tl = (PixelType *)Base::_activeSurface->getBasePtr(xstart + r, ystart + r);
PixelType *ptr_tr = (PixelType *)Base::_activeSurface->getBasePtr(xstart + width - r, ystart + r);
PixelType *ptr_fill = (PixelType *)Base::_activeSurface->getBasePtr(xstart, ystart);
int short_h = height - (2 * r);
PixelType color = _format.RGBToColor(0, 0, 0);
BE_RESET();
// HACK: As we are drawing circles exploting 8-axis symmetry,
// there are 4 pixels on each circle which are drawn twice.
// this is ok on filled circles, but when blending on surfaces,
// we cannot let it blend twice. awful.
uint32 hb = 0;
while (x++ < y) {
BE_ALGORITHM();
if (((1 << x) & hb) == 0) {
blendFill(ptr_tl - y - px, ptr_tr + y - px, color, (uint8)alpha);
hb |= (1 << x);
}
if (((1 << y) & hb) == 0) {
blendFill(ptr_tl - x - py, ptr_tr + x - py, color, (uint8)alpha);
hb |= (1 << y);
}
}
ptr_fill += pitch * r;
while (short_h--) {
blendFill(ptr_fill, ptr_fill + width + 1, color, (uint8)alpha);
ptr_fill += pitch;
}
// Move shadow upward each iteration
xstart += (i >> 16) - curOffset;
curOffset = i >> 16;
// Multiply with expfactor
alpha = (alpha * (expFactor << 8)) >> 9;
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawTabShadowClip(int x1, int y1, int w, int h, int r, int offset, uint32 shadowIntensity) {
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
// "Harder" shadows when having lower BPP, since we will have artifacts (greenish tint on the modern theme)
uint8 expFactor = 3;
uint16 alpha = (_activeSurface->format.bytesPerPixel > 2) ? 4 : 8;
int xstart = x1;
int ystart = y1;
int width = w;
int height = h + offset + 1;
// HACK: shadowIntensity is tailed with 16-bits mantissa. We also represent the
// offset as a 16.16 fixed point number here as termination condition to simplify
// looping logic. An additional `shadowIntensity` is added to to keep consistent
// with previous implementation.
uint32 targetOffset = (uint32)(offset << 16) + shadowIntensity;
int curOffset = 0;
for (uint32 i = shadowIntensity; i <= targetOffset; i += shadowIntensity) {
int f, ddF_x, ddF_y;
int x, y, px, py;
PixelType *ptr_tl = (PixelType *)Base::_activeSurface->getBasePtr(xstart + r, ystart + r);
PixelType *ptr_tr = (PixelType *)Base::_activeSurface->getBasePtr(xstart + width - r, ystart + r);
PixelType *ptr_fill = (PixelType *)Base::_activeSurface->getBasePtr(xstart, ystart);
int tl_x = xstart + r, tl_y = ystart + r;
int fill_x = xstart, fill_y = ystart;
int short_h = height - (2 * r);
PixelType color = _format.RGBToColor(0, 0, 0);
BE_RESET();
// HACK: As we are drawing circles exploting 8-axis symmetry,
// there are 4 pixels on each circle which are drawn twice.
// this is ok on filled circles, but when blending on surfaces,
// we cannot let it blend twice. awful.
uint32 hb = 0;
while (x++ < y) {
BE_ALGORITHM();
if (((1 << x) & hb) == 0) {
blendFillClip(ptr_tl - y - px, ptr_tr + y - px, color, (uint8)alpha, tl_x - y, tl_y - x);
hb |= (1 << x);
}
if (((1 << y) & hb) == 0) {
blendFillClip(ptr_tl - x - py, ptr_tr + x - py, color, (uint8)alpha, tl_x - x, tl_y - y);
hb |= (1 << y);
}
}
ptr_fill += pitch * r;
fill_y += r;
while (short_h--) {
blendFillClip(ptr_fill, ptr_fill + width + 1, color, (uint8)alpha, fill_x, fill_y);
ptr_fill += pitch;
++fill_y;
}
// Move shadow one pixel upward each iteration
xstart += (i >> 16) - curOffset;
curOffset = i >> 16;
// Multiply with expfactor
alpha = (alpha * (expFactor << 8)) >> 9;
}
}
/** BEVELED TABS FOR CLASSIC THEME **/
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawBevelTabAlg(int x, int y, int w, int h, int bevel, PixelType top_color, PixelType bottom_color, int baseLeft, int baseRight) {
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
int i, j;
PixelType *ptr_left = (PixelType *)_activeSurface->getBasePtr(x, y);
i = bevel;
while (i--) {
colorFill<PixelType>(ptr_left, ptr_left + w, top_color);
ptr_left += pitch;
}
if (baseLeft > 0) {
i = h - bevel;
ptr_left = (PixelType *)_activeSurface->getBasePtr(x, y);
while (i--) {
colorFill<PixelType>(ptr_left, ptr_left + bevel, top_color);
ptr_left += pitch;
}
}
i = h - bevel;
j = bevel - 1;
ptr_left = (PixelType *)_activeSurface->getBasePtr(x + w - bevel, y);
while (i--) {
colorFill<PixelType>(ptr_left + j, ptr_left + bevel, bottom_color);
if (j > 0) j--;
ptr_left += pitch;
}
i = bevel;
ptr_left = (PixelType *)_activeSurface->getBasePtr(x + w - bevel, y + h - bevel);
while (i--) {
colorFill<PixelType>(ptr_left, ptr_left + baseRight + bevel, bottom_color);
if (baseLeft)
colorFill<PixelType>(ptr_left - w - baseLeft + bevel, ptr_left - w + bevel + bevel, top_color);
ptr_left += pitch;
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawBevelTabAlgClip(int x, int y, int w, int h, int bevel, PixelType top_color, PixelType bottom_color, int baseLeft, int baseRight) {
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
int i, j;
PixelType *ptr_left = (PixelType *)_activeSurface->getBasePtr(x, y);
int ptr_x = x, ptr_y = y;
i = bevel;
while (i--) {
colorFillClip<PixelType>(ptr_left, ptr_left + w, top_color, ptr_x, ptr_y, _clippingArea);
ptr_left += pitch;
++ptr_y;
}
if (baseLeft > 0) {
i = h - bevel;
ptr_left = (PixelType *)_activeSurface->getBasePtr(x, y);
ptr_x = x; ptr_y = y;
while (i--) {
colorFillClip<PixelType>(ptr_left, ptr_left + bevel, top_color, ptr_x, ptr_y, _clippingArea);
ptr_left += pitch;
++ptr_y;
}
}
i = h - bevel;
j = bevel - 1;
ptr_left = (PixelType *)_activeSurface->getBasePtr(x + w - bevel, y);
ptr_x = x + w - bevel; ptr_y = y;
while (i--) {
colorFillClip<PixelType>(ptr_left + j, ptr_left + bevel, bottom_color, ptr_x + j, ptr_y, _clippingArea);
if (j > 0) j--;
ptr_left += pitch;
++ptr_y;
}
i = bevel;
ptr_left = (PixelType *)_activeSurface->getBasePtr(x + w - bevel, y + h - bevel);
ptr_x = x + w - bevel; ptr_y = y + h - bevel;
while (i--) {
colorFillClip<PixelType>(ptr_left, ptr_left + baseRight + bevel, bottom_color, ptr_x, ptr_y, _clippingArea);
if (baseLeft)
colorFillClip<PixelType>(ptr_left - w - baseLeft + bevel, ptr_left - w + bevel + bevel, top_color, ptr_x - w - baseLeft + bevel, ptr_y, _clippingArea);
ptr_left += pitch;
++ptr_y;
}
}
/** SQUARE ALGORITHM **/
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawSquareAlg(int x, int y, int w, int h, PixelType color, VectorRenderer::FillMode fill_m) {
// Do not draw anything for empty rects.
if (w <= 0 || h <= 0) {
return;
}
PixelType *ptr = (PixelType *)_activeSurface->getBasePtr(x, y);
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
int max_h = h;
if (fill_m != kFillDisabled) {
while (h--) {
if (fill_m == kFillGradient)
color = calcGradient(max_h - h, max_h);
colorFill<PixelType>(ptr, ptr + w, color);
ptr += pitch;
}
} else {
int sw = Base::_strokeWidth, sp = 0, hp = pitch * (h - 1);
while (sw--) {
colorFill<PixelType>(ptr + sp, ptr + w + sp, color);
colorFill<PixelType>(ptr + hp - sp, ptr + w + hp - sp, color);
sp += pitch;
}
while (h--) {
colorFill<PixelType>(ptr, ptr + Base::_strokeWidth, color);
colorFill<PixelType>(ptr + w - Base::_strokeWidth, ptr + w, color);
ptr += pitch;
}
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawSquareAlgClip(int x, int y, int w, int h, PixelType color, VectorRenderer::FillMode fill_m) {
// Do not draw anything for empty rects.
if (w <= 0 || h <= 0) {
return;
}
PixelType *ptr = (PixelType *)_activeSurface->getBasePtr(x, y);
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
int max_h = h;
int ptr_y = y;
if (fill_m != kFillDisabled) {
while (h--) {
if (fill_m == kFillGradient)
color = calcGradient(max_h - h, max_h);
colorFillClip<PixelType>(ptr, ptr + w, color, x, ptr_y, _clippingArea);
ptr += pitch;
++ptr_y;
}
} else {
int sw = Base::_strokeWidth, sp = 0, hp = pitch * (h - 1);
while (sw--) {
colorFillClip<PixelType>(ptr + sp, ptr + w + sp, color, x, ptr_y + sp/pitch, _clippingArea);
colorFillClip<PixelType>(ptr + hp - sp, ptr + w + hp - sp, color, x, ptr_y + h - sp/pitch, _clippingArea);
sp += pitch;
}
while (h--) {
colorFillClip<PixelType>(ptr, ptr + Base::_strokeWidth, color, x, ptr_y, _clippingArea);
colorFillClip<PixelType>(ptr + w - Base::_strokeWidth, ptr + w, color, x + w - Base::_strokeWidth, ptr_y, _clippingArea);
ptr += pitch;
ptr_y += 1;
}
}
}
/** SQUARE ALGORITHM **/
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawBevelSquareAlg(int x, int y, int w, int h, int bevel, PixelType top_color, PixelType bottom_color) {
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
int i, j;
PixelType *ptr_left;
// Fill Background
ptr_left = (PixelType *)_activeSurface->getBasePtr(x, y);
i = h;
// Optimize rendering in case the background color is black
if ((_bgColor & ~_alphaMask) == 0) {
while (i--) {
darkenFill(ptr_left, ptr_left + w);
ptr_left += pitch;
}
} else {
while (i--) {
blendFill(ptr_left, ptr_left + w, _bgColor, 200);
ptr_left += pitch;
}
}
x = MAX(x - bevel, 0);
y = MAX(y - bevel, 0);
w = MIN(x + w + (bevel * 2), (int)_activeSurface->w) - x;
h = MIN(y + h + (bevel * 2), (int)_activeSurface->h) - y;
ptr_left = (PixelType *)_activeSurface->getBasePtr(x, y);
i = bevel;
while (i--) {
colorFill<PixelType>(ptr_left, ptr_left + w, top_color);
ptr_left += pitch;
}
ptr_left = (PixelType *)_activeSurface->getBasePtr(x, y + bevel);
i = h - bevel;
while (i--) {
colorFill<PixelType>(ptr_left, ptr_left + bevel, top_color);
ptr_left += pitch;
}
ptr_left = (PixelType *)_activeSurface->getBasePtr(x, y + h - bevel);
i = bevel;
while (i--) {
colorFill<PixelType>(ptr_left + i, ptr_left + w, bottom_color);
ptr_left += pitch;
}
ptr_left = (PixelType *)_activeSurface->getBasePtr(x + w - bevel, y);
i = h - bevel;
j = bevel - 1;
while (i--) {
colorFill<PixelType>(ptr_left + j, ptr_left + bevel, bottom_color);
if (j > 0) j--;
ptr_left += pitch;
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawBevelSquareAlgClip(int x, int y, int w, int h, int bevel, PixelType top_color, PixelType bottom_color) {
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
int i, j;
PixelType *ptr_left;
int ptr_x, ptr_y;
// Fill Background
ptr_left = (PixelType *)_activeSurface->getBasePtr(x, y);
ptr_x = x; ptr_y = y;
i = h;
// Optimize rendering in case the background color is black
if ((_bgColor & ~_alphaMask) == 0) {
while (i--) {
darkenFillClip(ptr_left, ptr_left + w, ptr_x, ptr_y);
ptr_left += pitch;
++ptr_y;
}
} else {
while (i-- ) {
blendFillClip(ptr_left, ptr_left + w, ptr_x, ptr_y, _bgColor, 200);
ptr_left += pitch;
}
}
x = MAX(x - bevel, 0);
y = MAX(y - bevel, 0);
w = MIN(x + w + (bevel * 2), (int)_activeSurface->w) - x;
h = MIN(y + h + (bevel * 2), (int)_activeSurface->h) - y;
ptr_left = (PixelType *)_activeSurface->getBasePtr(x, y);
ptr_x = x; ptr_y = y;
i = bevel;
while (i--) {
colorFillClip<PixelType>(ptr_left, ptr_left + w, top_color, ptr_x, ptr_y, _clippingArea);
ptr_left += pitch;
++ptr_y;
}
ptr_left = (PixelType *)_activeSurface->getBasePtr(x, y + bevel);
ptr_x = x; ptr_y = y + bevel;
i = h - bevel;
while (i--) {
colorFillClip<PixelType>(ptr_left, ptr_left + bevel, top_color, ptr_x, ptr_y, _clippingArea);
ptr_left += pitch;
++ptr_y;
}
ptr_left = (PixelType *)_activeSurface->getBasePtr(x, y + h - bevel);
ptr_x = x; ptr_y = y + h - bevel;
i = bevel;
while (i--) {
colorFillClip<PixelType>(ptr_left + i, ptr_left + w, bottom_color, ptr_x + i, ptr_y, _clippingArea);
ptr_left += pitch;
++ptr_y;
}
ptr_left = (PixelType *)_activeSurface->getBasePtr(x + w - bevel, y);
ptr_x = x + w - bevel; ptr_y = y;
i = h - bevel;
j = bevel - 1;
while (i--) {
colorFillClip<PixelType>(ptr_left + j, ptr_left + bevel, bottom_color, ptr_x + j, ptr_y, _clippingArea);
if (j > 0) j--;
ptr_left += pitch;
++ptr_y;
}
}
/** GENERIC LINE ALGORITHM **/
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawLineAlg(int x1, int y1, int x2, int y2, uint dx, uint dy, PixelType color) {
PixelType *ptr = (PixelType *)_activeSurface->getBasePtr(x1, y1);
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
int strokeState = Base::_strokeWidth > 1 ? ((dx > dy) ? 1 : 2) : 0;
// Stroke widths before and after the coordinate
// Before is favoured in case of even stroke width
int stb = Base::_strokeWidth >> 1;
int sta = stb + (Base::_strokeWidth & 1);
int xdir = (x2 > x1) ? 1 : -1;
if (strokeState == 0) {
// No stroke width
*ptr = (PixelType)color;
} else if (strokeState == 1) {
// Horizontal line
intptr p = -stb * pitch;
for (int i = -stb; i < sta; i++, p += pitch) {
*(ptr + p) = (PixelType)color;
}
} else {
// Vertical line
colorFill<PixelType>(ptr - stb, ptr + sta, (PixelType)color);
}
if (dx > dy) {
int ddy = dy * 2;
int dysub = ddy - (dx * 2);
int error_term = ddy - dx;
while (dx--) {
if (error_term >= 0) {
ptr += pitch;
error_term += dysub;
} else {
error_term += ddy;
}
ptr += xdir;
if (strokeState) {
intptr p = -stb * pitch;
for (int i = -stb; i < sta; i++, p += pitch) {
*(ptr + p) = (PixelType)color;
}
} else {
*ptr = (PixelType)color;
}
}
} else {
int ddx = dx * 2;
int dxsub = ddx - (dy * 2);
int error_term = ddx - dy;
while (dy--) {
if (error_term >= 0) {
ptr += xdir;
error_term += dxsub;
} else {
error_term += ddx;
}
ptr += pitch;
if (strokeState) {
colorFill<PixelType>(ptr - stb, ptr + sta, (PixelType)color);
} else {
*ptr = (PixelType)color;
}
}
}
ptr = (PixelType *)_activeSurface->getBasePtr(x2, y2);
if (strokeState == 0) {
// No stroke width
*ptr = (PixelType)color;
} else if (strokeState == 1) {
// Horizontal line
intptr p = -stb * pitch;
for (int i = -stb; i < sta; i++, p += pitch) {
*(ptr + p) = (PixelType)color;
}
} else {
// Vertical line
colorFill<PixelType>(ptr - stb, ptr + sta, (PixelType)color);
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawLineAlgClip(int x1, int y1, int x2, int y2, uint dx, uint dy, PixelType color) {
PixelType *ptr = (PixelType *)_activeSurface->getBasePtr(x1, y1);
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
int strokeState = Base::_strokeWidth > 1 ? ((dx > dy) ? 1 : 2) : 0;
// Stroke widths before and after the coordinate
// Before is favoured in case of even stroke width
int stb = Base::_strokeWidth >> 1;
int sta = stb + (Base::_strokeWidth & 1);
int xdir = (x2 > x1) ? 1 : -1;
int ptr_x = x1, ptr_y = y1;
if (strokeState == 0) {
// No stroke width
if (IS_IN_CLIP(ptr_x, ptr_y)) *ptr = (PixelType)color;
} else if (strokeState == 1) {
// Horizontal line
intptr p = -stb * pitch;
for (int i = -stb; i < sta; i++, p += pitch) {
if (IS_IN_CLIP(ptr_x, ptr_y + i)) *(ptr + p) = (PixelType)color;
}
} else {
// Vertical line
colorFillClip<PixelType>(ptr - stb, ptr + sta, (PixelType)_fgColor, ptr_x - stb, ptr_y, _clippingArea);
}
if (dx > dy) {
int ddy = dy * 2;
int dysub = ddy - (dx * 2);
int error_term = ddy - dx;
while (dx--) {
if (error_term >= 0) {
ptr += pitch;
++ptr_y;
error_term += dysub;
} else {
error_term += ddy;
}
ptr += xdir;
ptr_x += xdir;
if (strokeState) {
intptr p = -stb * pitch;
for (int i = -stb; i < sta; i++, p += pitch) {
if (IS_IN_CLIP(ptr_x, ptr_y + i)) *(ptr + p) = (PixelType)color;
}
} else {
if (IS_IN_CLIP(ptr_x, ptr_y)) *ptr = (PixelType)color;
}
}
} else {
int ddx = dx * 2;
int dxsub = ddx - (dy * 2);
int error_term = ddx - dy;
while (dy--) {
if (error_term >= 0) {
ptr += xdir;
ptr_x += xdir;
error_term += dxsub;
} else {
error_term += ddx;
}
ptr += pitch;
++ptr_y;
if (strokeState) {
colorFillClip<PixelType>(ptr - stb, ptr + sta, (PixelType)_fgColor, ptr_x - stb, ptr_y, _clippingArea);
} else {
if (IS_IN_CLIP(ptr_x, ptr_y)) *ptr = (PixelType)color;
}
}
}
ptr = (PixelType *)_activeSurface->getBasePtr(x2, y2);
ptr_x = x2; ptr_y = y2;
if (strokeState == 0) {
// No stroke width
if (IS_IN_CLIP(ptr_x, ptr_y)) *ptr = (PixelType)color;
} else if (strokeState == 1) {
// Horizontal line
intptr p = -stb * pitch;
for (int i = -stb; i < sta; i++, p += pitch) {
if (IS_IN_CLIP(ptr_x, ptr_y + i)) *(ptr + p) = (PixelType)color;
}
} else {
// Vertical line
colorFillClip<PixelType>(ptr - stb, ptr + sta, (PixelType)_fgColor, ptr_x - stb, ptr_y, _clippingArea);
}
}
/** VERTICAL TRIANGLE DRAWING ALGORITHM **/
/**
FIXED POINT ARITHMETIC
**/
#define FIXED_POINT 1
#if FIXED_POINT
#define ipart(x) ((x) & ~0xFF)
// This is not really correct since gradient is not percentage, but [0..255]
#define rfpart(x) ((0x100 - ((x) & 0xFF)) * 100 >> 8)
//#define rfpart(x) (0x100 - ((x) & 0xFF))
#else
#define ipart(x) ((int)x)
#define round(x) (ipart(x + 0.5))
#define fpart(x) (x - ipart(x))
#define rfpart(x) (int)((1 - fpart(x)) * 100)
#endif
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawTriangleHorzAlg(int x1, int y1, int w, int h, bool inverted, PixelType color, VectorRenderer::FillMode fill_m) {
// Don't draw anything for empty rects. This assures dy is always different
// from zero.
if (w <= 0 || h <= 0) {
return;
}
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
int gradient_w = 0;
int x_pitch_sign = 1;
if (!inverted) {
x1 += w;
x_pitch_sign = -1;
}
PixelType *ptr_bottom = (PixelType *)_activeSurface->getBasePtr(x1, y1);
PixelType *floor = ptr_bottom - pitch;
PixelType *ptr_top = (PixelType *)_activeSurface->getBasePtr(x1, y1 + h);
int x2 = x1 + w;
int y2 = y1 + h / 2;
#if FIXED_POINT
int dx = (x2 - x1) << 8;
int dy = (y2 - y1) << 8;
if (abs(dy) > abs(dx)) {
#else
double dx = (double)x2 - (double)x1;
double dy = (double)y2 - (double)y1;
if (fabs(dy) > fabs(dx)) {
#endif
while (floor != ptr_top) {
floor += pitch;
blendPixelPtr(floor, color, 50);
}
#if FIXED_POINT
// In this branch dx is always different from zero. This is because
// abs(dx) is strictly greater than abs(dy), and abs returns zero
// as minimal value.
int gradient = (dx << 8) / dy;
int interx = (x1 << 8) + gradient;
#else
double gradient = dx / dy;
double interx = x1 + gradient;
#endif
for (int y = y1 + 1; y < y2; y++) {
#if FIXED_POINT
if (interx + gradient >= ipart(interx) + 0x100) {
#else
if (interx + gradient >= ipart(interx) + 1) {
#endif
ptr_bottom += pitch;
ptr_top -= pitch;
}
ptr_top += x_pitch_sign;
ptr_bottom += x_pitch_sign;
interx += gradient;
switch (fill_m) {
case kFillDisabled:
*ptr_top = *ptr_bottom = color;
break;
case kFillForeground:
case kFillBackground:
colorVFill<PixelType>(ptr_bottom + pitch, ptr_top, pitch, color);
blendPixelPtr(ptr_bottom, color, rfpart(interx));
blendPixelPtr(ptr_top, color, rfpart(interx));
break;
case kFillGradient:
colorVFill<PixelType>(ptr_bottom, ptr_top, pitch, calcGradient(gradient_w++, w));
blendPixelPtr(ptr_bottom, color, rfpart(interx));
blendPixelPtr(ptr_top, color, rfpart(interx));
break;
default:
break;
}
}
return;
}
#if FIXED_POINT
if (abs(dy) < abs(dx)) {
#else
if (fabs(dy) < fabs(dx)) {
#endif
ptr_top -= pitch;
while (floor != ptr_top) {
floor += pitch;
blendPixelPtr(floor, color, 50);
}
#if FIXED_POINT
int gradient = (dy << 8) / (dx + 0x100);
int intery = (y1 << 8) + gradient;
#else
double gradient = dy / (dx + 1);
double intery = y1 + gradient;
#endif
for (int x = x1 + 1; x < x2; x++) {
#if FIXED_POINT
if (intery + gradient >= ipart(intery) + 0x100) {
#else
if (intery + gradient >= ipart(intery) + 1) {
#endif
ptr_bottom += pitch;
ptr_top -= pitch;
}
ptr_top += x_pitch_sign;
ptr_bottom += x_pitch_sign;
intery += gradient;
switch (fill_m) {
case kFillDisabled:
*ptr_top = *ptr_bottom = color;
break;
case kFillForeground:
case kFillBackground:
colorVFill<PixelType>(ptr_bottom + pitch, ptr_top, pitch, color);
blendPixelPtr(ptr_bottom, color, rfpart(intery));
blendPixelPtr(ptr_top, color, rfpart(intery));
break;
case kFillGradient:
colorVFill<PixelType>(ptr_bottom, ptr_top, pitch, calcGradient(gradient_w++, w));
blendPixelPtr(ptr_bottom, color, rfpart(intery));
blendPixelPtr(ptr_top, color, rfpart(intery));
break;
default:
break;
}
}
return;
}
ptr_top -= pitch;
while (floor != ptr_top) {
floor += pitch;
blendPixelPtr(floor, color, 50);
}
#if FIXED_POINT
int gradient = (dy / dx) << 8;
int intery = (y1 << 8) + gradient;
#else
double gradient = dy / dx;
double intery = y1 + gradient;
#endif
for (int x = x1 + 1; x < x2; x++) {
ptr_bottom += pitch;
ptr_top -= pitch;
ptr_top += x_pitch_sign;
ptr_bottom += x_pitch_sign;
intery += gradient;
switch (fill_m) {
case kFillDisabled:
*ptr_top = *ptr_bottom = color;
break;
case kFillForeground:
case kFillBackground:
colorVFill<PixelType>(ptr_bottom + pitch, ptr_top, pitch, color);
blendPixelPtr(ptr_bottom, color, rfpart(intery));
blendPixelPtr(ptr_top, color, rfpart(intery));
break;
case kFillGradient:
colorVFill<PixelType>(ptr_bottom, ptr_top, pitch, calcGradient(gradient_w++, w));
blendPixelPtr(ptr_bottom, color, rfpart(intery));
blendPixelPtr(ptr_top, color, rfpart(intery));
break;
default:
break;
}
}
}
/////////////
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawTriangleHorzAlgClip(int x1, int y1, int w, int h, bool inverted, PixelType color, VectorRenderer::FillMode fill_m) {
// Don't draw anything for empty rects. This assures dy is always different
// from zero.
if (w <= 0 || h <= 0) {
return;
}
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
int gradient_w = 0;
int x_pitch_sign = 1;
if (!inverted) {
x1 += w;
x_pitch_sign = -1;
}
PixelType *ptr_bottom = (PixelType *)_activeSurface->getBasePtr(x1, y1);
PixelType *floor = ptr_bottom - pitch;
PixelType *ptr_top = (PixelType *)_activeSurface->getBasePtr(x1, y1 + h);
int x2 = x1 + w;
int y2 = y1 + h / 2;
int x_bottom = x1;
int y_bottom = y1;
int x_top = x1;
int y_top = y1 + h;
int x_floor = x_bottom;
int y_floor = y_bottom - 1;
#if FIXED_POINT
int dx = (x2 - x1) << 8;
int dy = (y2 - y1) << 8;
if (abs(dy) > abs(dx)) {
#else
double dx = (double)x2 - (double)x1;
double dy = (double)y2 - (double)y1;
if (fabs(dy) > fabs(dx)) {
#endif
while (floor != ptr_top) {
floor += pitch;
blendPixelPtrClip(floor, color, 50, x_floor, ++y_floor);
}
#if FIXED_POINT
// In this branch dx is always different from zero. This is because
// abs(dx) is strictly greater than abs(dy), and abs returns zero
// as minimal value.
int gradient = (dx << 8) / dy;
int interx = (x1 << 8) + gradient;
#else
double gradient = dx / dy;
double interx = x1 + gradient;
#endif
for (int y = y1 + 1; y < y2; y++) {
#if FIXED_POINT
if (interx + gradient >= ipart(interx) + 0x100) {
#else
if (interx + gradient >= ipart(interx) + 1) {
#endif
ptr_bottom += pitch;
ptr_top -= pitch;
++y_bottom;
--y_top;
}
ptr_top += x_pitch_sign;
ptr_bottom += x_pitch_sign;
x_top += x_pitch_sign;
x_bottom += x_pitch_sign;
interx += gradient;
switch (fill_m) {
case kFillDisabled:
if (IS_IN_CLIP(x_top, y_top)) *ptr_top = color;
if (IS_IN_CLIP(x_bottom, y_bottom)) *ptr_bottom = color;
break;
case kFillForeground:
case kFillBackground:
colorVFillClip<PixelType>(ptr_bottom + pitch, ptr_top, pitch, color, x_bottom, y_bottom + 1, _clippingArea);
blendPixelPtrClip(ptr_bottom, color, rfpart(interx), x_bottom, y_bottom);
blendPixelPtrClip(ptr_top, color, rfpart(interx), x_top, y_top);
break;
case kFillGradient:
colorVFillClip<PixelType>(ptr_bottom, ptr_top, pitch, calcGradient(gradient_w++, w), x_bottom, y_bottom, _clippingArea);
blendPixelPtrClip(ptr_bottom, color, rfpart(interx), x_bottom, y_bottom);
blendPixelPtrClip(ptr_top, color, rfpart(interx), x_top, y_top);
break;
default:
break;
}
}
return;
}
#if FIXED_POINT
if (abs(dy) < abs(dx)) {
#else
if (fabs(dy) < fabs(dx)) {
#endif
ptr_top -= pitch;
--y_top;
while (floor != ptr_top) {
floor += pitch;
blendPixelPtrClip(floor, color, 50, x_floor, ++y_floor);
}
#if FIXED_POINT
int gradient = (dy << 8) / (dx + 0x100);
int intery = (y1 << 8) + gradient;
#else
double gradient = dy / (dx + 1);
double intery = y1 + gradient;
#endif
for (int x = x1 + 1; x < x2; x++) {
#if FIXED_POINT
if (intery + gradient >= ipart(intery) + 0x100) {
#else
if (intery + gradient >= ipart(intery) + 1) {
#endif
ptr_bottom += pitch;
ptr_top -= pitch;
++y_bottom;
--y_top;
}
ptr_top += x_pitch_sign;
ptr_bottom += x_pitch_sign;
x_bottom += x_pitch_sign;
x_top += x_pitch_sign;
intery += gradient;
switch (fill_m) {
case kFillDisabled:
if (IS_IN_CLIP(x_top, y_top)) *ptr_top = color;
if (IS_IN_CLIP(x_bottom, y_bottom)) *ptr_bottom = color;
break;
case kFillForeground:
case kFillBackground:
colorVFillClip<PixelType>(ptr_bottom + pitch, ptr_top, pitch, color, x_bottom, y_bottom + 1, _clippingArea);
blendPixelPtrClip(ptr_bottom, color, rfpart(intery), x_bottom, y_bottom);
blendPixelPtrClip(ptr_top, color, rfpart(intery), x_top, y_top);
break;
case kFillGradient:
colorVFillClip<PixelType>(ptr_bottom, ptr_top, pitch, calcGradient(gradient_w++, w), x_bottom, y_bottom, _clippingArea);
blendPixelPtrClip(ptr_bottom, color, rfpart(intery), x_bottom, y_bottom);
blendPixelPtrClip(ptr_top, color, rfpart(intery), x_top, y_top);
break;
default:
break;
}
}
return;
}
ptr_top -= pitch;
--y_top;
while (floor != ptr_top) {
floor += pitch;
blendPixelPtrClip(floor, color, 50, x_floor, ++y_floor);
}
#if FIXED_POINT
int gradient = (dy / dx) << 8;
int intery = (y1 << 8) + gradient;
#else
double gradient = dy / dx;
double intery = y1 + gradient;
#endif
for (int x = x1 + 1; x < x2; x++) {
ptr_bottom += pitch;
ptr_top -= pitch;
++y_bottom;
--y_top;
ptr_top += x_pitch_sign;
ptr_bottom += x_pitch_sign;
x_bottom += x_pitch_sign;
x_top += x_pitch_sign;
intery += gradient;
switch (fill_m) {
case kFillDisabled:
if (IS_IN_CLIP(x_top, y_top)) *ptr_top = color;
if (IS_IN_CLIP(x_bottom, y_bottom)) *ptr_bottom = color;
break;
case kFillForeground:
case kFillBackground:
colorVFillClip<PixelType>(ptr_bottom + pitch, ptr_top, pitch, color, x_bottom, y_bottom + 1, _clippingArea);
blendPixelPtrClip(ptr_bottom, color, rfpart(intery), x_bottom, y_bottom);
blendPixelPtrClip(ptr_top, color, rfpart(intery), x_top, y_top);
break;
case kFillGradient:
colorVFillClip<PixelType>(ptr_bottom, ptr_top, pitch, calcGradient(gradient_w++, w), x_bottom, y_bottom, _clippingArea);
blendPixelPtrClip(ptr_bottom, color, rfpart(intery), x_bottom, y_bottom);
blendPixelPtrClip(ptr_top, color, rfpart(intery), x_top, y_top);
break;
default:
break;
}
}
}
/////////////
/** HORIZONTAL TRIANGLE DRAWING - FAST VERSION FOR SQUARED TRIANGLES */
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawTriangleFastH(int x1, int y1, int size, bool inverted, PixelType color, VectorRenderer::FillMode fill_m) {
// Do not draw anything for empty rects.
if (size <= 0) {
return;
}
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
int x_pitch_sign = 1;
if (!inverted) {
y1 += size;
x_pitch_sign = -1;
}
int gradient_w = 0;
PixelType *ptr_bottom = (PixelType *)_activeSurface->getBasePtr(x1, y1);
PixelType *ptr_top = (PixelType *)_activeSurface->getBasePtr(x1, y1 + size);
int x2 = x1 + size;
int y2 = y1 + size / 2;
int deltaX = abs(x2 - x1);
int deltaY = abs(y2 - y1);
int signX = x1 < x2 ? 1 : -1;
int signY = y1 < y2 ? 1 : -1;
int error = deltaX - deltaY;
colorVFill<PixelType>(ptr_bottom, ptr_top, pitch, color);
while (1) {
switch (fill_m) {
case kFillDisabled:
*ptr_top = *ptr_bottom = color;
break;
case kFillForeground:
case kFillBackground:
colorVFill<PixelType>(ptr_bottom, ptr_top, pitch, color);
break;
case kFillGradient:
colorVFill<PixelType>(ptr_bottom, ptr_top, pitch, calcGradient(gradient_w++, size));
break;
default:
break;
}
if (x1 == x2 && y1 == y2)
break;
int error2 = error * 2;
if (error2 > -deltaX) {
error -= deltaX;
y1 += signY;
ptr_bottom += signY * pitch;
ptr_top += -signY * pitch;
}
if (error2 < deltaY) {
error += deltaY;
x1 += signX;
ptr_bottom += x_pitch_sign;
ptr_top += x_pitch_sign;
}
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawTriangleVertAlg(int x1, int y1, int w, int h, bool inverted, PixelType color, VectorRenderer::FillMode fill_m) {
// Don't draw anything for empty rects. This assures dy is always different
// from zero.
if (w <= 0 || h <= 0) {
return;
}
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
int gradient_h = 0;
if (!inverted) {
pitch = -pitch;
y1 += h;
}
PixelType *ptr_right = (PixelType *)_activeSurface->getBasePtr(x1, y1);
PixelType *floor = ptr_right - 1;
PixelType *ptr_left = (PixelType *)_activeSurface->getBasePtr(x1 + w, y1);
int x2 = x1 + w / 2;
int y2 = y1 + h;
#if FIXED_POINT
int dx = (x2 - x1) << 8;
int dy = (y2 - y1) << 8;
if (abs(dx) > abs(dy)) {
#else
double dx = (double)x2 - (double)x1;
double dy = (double)y2 - (double)y1;
if (fabs(dx) > fabs(dy)) {
#endif
while (floor++ != ptr_left)
blendPixelPtr(floor, color, 50);
#if FIXED_POINT
// In this branch dx is always different from zero. This is because
// abs(dx) is strictly greater than abs(dy), and abs returns zero
// as minimal value.
int gradient = (dy << 8) / dx;
int intery = (y1 << 8) + gradient;
#else
double gradient = dy / dx;
double intery = y1 + gradient;
#endif
for (int x = x1 + 1; x < x2; x++) {
#if FIXED_POINT
if (intery + gradient >= ipart(intery) + 0x100) {
#else
if (intery + gradient >= ipart(intery) + 1) {
#endif
ptr_right++;
ptr_left--;
}
ptr_left += pitch;
ptr_right += pitch;
intery += gradient;
switch (fill_m) {
case kFillDisabled:
*ptr_left = *ptr_right = color;
break;
case kFillForeground:
case kFillBackground:
colorFill<PixelType>(ptr_right + 1, ptr_left, color);
blendPixelPtr(ptr_right, color, rfpart(intery));
blendPixelPtr(ptr_left, color, rfpart(intery));
break;
case kFillGradient:
colorFill<PixelType>(ptr_right, ptr_left, calcGradient(gradient_h++, h));
blendPixelPtr(ptr_right, color, rfpart(intery));
blendPixelPtr(ptr_left, color, rfpart(intery));
break;
default:
break;
}
}
return;
}
#if FIXED_POINT
if (abs(dx) < abs(dy)) {
#else
if (fabs(dx) < fabs(dy)) {
#endif
ptr_left--;
while (floor++ != ptr_left)
blendPixelPtr(floor, color, 50);
#if FIXED_POINT
int gradient = (dx << 8) / (dy + 0x100);
int interx = (x1 << 8) + gradient;
#else
double gradient = dx / (dy + 1);
double interx = x1 + gradient;
#endif
for (int y = y1 + 1; y < y2; y++) {
#if FIXED_POINT
if (interx + gradient >= ipart(interx) + 0x100) {
#else
if (interx + gradient >= ipart(interx) + 1) {
#endif
ptr_right++;
ptr_left--;
}
ptr_left += pitch;
ptr_right += pitch;
interx += gradient;
switch (fill_m) {
case kFillDisabled:
*ptr_left = *ptr_right = color;
break;
case kFillForeground:
case kFillBackground:
colorFill<PixelType>(ptr_right + 1, ptr_left, color);
blendPixelPtr(ptr_right, color, rfpart(interx));
blendPixelPtr(ptr_left, color, rfpart(interx));
break;
case kFillGradient:
colorFill<PixelType>(ptr_right, ptr_left, calcGradient(gradient_h++, h));
blendPixelPtr(ptr_right, color, rfpart(interx));
blendPixelPtr(ptr_left, color, rfpart(interx));
break;
default:
break;
}
}
return;
}
ptr_left--;
while (floor++ != ptr_left)
blendPixelPtr(floor, color, 50);
#if FIXED_POINT
int gradient = (dx / dy) << 8;
int interx = (x1 << 8) + gradient;
#else
double gradient = dx / dy;
double interx = x1 + gradient;
#endif
for (int y = y1 + 1; y < y2; y++) {
ptr_right++;
ptr_left--;
ptr_left += pitch;
ptr_right += pitch;
interx += gradient;
switch (fill_m) {
case kFillDisabled:
*ptr_left = *ptr_right = color;
break;
case kFillForeground:
case kFillBackground:
colorFill<PixelType>(ptr_right + 1, ptr_left, color);
blendPixelPtr(ptr_right, color, rfpart(interx));
blendPixelPtr(ptr_left, color, rfpart(interx));
break;
case kFillGradient:
colorFill<PixelType>(ptr_right, ptr_left, calcGradient(gradient_h++, h));
blendPixelPtr(ptr_right, color, rfpart(interx));
blendPixelPtr(ptr_left, color, rfpart(interx));
break;
default:
break;
}
}
}
/////////////
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawTriangleVertAlgClip(int x1, int y1, int w, int h, bool inverted, PixelType color, VectorRenderer::FillMode fill_m) {
// Don't draw anything for empty rects. This assures dy is always different
// from zero.
if (w <= 0 || h <= 0) {
return;
}
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
int gradient_h = 0;
int y_pitch_sign = 1;
if (!inverted) {
pitch = -pitch;
y1 += h;
y_pitch_sign = -1;
}
PixelType *ptr_right = (PixelType *)_activeSurface->getBasePtr(x1, y1);
PixelType *floor = ptr_right - 1;
PixelType *ptr_left = (PixelType *)_activeSurface->getBasePtr(x1 + w, y1);
int x2 = x1 + w / 2;
int y2 = y1 + h;
int x_right = x1;
int y_right = y1;
int x_left = x1 + w;
int y_left = y1;
int x_floor = x_right - 1;
int y_floor = y_right;
#if FIXED_POINT
int dx = (x2 - x1) << 8;
int dy = (y2 - y1) << 8;
if (abs(dx) > abs(dy)) {
#else
double dx = (double)x2 - (double)x1;
double dy = (double)y2 - (double)y1;
if (fabs(dx) > fabs(dy)) {
#endif
while (floor++ != ptr_left)
blendPixelPtrClip(floor, color, 50, ++x_floor, y_floor);
#if FIXED_POINT
// In this branch dx is always different from zero. This is because
// abs(dx) is strictly greater than abs(dy), and abs returns zero
// as minimal value.
int gradient = (dy << 8) / dx;
int intery = (y1 << 8) + gradient;
#else
double gradient = dy / dx;
double intery = y1 + gradient;
#endif
for (int x = x1 + 1; x < x2; x++) {
#if FIXED_POINT
if (intery + gradient >= ipart(intery) + 0x100) {
#else
if (intery + gradient >= ipart(intery) + 1) {
#endif
ptr_right++;
ptr_left--;
++x_right;
--x_left;
}
ptr_left += pitch;
ptr_right += pitch;
y_right += y_pitch_sign;
y_left += y_pitch_sign;
intery += gradient;
switch (fill_m) {
case kFillDisabled:
if (IS_IN_CLIP(x_left, y_left)) *ptr_left = color;
if (IS_IN_CLIP(x_right, y_right)) *ptr_right = color;
break;
case kFillForeground:
case kFillBackground:
colorFillClip<PixelType>(ptr_right + 1, ptr_left, color, x_right + 1, y_right, _clippingArea);
blendPixelPtrClip(ptr_right, color, rfpart(intery), x_right, y_right);
blendPixelPtrClip(ptr_left, color, rfpart(intery), x_left, y_left);
break;
case kFillGradient:
colorFillClip<PixelType>(ptr_right, ptr_left, calcGradient(gradient_h++, h), x_right, y_right, _clippingArea);
blendPixelPtrClip(ptr_right, color, rfpart(intery), x_right, y_right);
blendPixelPtrClip(ptr_left, color, rfpart(intery), x_left, y_left);
break;
default:
break;
}
}
return;
}
#if FIXED_POINT
if (abs(dx) < abs(dy)) {
#else
if (fabs(dx) < fabs(dy)) {
#endif
ptr_left--;
--x_left;
while (floor++ != ptr_left)
blendPixelPtrClip(floor, color, 50, ++x_floor, y_floor);
#if FIXED_POINT
int gradient = (dx << 8) / (dy + 0x100);
int interx = (x1 << 8) + gradient;
#else
double gradient = dx / (dy + 1);
double interx = x1 + gradient;
#endif
for (int y = y1 + 1; y < y2; y++) {
#if FIXED_POINT
if (interx + gradient >= ipart(interx) + 0x100) {
#else
if (interx + gradient >= ipart(interx) + 1) {
#endif
ptr_right++;
ptr_left--;
++x_right;
--x_left;
}
ptr_left += pitch;
ptr_right += pitch;
y_right += y_pitch_sign;
y_left += y_pitch_sign;
interx += gradient;
switch (fill_m) {
case kFillDisabled:
if (IS_IN_CLIP(x_left, y_left)) *ptr_left = color;
if (IS_IN_CLIP(x_right, y_right)) *ptr_right = color;
break;
case kFillForeground:
case kFillBackground:
colorFillClip<PixelType>(ptr_right + 1, ptr_left, color, x_right + 1, y_right, _clippingArea);
blendPixelPtrClip(ptr_right, color, rfpart(interx), x_right, y_right);
blendPixelPtrClip(ptr_left, color, rfpart(interx), x_left, y_left);
break;
case kFillGradient:
colorFillClip<PixelType>(ptr_right, ptr_left, calcGradient(gradient_h++, h), x_right, y_right, _clippingArea);
blendPixelPtrClip(ptr_right, color, rfpart(interx), x_right, y_right);
blendPixelPtrClip(ptr_left, color, rfpart(interx), x_left, y_left);
break;
default:
break;
}
}
return;
}
ptr_left--;
--x_left;
while (floor++ != ptr_left)
blendPixelPtrClip(floor, color, 50, ++x_floor, y_floor);
#if FIXED_POINT
int gradient = (dx / dy) << 8;
int interx = (x1 << 8) + gradient;
#else
double gradient = dx / dy;
double interx = x1 + gradient;
#endif
for (int y = y1 + 1; y < y2; y++) {
ptr_right++;
ptr_left--;
++x_right;
--x_left;
ptr_left += pitch;
ptr_right += pitch;
y_right += y_pitch_sign;
y_left += y_pitch_sign;
interx += gradient;
switch (fill_m) {
case kFillDisabled:
if (IS_IN_CLIP(x_left, y_left)) *ptr_left = color;
if (IS_IN_CLIP(x_right, y_right)) *ptr_right = color;
break;
case kFillForeground:
case kFillBackground:
colorFillClip<PixelType>(ptr_right + 1, ptr_left, color, x_right + 1, y_right, _clippingArea);
blendPixelPtrClip(ptr_right, color, rfpart(interx), x_right, y_right);
blendPixelPtrClip(ptr_left, color, rfpart(interx), x_left, y_left);
break;
case kFillGradient:
colorFillClip<PixelType>(ptr_right, ptr_left, calcGradient(gradient_h++, h), x_right, y_right, _clippingArea);
blendPixelPtrClip(ptr_right, color, rfpart(interx), x_right, y_right);
blendPixelPtrClip(ptr_left, color, rfpart(interx), x_left, y_left);
break;
default:
break;
}
}
}
/////////////
/** VERTICAL TRIANGLE DRAWING - FAST VERSION FOR SQUARED TRIANGLES */
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawTriangleFastV(int x1, int y1, int size, bool inverted, PixelType color, VectorRenderer::FillMode fill_m) {
// Do not draw anything for empty rects.
if (size <= 0) {
return;
}
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
if (!inverted) {
pitch = -pitch;
y1 += size;
}
int gradient_h = 0;
PixelType *ptr_right = (PixelType *)_activeSurface->getBasePtr(x1, y1);
PixelType *ptr_left = (PixelType *)_activeSurface->getBasePtr(x1 + size, y1);
int x2 = x1 + size / 2;
int y2 = y1 + size;
int deltaX = abs(x2 - x1);
int deltaY = abs(y2 - y1);
int signX = x1 < x2 ? 1 : -1;
int signY = y1 < y2 ? 1 : -1;
int error = deltaX - deltaY;
colorFill<PixelType>(ptr_right, ptr_left, color);
while (1) {
switch (fill_m) {
case kFillDisabled:
*ptr_left = *ptr_right = color;
break;
case kFillForeground:
case kFillBackground:
colorFill<PixelType>(ptr_right, ptr_left, color);
break;
case kFillGradient:
colorFill<PixelType>(ptr_right, ptr_left, calcGradient(gradient_h++, size));
break;
default:
break;
}
if (x1 == x2 && y1 == y2)
break;
int error2 = error * 2;
if (error2 > -deltaY) {
error -= deltaY;
x1 += signX;
ptr_right += signX;
ptr_left += -signX;
}
if (error2 < deltaX) {
error += deltaX;
y1 += signY;
ptr_right += pitch;
ptr_left += pitch;
}
}
}
/** ROUNDED SQUARE ALGORITHM **/
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawBorderRoundedSquareAlg(int x1, int y1, int r, int w, int h, PixelType color, VectorRenderer::FillMode fill_m, uint8 alpha_t, uint8 alpha_r, uint8 alpha_b, uint8 alpha_l) {
int f, ddF_x, ddF_y;
int x, y, px, py;
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
int sw = 0;
PixelType *ptr_tl = (PixelType *)Base::_activeSurface->getBasePtr(x1 + r, y1 + r);
PixelType *ptr_tr = (PixelType *)Base::_activeSurface->getBasePtr(x1 + w - r, y1 + r);
PixelType *ptr_bl = (PixelType *)Base::_activeSurface->getBasePtr(x1 + r, y1 + h - r);
PixelType *ptr_br = (PixelType *)Base::_activeSurface->getBasePtr(x1 + w - r, y1 + h - r);
PixelType *ptr_fill = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1);
int real_radius = r;
int short_h = h - (2 * r) + 2;
PixelType color1 = color;
PixelType color2 = color;
while (sw++ < Base::_strokeWidth) {
PixelType *ptr_fill3 = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1 + sw - 1);
this->blendFill(ptr_fill3 + r, ptr_fill3 + w + 1 - r, color1, alpha_t); // top
PixelType *ptr_fill2 = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1 + h - sw + 1);
this->blendFill(ptr_fill2 + r, ptr_fill2 + w + 1 - r, color2, alpha_b); // bottom
BE_RESET();
r--;
int alphaStep_tr = ((alpha_t - alpha_r) / (y + 1));
int alphaStep_br = ((alpha_r - alpha_b) / (y + 1));
int alphaStep_bl = ((alpha_b - alpha_l) / (y + 1));
int alphaStep_tl = ((alpha_l - alpha_t) / (y + 1));
// Avoid blending the last pixels twice, since we have an alpha
while (x++ < (y - 2)) {
BE_ALGORITHM();
BE_DRAWCIRCLE_BCOLOR_TR_CW(ptr_tr, x, y, px, py, (uint8)(alpha_r + (alphaStep_tr * x)));
BE_DRAWCIRCLE_BCOLOR_BR_CW(ptr_br, x, y, px, py, (uint8)(alpha_b + (alphaStep_br * x)));
BE_DRAWCIRCLE_BCOLOR_BL_CW(ptr_bl, x, y, px, py, (uint8)(alpha_l + (alphaStep_bl * x)));
BE_DRAWCIRCLE_BCOLOR_TL_CW(ptr_tl, x, y, px, py, (uint8)(alpha_t + (alphaStep_tl * x)));
BE_DRAWCIRCLE_BCOLOR_TR_CCW(ptr_tr, x, y, px, py, (uint8)(alpha_t - (alphaStep_tr * x)));
BE_DRAWCIRCLE_BCOLOR_BR_CCW(ptr_br, x, y, px, py, (uint8)(alpha_r - (alphaStep_br * x)));
BE_DRAWCIRCLE_BCOLOR_BL_CCW(ptr_bl, x, y, px, py, (uint8)(alpha_b - (alphaStep_bl * x)));
BE_DRAWCIRCLE_BCOLOR_TL_CCW(ptr_tl, x, y, px, py, (uint8)(alpha_l - (alphaStep_tl * x)));
if (Base::_strokeWidth > 1) {
BE_DRAWCIRCLE_BCOLOR(ptr_tr, ptr_tl, ptr_bl, ptr_br, x - 1, y, px, py);
BE_DRAWCIRCLE_BCOLOR(ptr_tr, ptr_tl, ptr_bl, ptr_br, x, y, px - pitch, py);
}
}
}
ptr_fill += pitch * real_radius;
while (short_h--) {
blendFill(ptr_fill, ptr_fill + Base::_strokeWidth, color, alpha_l); // left
blendFill(ptr_fill + w - Base::_strokeWidth + 1, ptr_fill + w + 1, color, alpha_r); // right
ptr_fill += pitch;
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawBorderRoundedSquareAlgClip(int x1, int y1, int r, int w, int h, PixelType color, VectorRenderer::FillMode fill_m, uint8 alpha_t, uint8 alpha_r, uint8 alpha_b, uint8 alpha_l) {
int f, ddF_x, ddF_y;
int x, y, px, py;
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
int sw = 0, sp = 0, hp = h * pitch;
PixelType *ptr_tl = (PixelType *)Base::_activeSurface->getBasePtr(x1 + r, y1 + r);
PixelType *ptr_tr = (PixelType *)Base::_activeSurface->getBasePtr(x1 + w - r, y1 + r);
PixelType *ptr_bl = (PixelType *)Base::_activeSurface->getBasePtr(x1 + r, y1 + h - r);
PixelType *ptr_br = (PixelType *)Base::_activeSurface->getBasePtr(x1 + w - r, y1 + h - r);
PixelType *ptr_fill = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1);
int real_radius = r;
int short_h = h - (2 * r) + 2;
PixelType color1 = color;
PixelType color2 = color;
while (sw++ < Base::_strokeWidth) {
blendFillClip(ptr_fill + sp + r, ptr_fill + w + 1 + sp - r, color1, alpha_t,
x1 + r, y1 + sp/pitch); // top
blendFillClip(ptr_fill + hp - sp + r, ptr_fill + w + hp + 1 - sp - r, color2, alpha_b,
x1 + r, y1 + (hp - sp)/ pitch); // bottom
sp += pitch;
BE_RESET();
r--;
int alphaStep_tr = ((alpha_t - alpha_r) / (y + 1));
int alphaStep_br = ((alpha_r - alpha_b) / (y + 1));
int alphaStep_bl = ((alpha_b - alpha_l) / (y + 1));
int alphaStep_tl = ((alpha_l - alpha_t) / (y + 1));
// Avoid blending the last pixels twice, since we have an alpha
while (x++ < (y - 2)) {
BE_ALGORITHM();
BE_DRAWCIRCLE_BCOLOR_TR_CW_CLIP(ptr_tr, x, y, px, py, (uint8)(alpha_r + (alphaStep_tr * x)), x1 + w - r, y1 + r);
BE_DRAWCIRCLE_BCOLOR_BR_CW_CLIP(ptr_br, x, y, px, py, (uint8)(alpha_b + (alphaStep_br * x)), x1 + w - r, y1 + h - r);
BE_DRAWCIRCLE_BCOLOR_BL_CW_CLIP(ptr_bl, x, y, px, py, (uint8)(alpha_l + (alphaStep_bl * x)), x1 + r, y1 + h - r);
BE_DRAWCIRCLE_BCOLOR_TL_CW_CLIP(ptr_tl, x, y, px, py, (uint8)(alpha_t + (alphaStep_tl * x)), x1 + r, y1 + r);
BE_DRAWCIRCLE_BCOLOR_TR_CCW_CLIP(ptr_tr, x, y, px, py, (uint8)(alpha_t - (alphaStep_tr * x)), x1 + w - r, y1 + r);
BE_DRAWCIRCLE_BCOLOR_BR_CCW_CLIP(ptr_br, x, y, px, py, (uint8)(alpha_r - (alphaStep_br * x)), x1 + w - r, y1 + h - r);
BE_DRAWCIRCLE_BCOLOR_BL_CCW_CLIP(ptr_bl, x, y, px, py, (uint8)(alpha_b - (alphaStep_bl * x)), x1 + r, y1 + h - r);
BE_DRAWCIRCLE_BCOLOR_TL_CCW_CLIP(ptr_tl, x, y, px, py, (uint8)(alpha_l - (alphaStep_tl * x)), x1 + r, y1 + r);
if (Base::_strokeWidth > 1) {
BE_DRAWCIRCLE_BCOLOR_CLIP(ptr_tr, ptr_tl, ptr_bl, ptr_br, x - 1, y, px, py,
x1 + w - r, y1 + r, x1 + r, y1 + r, x1 + r, y1 + h - r, x1 + w - r, y1 + h - r);
BE_DRAWCIRCLE_BCOLOR_CLIP(ptr_tr, ptr_tl, ptr_bl, ptr_br, x, y, px - pitch, py,
x1 + w - r, y1 + r, x1 + r, y1 + r, x1 + r, y1 + h - r, x1 + w - r, y1 + h - r);
}
}
}
ptr_fill += pitch * real_radius;
while (short_h--) {
blendFillClip(ptr_fill, ptr_fill + Base::_strokeWidth, color1, alpha_l,
x1, y1 + real_radius + h - (2 * r) + 2 - short_h - 1); // left
blendFillClip(ptr_fill + w - Base::_strokeWidth + 1, ptr_fill + w + 1, color2, alpha_r,
x1 + w - Base::_strokeWidth + 1, y1 + real_radius + h - (2 * r) + 2 - short_h - 1); // right
ptr_fill += pitch;
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawInteriorRoundedSquareAlg(int x1, int y1, int r, int w, int h, PixelType color, VectorRenderer::FillMode fill_m) {
// Do not draw empty space rounded squares.
if (w <= 0 || h <= 0) {
return;
}
int f, ddF_x, ddF_y;
int x, y, px, py;
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
PixelType *ptr_tl = (PixelType *)Base::_activeSurface->getBasePtr(x1 + r, y1 + r);
PixelType *ptr_tr = (PixelType *)Base::_activeSurface->getBasePtr(x1 + w - r, y1 + r);
PixelType *ptr_bl = (PixelType *)Base::_activeSurface->getBasePtr(x1 + r, y1 + h - r);
PixelType *ptr_br = (PixelType *)Base::_activeSurface->getBasePtr(x1 + w - r, y1 + h - r);
PixelType *ptr_fill = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1);
int real_radius = r;
int short_h = h - (2 * r) + 2;
int long_h = h;
BE_RESET();
PixelType color1 = color;
if (fill_m == kFillGradient) {
PixelType color2, color3, color4;
precalcGradient(long_h);
while (x++ < y) {
BE_ALGORITHM();
color1 = calcGradient(real_radius - x, long_h);
color2 = calcGradient(real_radius - y, long_h);
color3 = calcGradient(long_h - r + x, long_h);
color4 = calcGradient(long_h - r + y, long_h);
gradientFill(ptr_tl - x - py, w - 2 * r + 2 * x, x1 + r - x - y, real_radius - y);
gradientFill(ptr_tl - y - px, w - 2 * r + 2 * y, x1 + r - y - x, real_radius - x);
gradientFill(ptr_bl - x + py, w - 2 * r + 2 * x, x1 + r - x - y, long_h - r + y);
gradientFill(ptr_bl - y + px, w - 2 * r + 2 * y, x1 + r - y - x, long_h - r + x);
BE_DRAWCIRCLE_XCOLOR(ptr_tr, ptr_tl, ptr_bl, ptr_br, x, y, px, py);
}
} else {
while (x++ < y) {
BE_ALGORITHM();
colorFill<PixelType>(ptr_tl - x - py, ptr_tr + x - py, color1);
colorFill<PixelType>(ptr_tl - y - px, ptr_tr + y - px, color1);
colorFill<PixelType>(ptr_bl - x + py, ptr_br + x + py, color1);
colorFill<PixelType>(ptr_bl - y + px, ptr_br + y + px, color1);
// do not remove - messes up the drawing at lower resolutions
BE_DRAWCIRCLE(ptr_tr, ptr_tl, ptr_bl, ptr_br, x, y, px, py);
}
}
ptr_fill += pitch * r;
while (short_h--) {
if (fill_m == kFillGradient) {
gradientFill(ptr_fill, w + 1, x1, real_radius++);
} else {
colorFill<PixelType>(ptr_fill, ptr_fill + w + 1, color1);
}
ptr_fill += pitch;
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawInteriorRoundedSquareAlgClip(int x1, int y1, int r, int w, int h, PixelType color, VectorRenderer::FillMode fill_m) {
// Do not draw empty space rounded squares.
if (w <= 0 || h <= 0) {
return;
}
int f, ddF_x, ddF_y;
int x, y, px, py;
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
PixelType *ptr_tl = (PixelType *)Base::_activeSurface->getBasePtr(x1 + r, y1 + r);
PixelType *ptr_tr = (PixelType *)Base::_activeSurface->getBasePtr(x1 + w - r, y1 + r);
PixelType *ptr_bl = (PixelType *)Base::_activeSurface->getBasePtr(x1 + r, y1 + h - r);
PixelType *ptr_br = (PixelType *)Base::_activeSurface->getBasePtr(x1 + w - r, y1 + h - r);
PixelType *ptr_fill = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1);
int real_radius = r;
int short_h = h - (2 * r) + 2;
int long_h = h;
BE_RESET();
PixelType color1 = color;
if (fill_m == kFillGradient) {
PixelType color2, color3, color4;
precalcGradient(long_h);
while (x++ < y) {
BE_ALGORITHM();
color1 = calcGradient(real_radius - x, long_h);
color2 = calcGradient(real_radius - y, long_h);
color3 = calcGradient(long_h - r + x, long_h);
color4 = calcGradient(long_h - r + y, long_h);
//TL = (x1 + r, y1 + r)
gradientFillClip(ptr_tl - x - py, w - 2 * r + 2 * x, x1 + r - x - y, real_radius - y,
x1 + r - x, y1 + r - y);
gradientFillClip(ptr_tl - y - px, w - 2 * r + 2 * y, x1 + r - y - x, real_radius - x,
x1 + r - y, y1 + r - x);
//BL = (x1 + r, y1 + h - r)
gradientFillClip(ptr_bl - x + py, w - 2 * r + 2 * x, x1 + r - x - y, long_h - r + y,
x1 + r - x, y1 + h - r + y);
gradientFillClip(ptr_bl - y + px, w - 2 * r + 2 * y, x1 + r - y - x, long_h - r + x,
x1 + r - y, y1 + h - r + x);
BE_DRAWCIRCLE_XCOLOR_CLIP(ptr_tr, ptr_tl, ptr_bl, ptr_br, x, y, px, py,
x1 + w - r, y1 + r, x1 + r, y1 + r, x1 + r, y1 + h - r, x1 + w - r, y1 + h - r);
}
} else {
while (x++ < y) {
BE_ALGORITHM();
colorFillClip<PixelType>(ptr_tl - x - py, ptr_tr + x - py, color1,
x1 + r - x, y1 + r - y, _clippingArea);
colorFillClip<PixelType>(ptr_tl - y - px, ptr_tr + y - px, color1,
x1 + r - y, y1 + r - x, _clippingArea);
colorFillClip<PixelType>(ptr_bl - x + py, ptr_br + x + py, color1,
x1 + r - x, y1 + h - r + y, _clippingArea);
colorFillClip<PixelType>(ptr_bl - y + px, ptr_br + y + px, color1,
x1 + r - y, y1 + h - r + x, _clippingArea);
// do not remove - messes up the drawing at lower resolutions
BE_DRAWCIRCLE_CLIP(ptr_tr, ptr_tl, ptr_bl, ptr_br, x, y, px, py,
x1 + w - r, y1 + r, x1 + r, y1 + r, x1 + r, y1 + h - r, x1 + w - r, y1 + h - r);
}
}
ptr_fill += pitch * r;
int short_h_orig = short_h;
while (short_h--) {
if (fill_m == kFillGradient) {
gradientFillClip(ptr_fill, w + 1, x1, real_radius++, x1, y1 + r + short_h_orig - short_h -1);
} else {
colorFillClip<PixelType>(ptr_fill, ptr_fill + w + 1, color1, x1, y1 + r + short_h_orig - short_h - 1, _clippingArea);
}
ptr_fill += pitch;
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawRoundedSquareAlg(int x1, int y1, int r, int w, int h, PixelType color, VectorRenderer::FillMode fill_m) {
const uint8 borderAlpha_t = 0;
const uint8 borderAlpha_r = 127;
const uint8 borderAlpha_b = 255;
const uint8 borderAlpha_l = 63;
const uint8 bevelAlpha_t = 255;
const uint8 bevelAlpha_r = 31;
const uint8 bevelAlpha_b = 0;
const uint8 bevelAlpha_l = 127;
// If only border is visible
if ((!(w <= 0 || h <= 0)) && (fill_m != Base::kFillDisabled)) {
if (fill_m == Base::kFillBackground)
drawInteriorRoundedSquareAlg(x1, y1, r, w, h, _bgColor, fill_m);
else
drawInteriorRoundedSquareAlg(x1, y1, r, w, h, color, fill_m);
}
if (Base::_strokeWidth) {
if (r != 0 && _bevel > 0) {
drawBorderRoundedSquareAlg(x1, y1, r, w, h, color, fill_m, borderAlpha_t, borderAlpha_r, borderAlpha_b, borderAlpha_l);
drawBorderRoundedSquareAlg(x1, y1, r, w, h, _bevelColor, fill_m, bevelAlpha_t, bevelAlpha_r, bevelAlpha_b, bevelAlpha_l);
} else {
drawBorderRoundedSquareAlg(x1, y1, r, w, h, color, fill_m, 255, 255, 255, 255);
}
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawRoundedSquareAlgClip(int x1, int y1, int r, int w, int h, PixelType color, VectorRenderer::FillMode fill_m) {
const uint8 borderAlpha_t = 0;
const uint8 borderAlpha_r = 127;
const uint8 borderAlpha_b = 255;
const uint8 borderAlpha_l = 63;
const uint8 bevelAlpha_t = 255;
const uint8 bevelAlpha_r = 31;
const uint8 bevelAlpha_b = 0;
const uint8 bevelAlpha_l = 127;
// If only border is visible
if ((!(w <= 0 || h <= 0)) && (fill_m != Base::kFillDisabled)) {
if (fill_m == Base::kFillBackground)
drawInteriorRoundedSquareAlgClip(x1, y1, r, w, h, _bgColor, fill_m);
else
drawInteriorRoundedSquareAlgClip(x1, y1, r, w, h, color, fill_m);
}
//I expect these to work fine with clipping:
if (Base::_strokeWidth) {
if (r != 0 && _bevel > 0) {
drawBorderRoundedSquareAlgClip(x1, y1, r, w, h, color, fill_m, borderAlpha_t, borderAlpha_r, borderAlpha_b, borderAlpha_l);
drawBorderRoundedSquareAlgClip(x1, y1, r, w, h, _bevelColor, fill_m, bevelAlpha_t, bevelAlpha_r, bevelAlpha_b, bevelAlpha_l);
} else {
drawBorderRoundedSquareAlgClip(x1, y1, r, w, h, color, fill_m, 255, 255, 255, 255);
}
}
}
/** CIRCLE ALGORITHM **/
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawCircleAlg(int x1, int y1, int r, PixelType color, VectorRenderer::FillMode fill_m) {
int f, ddF_x, ddF_y;
int x, y, px, py, sw = 0;
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
PixelType *ptr = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1);
if (fill_m == kFillDisabled) {
while (sw++ < Base::_strokeWidth) {
BE_RESET();
r--;
*(ptr + y) = color;
*(ptr - y) = color;
*(ptr + py) = color;
*(ptr - py) = color;
while (x++ < y) {
BE_ALGORITHM();
BE_DRAWCIRCLE(ptr, ptr, ptr, ptr, x, y, px, py);
if (Base::_strokeWidth > 1) {
BE_DRAWCIRCLE(ptr, ptr, ptr, ptr, x - 1, y, px, py);
BE_DRAWCIRCLE(ptr, ptr, ptr, ptr, x, y, px - pitch, py);
}
}
}
} else {
colorFill<PixelType>(ptr - r, ptr + r, color);
BE_RESET();
while (x++ < y) {
BE_ALGORITHM();
colorFill<PixelType>(ptr - x + py, ptr + x + py, color);
colorFill<PixelType>(ptr - x - py, ptr + x - py, color);
colorFill<PixelType>(ptr - y + px, ptr + y + px, color);
colorFill<PixelType>(ptr - y - px, ptr + y - px, color);
}
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawCircleAlgClip(int x1, int y1, int r, PixelType color, VectorRenderer::FillMode fill_m) {
int f, ddF_x, ddF_y;
int x, y, px, py, sw = 0;
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
PixelType *ptr = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1);
if (fill_m == kFillDisabled) {
while (sw++ < Base::_strokeWidth) {
BE_RESET();
r--;
if (IS_IN_CLIP(x1 + y, y1)) *(ptr + y) = color;
if (IS_IN_CLIP(x1 - y, y1)) *(ptr - y) = color;
if (IS_IN_CLIP(x1, y1 + y)) *(ptr + py) = color;
if (IS_IN_CLIP(x1, y1 - y)) *(ptr - py) = color;
while (x++ < y) {
BE_ALGORITHM();
BE_DRAWCIRCLE_CLIP(ptr, ptr, ptr, ptr, x, y, px, py, x1, y1, x1, y1, x1, y1, x1, y1);
if (Base::_strokeWidth > 1) {
BE_DRAWCIRCLE_CLIP(ptr, ptr, ptr, ptr, x - 1, y, px, py, x1, y1, x1, y1, x1, y1, x1, y1);
BE_DRAWCIRCLE_CLIP(ptr, ptr, ptr, ptr, x, y, px - pitch, py, x1, y1, x1, y1, x1, y1, x1, y1);
}
}
}
} else {
colorFillClip<PixelType>(ptr - r, ptr + r, color, x1 - r, y1 + r, _clippingArea);
BE_RESET();
while (x++ < y) {
BE_ALGORITHM();
colorFillClip<PixelType>(ptr - x + py, ptr + x + py, color, x1 - x, y1 + y, _clippingArea);
colorFillClip<PixelType>(ptr - x - py, ptr + x - py, color, x1 - x, y1 - y, _clippingArea);
colorFillClip<PixelType>(ptr - y + px, ptr + y + px, color, x1 - y, y1 + x, _clippingArea);
colorFillClip<PixelType>(ptr - y - px, ptr + y - px, color, x1 - y, y1 - x, _clippingArea);
}
}
}
/********************************************************************
********************************************************************
* SHADOW drawing algorithms - VectorRendererSpec *******************
********************************************************************
********************************************************************/
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawSquareShadow(int x, int y, int w, int h, int offset) {
// Do nothing for empty rects or no shadow offset.
if (w <= 0 || h <= 0 || offset <= 0) {
return;
}
PixelType *ptr = (PixelType *)_activeSurface->getBasePtr(x + w - 1, y + offset);
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
int i, j;
i = h - offset;
while (i--) {
j = offset;
while (j--)
blendPixelPtr(ptr + j, 0, ((offset - j) << 8) / offset);
ptr += pitch;
}
ptr = (PixelType *)_activeSurface->getBasePtr(x + offset, y + h - 1);
while (i++ < offset) {
j = w - offset;
while (j--)
blendPixelPtr(ptr + j, 0, ((offset - i) << 8) / offset);
ptr += pitch;
}
ptr = (PixelType *)_activeSurface->getBasePtr(x + w, y + h);
i = 0;
while (i++ < offset) {
j = offset - 1;
while (j--)
blendPixelPtr(ptr + j, 0, (((offset - j) * (offset - i)) << 8) / (offset * offset));
ptr += pitch;
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawSquareShadowClip(int x, int y, int w, int h, int offset) {
// Do nothing for empty rects or no shadow offset.
if (w <= 0 || h <= 0 || offset <= 0) {
return;
}
PixelType *ptr = (PixelType *)_activeSurface->getBasePtr(x + w - 1, y + offset);
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
int i, j, ptr_x = x+w-1, ptr_y = y+offset;
i = h - offset;
while (i--) {
j = offset;
while (j--)
blendPixelPtrClip(ptr + j, 0, ((offset - j) << 8) / offset, ptr_x + j, ptr_y);
ptr += pitch;
++ptr_y;
}
ptr = (PixelType *)_activeSurface->getBasePtr(x + offset, y + h - 1);
ptr_x = x + offset;
ptr_y = y + h - 1;
while (i++ < offset) {
j = w - offset;
while (j--)
blendPixelPtrClip(ptr + j, 0, ((offset - i) << 8) / offset, ptr_x + j, ptr_y);
ptr += pitch;
++ptr_y;
}
ptr = (PixelType *)_activeSurface->getBasePtr(x + w, y + h);
ptr_x = x + w;
ptr_y = y + h;
i = 0;
while (i++ < offset) {
j = offset - 1;
while (j--)
blendPixelPtrClip(ptr + j, 0, (((offset - j) * (offset - i)) << 8) / (offset * offset), ptr_x + j, ptr_y);
ptr += pitch;
++ptr_y;
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawRoundedSquareShadow(int x1, int y1, int r, int w, int h, int offset, uint32 shadowIntensity) {
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
// "Harder" shadows when having lower BPP, since we will have artifacts (greenish tint on the modern theme)
uint8 expFactor = 3;
uint16 alpha = (_activeSurface->format.bytesPerPixel > 2) ? 4 : 8;
// These constants ensure a border of 2px on the left and of each rounded square
Common::Rect shadowRect(w + offset + 2, h + offset + 1);
shadowRect.translate((x1 > 2) ? x1 - 2 : x1, y1);
// The rounded rectangle drawn on top of this shadow is guaranteed
// to occlude entirely the following rect with a non-transparent color.
// As an optimization, we don't draw the shadow inside of it.
Common::Rect occludingRect(x1, y1, x1 + w, y1 + h);
occludingRect.top += r;
occludingRect.bottom -= r;
// Soft shadows are constructed by drawing increasingly
// darker and smaller rectangles on top of each other.
// HACK: shadowIntensity is tailed with 16-bits mantissa. We also represent the
// offset as a 16.16 fixed point number here as termination condition to simplify
// looping logic. An additional `shadowIntensity` is added to to keep consistent
// with previous implementation.
uint32 targetOffset = (uint32)(offset << 16) + shadowIntensity;
int curOffset = 0;
for (uint32 i = shadowIntensity; i <= targetOffset; i += shadowIntensity) {
int f, ddF_x, ddF_y;
int x, y, px, py;
// No more room to draw: abort
if ((shadowRect.width() < 2*r) ||
(shadowRect.height() < 2*r)) {
break;
}
PixelType *ptr_tl = (PixelType *)Base::_activeSurface->getBasePtr(shadowRect.left + r, shadowRect.top + r);
PixelType *ptr_tr = (PixelType *)Base::_activeSurface->getBasePtr(shadowRect.right - r, shadowRect.top + r);
PixelType *ptr_bl = (PixelType *)Base::_activeSurface->getBasePtr(shadowRect.left + r, shadowRect.bottom - r);
PixelType *ptr_br = (PixelType *)Base::_activeSurface->getBasePtr(shadowRect.right - r, shadowRect.bottom - r);
PixelType color = _format.RGBToColor(0, 0, 0);
BE_RESET();
// HACK: As we are drawing circles exploiting 8-axis symmetry,
// there are 4 pixels on each circle which are drawn twice.
// this is ok on filled circles, but when blending on surfaces,
// we cannot let it blend twice. awful.
uint32 hb = 0;
// Draw the top and bottom parts of the shadow. Those parts have rounded corners.
while (x++ < y) {
BE_ALGORITHM();
if (((1 << x) & hb) == 0) {
blendFill(ptr_tl - y - px, ptr_tr + y - px, color, (uint8)alpha);
blendFill(ptr_bl - y + px, ptr_br + y + px, color, (uint8)alpha);
hb |= (1 << x);
}
if (((1 << y) & hb) == 0) {
blendFill(ptr_tl - x - py, ptr_tr + x - py, color, (uint8)alpha);
blendFill(ptr_bl - x + py, ptr_br + x + py, color, (uint8)alpha);
hb |= (1 << y);
}
}
// Draw the middle part of the shadow. This part is a rectangle with regular corners.
PixelType *ptr_fill = (PixelType *)Base::_activeSurface->getBasePtr(0, shadowRect.top + r);
for (int y2 = shadowRect.top + r; y2 < shadowRect.bottom - r + 1; y2++) {
if (occludingRect.top <= y2 && y2 < occludingRect.bottom) {
if (shadowRect.left < occludingRect.left) {
blendFill(ptr_fill + shadowRect.left, ptr_fill + occludingRect.left, color, (uint8)alpha);
}
if (occludingRect.right < shadowRect.right + 1) {
blendFill(ptr_fill + occludingRect.right, ptr_fill + shadowRect.right + 1, color, (uint8)alpha);
}
} else {
blendFill(ptr_fill + shadowRect.left, ptr_fill + shadowRect.right + 1, color, (uint8)alpha);
}
ptr_fill += pitch;
}
// Make shadow smaller each iteration
shadowRect.grow(curOffset - (i >> 16));
curOffset = i >> 16;
if (_shadowFillMode == kShadowExponential)
// Multiply with expfactor
alpha = (alpha * (expFactor << 8)) >> 9;
}
}
template<typename PixelType>
void VectorRendererSpec<PixelType>::
drawRoundedSquareShadowClip(int x1, int y1, int r, int w, int h, int offset, uint32 shadowIntensity) {
int pitch = _activeSurface->pitch / _activeSurface->format.bytesPerPixel;
// "Harder" shadows when having lower BPP, since we will have artifacts (greenish tint on the modern theme)
uint8 expFactor = 3;
uint16 alpha = (_activeSurface->format.bytesPerPixel > 2) ? 4 : 8;
// These constants ensure a border of 2px on the left and of each rounded square
Common::Rect shadowRect(w + offset + 2, h + offset + 1);
shadowRect.translate((x1 > 2) ? x1 - 2 : x1, y1);
// The rounded rectangle drawn on top of this shadow is guaranteed
// to occlude entirely the following rect with a non-transparent color.
// As an optimization, we don't draw the shadow inside of it.
Common::Rect occludingRect(x1, y1, x1 + w, y1 + h);
occludingRect.top += r;
occludingRect.bottom -= r;
// Soft shadows are constructed by drawing increasingly
// darker and smaller rectangles on top of each other.
// HACK: shadowIntensity is tailed with 16-bits mantissa. We also represent the
// offset as a 16.16 fixed point number here as termination condition to simplify
// looping logic. An additional `shadowIntensity` is added to to keep consistent
// with previous implementation.
uint32 targetOffset = (uint32)(offset << 16) + shadowIntensity;
int curOffset = 0;
for (uint32 i = shadowIntensity; i <= targetOffset; i += shadowIntensity) {
int f, ddF_x, ddF_y;
int x, y, px, py;
PixelType *ptr_tl = (PixelType *)Base::_activeSurface->getBasePtr(shadowRect.left + r, shadowRect.top + r);
PixelType *ptr_tr = (PixelType *)Base::_activeSurface->getBasePtr(shadowRect.right - r, shadowRect.top + r);
PixelType *ptr_bl = (PixelType *)Base::_activeSurface->getBasePtr(shadowRect.left + r, shadowRect.bottom - r);
PixelType *ptr_br = (PixelType *)Base::_activeSurface->getBasePtr(shadowRect.right - r, shadowRect.bottom - r);
PixelType color = _format.RGBToColor(0, 0, 0);
BE_RESET();
// HACK: As we are drawing circles exploiting 8-axis symmetry,
// there are 4 pixels on each circle which are drawn twice.
// this is ok on filled circles, but when blending on surfaces,
// we cannot let it blend twice. awful.
uint32 hb = 0;
while (x++ < y) {
BE_ALGORITHM();
if (((1 << x) & hb) == 0) {
blendFillClip(ptr_tl - y - px, ptr_tr + y - px, color, (uint8)alpha,
shadowRect.left + r - y, shadowRect.top + r - x);
blendFillClip(ptr_bl - y + px, ptr_br + y + px, color, (uint8)alpha,
shadowRect.left + r - y, shadowRect.bottom - r + x);
hb |= (1 << x);
}
if (((1 << y) & hb) == 0) {
blendFillClip(ptr_tl - x - py, ptr_tr + x - py, color, (uint8)alpha,
shadowRect.left + r - x, shadowRect.top + r - y);
blendFillClip(ptr_bl - x + py, ptr_br + x + py, color, (uint8)alpha,
shadowRect.left + r - x, shadowRect.bottom - r + y);
hb |= (1 << y);
}
}
// Draw the middle part of the shadow. This part is a rectangle with regular corners.
PixelType *ptr_fill = (PixelType *)Base::_activeSurface->getBasePtr(0, shadowRect.top + r);
for (int y2 = shadowRect.top + r; y2 < shadowRect.bottom - r + 1; y2++) {
if (occludingRect.top <= y2 && y2 < occludingRect.bottom) {
if (shadowRect.left < occludingRect.left) {
blendFillClip(ptr_fill + shadowRect.left, ptr_fill + occludingRect.left, color, (uint8)alpha,
shadowRect.left, y2);
}
if (occludingRect.right < shadowRect.right + 1) {
blendFillClip(ptr_fill + occludingRect.right, ptr_fill + shadowRect.right + 1, color, (uint8)alpha,
occludingRect.right, y2);
}
} else {
blendFillClip(ptr_fill + shadowRect.left, ptr_fill + shadowRect.right + 1, color, (uint8)alpha,
shadowRect.left, y2);
}
ptr_fill += pitch;
}
// Make shadow smaller each iteration
shadowRect.grow(curOffset - (i >> 16));
curOffset = i >> 16;
if (_shadowFillMode == kShadowExponential)
// Multiply with expfactor
alpha = (alpha * (expFactor << 8)) >> 9;
}
}
/******************************************************************************/
#ifndef DISABLE_FANCY_THEMES
/********************************************************************
* ANTIALIASED PRIMITIVES drawing algorithms - VectorRendererAA
********************************************************************/
/** LINES **/
template<typename PixelType>
void VectorRendererAA<PixelType>::
drawLineAlg(int x1, int y1, int x2, int y2, uint dx, uint dy, PixelType color) {
PixelType *ptr = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1);
int pitch = Base::_activeSurface->pitch / Base::_activeSurface->format.bytesPerPixel;
int strokeState = Base::_strokeWidth > 1 ? ((dx > dy) ? 1 : 2) : 0;
// Stroke widths before and after the coordinate
// Before is favoured in case of even stroke width
int stb = Base::_strokeWidth >> 1;
int sta = stb + (Base::_strokeWidth & 1);
int xdir = (x2 > x1) ? 1 : -1;
uint16 error_tmp, error_acc, gradient;
uint8 alpha;
if (strokeState == 0) {
// No stroke width
*ptr = (PixelType)color;
} else if (strokeState == 1) {
// Horizontal line
intptr p = -stb * pitch;
for (int i = -stb; i < sta; i++, p += pitch) {
*(ptr + p) = (PixelType)color;
}
} else {
// Vertical line
colorFill<PixelType>(ptr - stb, ptr + sta, (PixelType)color);
}
if (dx > dy) {
gradient = (dy << 16) / dx;
error_acc = 0;
while (--dx) {
error_tmp = error_acc;
error_acc += gradient;
if (error_acc <= error_tmp)
ptr += pitch;
ptr += xdir;
alpha = (error_acc >> 8);
if (strokeState) {
intptr p = -stb * pitch;
this->blendPixelPtr(ptr + p, color, ~alpha);
p += pitch;
for (int i = -stb + 1; i < sta; i++, p += pitch) {
*(ptr + p) = (PixelType)color;
}
this->blendPixelPtr(ptr + p, color, alpha);
} else {
this->blendPixelPtr(ptr, color, ~alpha);
this->blendPixelPtr(ptr + pitch, color, alpha);
}
}
} else if (dy != 0) {
gradient = (dx << 16) / dy;
error_acc = 0;
while (--dy) {
error_tmp = error_acc;
error_acc += gradient;
if (error_acc <= error_tmp)
ptr += xdir;
ptr += pitch;
alpha = (error_acc >> 8);
if (strokeState) {
if (xdir > 0) {
this->blendPixelPtr(ptr - stb, color, ~alpha);
colorFill<PixelType>(ptr - stb + 1, ptr + sta, (PixelType)color);
this->blendPixelPtr(ptr + sta, color, alpha);
} else {
this->blendPixelPtr(ptr - stb, color, alpha);
colorFill<PixelType>(ptr - stb + 1, ptr + sta, (PixelType)color);
this->blendPixelPtr(ptr + sta, color, ~alpha);
}
} else {
this->blendPixelPtr(ptr, color, ~alpha);
this->blendPixelPtr(ptr + xdir, color, alpha);
}
}
}
ptr = (PixelType *)Base::_activeSurface->getBasePtr(x2, y2);
if (strokeState == 0) {
// No stroke width
*ptr = (PixelType)color;
} else if (strokeState == 1) {
// Horizontal line
intptr p = -stb * pitch;
for (int i = -stb; i < sta; i++, p += pitch) {
*(ptr + p) = (PixelType)color;
}
} else {
// Vertical line
colorFill<PixelType>(ptr - stb, ptr + sta, (PixelType)color);
}
}
/** TAB ALGORITHM */
template<typename PixelType>
void VectorRendererAA<PixelType>::
drawTabAlg(int x1, int y1, int w, int h, int r, PixelType color, VectorRenderer::FillMode fill_m, int baseLeft, int baseRight) {
// Don't draw anything for empty rects.
if (w <= 0 || h <= 0) {
return;
}
int x, y, px, py;
int pitch = Base::_activeSurface->pitch / Base::_activeSurface->format.bytesPerPixel;
int sw = 0, sp = 0, hp = 0;
frac_t T = 0, oldT;
uint8 a1, a2;
uint32 rsq = r*r;
PixelType *ptr_tl = (PixelType *)Base::_activeSurface->getBasePtr(x1 + r, y1 + r);
PixelType *ptr_tr = (PixelType *)Base::_activeSurface->getBasePtr(x1 + w - r, y1 + r);
PixelType *ptr_fill = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1);
int real_radius = r;
if (fill_m == Base::kFillDisabled) {
color = 0;
while (sw++ < Base::_strokeWidth) {
colorFill<PixelType>(ptr_fill + sp + r, ptr_fill + w + 1 + sp - r, color);
colorFill<PixelType>(ptr_fill + hp - sp + r, ptr_fill + w + hp + 1 - sp - r, color);
sp += pitch;
x = r - (sw - 1);
y = 0;
T = 0;
px = pitch * x;
py = 0;
while (x > y++) {
WU_ALGORITHM();
// sw == 1: outside, sw = _strokeWidth: inside
if (sw != Base::_strokeWidth)
a2 = 255;
// inner arc
WU_DRAWCIRCLE_TOP(ptr_tr, ptr_tl, x, y, px, py, a2);
if (sw == 1) // outer arc
WU_DRAWCIRCLE_TOP(ptr_tr, ptr_tl, x, y, px - pitch, py, a1);
}
}
int short_h = h - r;
ptr_fill += pitch * real_radius;
while (short_h--) {
colorFill<PixelType>(ptr_fill, ptr_fill + Base::_strokeWidth, color);
colorFill<PixelType>(ptr_fill + w - Base::_strokeWidth + 1, ptr_fill + w + 1, color);
ptr_fill += pitch;
}
if (baseLeft) {
sw = 0;
ptr_fill = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1 + h + 1);
while (sw++ < Base::_strokeWidth) {
colorFill<PixelType>(ptr_fill - baseLeft, ptr_fill, color);
ptr_fill += pitch;
}
}
if (baseRight) {
sw = 0;
ptr_fill = (PixelType *)Base::_activeSurface->getBasePtr(x1 + w, y1 + h + 1);
while (sw++ < Base::_strokeWidth) {
colorFill<PixelType>(ptr_fill, ptr_fill + baseRight, color);
ptr_fill += pitch;
}
}
} else {
PixelType color1, color2;
color1 = color2 = color;
int long_h = h;
int short_h = h - real_radius;
x = real_radius;
y = 0;
T = 0;
px = pitch * x;
py = 0;
Base::precalcGradient(long_h);
while (x > y++) {
WU_ALGORITHM();
if (fill_m == Base::kFillGradient) {
color1 = Base::calcGradient(real_radius - x, long_h);
color2 = Base::calcGradient(real_radius - y, long_h);
Base::gradientFill(ptr_tl - x - py + 1, w - 2 * r + 2 * x - 1, x1 + r - x - y + 1, real_radius - y);
// Only fill each horizontal line once (or we destroy
// the gradient effect at the edges)
if (T < oldT || y == 1)
Base::gradientFill(ptr_tl - y - px + 1, w - 2 * r + 2 * y - 1, x1 + r - y - x + 1, real_radius - x);
WU_DRAWCIRCLE_XCOLOR_TOP(ptr_tr, ptr_tl, x, y, px, py, a1, Base::blendPixelPtr);
} else {
colorFill<PixelType>(ptr_tl - x - py + 1, ptr_tr + x - py, color);
if (T < oldT || y == 1)
colorFill<PixelType>(ptr_tl - y - px + 1, ptr_tr + y - px, color);
WU_DRAWCIRCLE_TOP(ptr_tr, ptr_tl, x, y, px, py, a1);
}
}
ptr_fill += pitch * r;
while (short_h--) {
if (fill_m == Base::kFillGradient) {
Base::gradientFill(ptr_fill, w + 1, x1, real_radius++);
} else {
colorFill<PixelType>(ptr_fill, ptr_fill + w + 1, color);
}
ptr_fill += pitch;
}
}
}
/** ROUNDED SQUARES **/
template<typename PixelType>
void VectorRendererAA<PixelType>::
drawBorderRoundedSquareAlg(int x1, int y1, int r, int w, int h, PixelType color, VectorRenderer::FillMode fill_m, uint8 alpha_t, uint8 alpha_r, uint8 alpha_b, uint8 alpha_l) {
int x, y;
const int pitch = Base::_activeSurface->pitch / Base::_activeSurface->format.bytesPerPixel;
int px, py;
uint32 rsq = r*r;
frac_t T = 0, oldT;
uint8 a1, a2;
PixelType *ptr_tl = (PixelType *)Base::_activeSurface->getBasePtr(x1 + r, y1 + r);
PixelType *ptr_tr = (PixelType *)Base::_activeSurface->getBasePtr(x1 + w - r, y1 + r);
PixelType *ptr_bl = (PixelType *)Base::_activeSurface->getBasePtr(x1 + r, y1 + h - r);
PixelType *ptr_br = (PixelType *)Base::_activeSurface->getBasePtr(x1 + w - r, y1 + h - r);
PixelType *ptr_fill = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1);
int sw = 0;
int short_h = h - 2 * r;
int strokeWidth = Base::_strokeWidth;
while (sw++ < strokeWidth) {
PixelType *ptr_fill3 = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1 + sw - 1);
this->blendFill(ptr_fill3 + r, ptr_fill3 + w + 1 - r, color, alpha_t); // top
PixelType *ptr_fill2 = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1 + h - sw + 1);
this->blendFill(ptr_fill2 + r, ptr_fill2 + w + 1 - r, color, alpha_b); // bottom
x = r - (sw - 1);
y = 0;
T = 0;
px = pitch * x;
py = 0;
int alphaStep_tr = ((alpha_t - alpha_r) / (x + 1));
int alphaStep_br = ((alpha_r - alpha_b) / (x + 1));
int alphaStep_bl = ((alpha_b - alpha_l) / (x + 1));
int alphaStep_tl = ((alpha_l - alpha_t) / (x + 1));
while (x > y++) {
WU_ALGORITHM();
// sw == 1: outside, sw = _strokeWidth: inside
// We always draw the outer edge AAed, but the inner edge
// only when the inside isn't filled
if (sw != strokeWidth || fill_m != Base::kFillDisabled)
a2 = 255;
// inner arc
WU_DRAWCIRCLE_BCOLOR_TR_CW(ptr_tr, (x - 1), y, (px - pitch), py, (uint8)((uint32)(((alpha_t - (alphaStep_tr * y)) << 8) * a2) >> 16));
WU_DRAWCIRCLE_BCOLOR_BR_CW(ptr_br, (x - 1), y, (px - pitch), py, (uint8)((uint32)(((alpha_r - (alphaStep_br * y)) << 8) * a2) >> 16));
WU_DRAWCIRCLE_BCOLOR_BL_CW(ptr_bl, (x - 1), y, (px - pitch), py, (uint8)((uint32)(((alpha_b - (alphaStep_bl * y)) << 8) * a2) >> 16));
WU_DRAWCIRCLE_BCOLOR_TL_CW(ptr_tl, (x - 1), y, (px - pitch), py, (uint8)((uint32)(((alpha_l - (alphaStep_tl * y)) << 8) * a2) >> 16));
WU_DRAWCIRCLE_BCOLOR_TR_CCW(ptr_tr, (x - 1), y, (px - pitch), py, (uint8)((uint32)(((alpha_r + (alphaStep_tr * y)) << 8) * a2) >> 16));
WU_DRAWCIRCLE_BCOLOR_BR_CCW(ptr_br, (x - 1), y, (px - pitch), py, (uint8)((uint32)(((alpha_b + (alphaStep_br * y)) << 8) * a2) >> 16));
WU_DRAWCIRCLE_BCOLOR_BL_CCW(ptr_bl, (x - 1), y, (px - pitch), py, (uint8)((uint32)(((alpha_l + (alphaStep_bl * y)) << 8) * a2) >> 16));
WU_DRAWCIRCLE_BCOLOR_TL_CCW(ptr_tl, (x - 1), y, (px - pitch), py, (uint8)((uint32)(((alpha_t + (alphaStep_tl * y)) << 8) * a2) >> 16));
// outer arc
if (sw == 1) {
WU_DRAWCIRCLE_BCOLOR_TR_CW(ptr_tr, x, y, px, py, (uint8)((uint32)(((alpha_t - (alphaStep_tr * y)) << 8) * a1) >> 16));
WU_DRAWCIRCLE_BCOLOR_BR_CW(ptr_br, x, y, px, py, (uint8)((uint32)(((alpha_r - (alphaStep_br * y)) << 8) * a1) >> 16));
WU_DRAWCIRCLE_BCOLOR_BL_CW(ptr_bl, x, y, px, py, (uint8)((uint32)(((alpha_b - (alphaStep_bl * y)) << 8) * a1) >> 16));
WU_DRAWCIRCLE_BCOLOR_TL_CW(ptr_tl, x, y, px, py, (uint8)((uint32)(((alpha_l - (alphaStep_tl * y)) << 8) * a1) >> 16));
WU_DRAWCIRCLE_BCOLOR_TR_CCW(ptr_tr, x, y, px, py, (uint8)((uint32)(((alpha_r + (alphaStep_tr * y)) << 8) * a1) >> 16));
WU_DRAWCIRCLE_BCOLOR_BR_CCW(ptr_br, x, y, px, py, (uint8)((uint32)(((alpha_b + (alphaStep_br * y)) << 8) * a1) >> 16));
WU_DRAWCIRCLE_BCOLOR_BL_CCW(ptr_bl, x, y, px, py, (uint8)((uint32)(((alpha_l + (alphaStep_bl * y)) << 8) * a1) >> 16));
WU_DRAWCIRCLE_BCOLOR_TL_CCW(ptr_tl, x, y, px, py, (uint8)((uint32)(((alpha_t + (alphaStep_tl * y)) << 8) * a1) >> 16));
}
}
ptr_fill += pitch * r;
while (short_h-- >= -2) {
this->blendFill(ptr_fill, ptr_fill + Base::_strokeWidth, color, alpha_l); // left
this->blendFill(ptr_fill + w - Base::_strokeWidth + 1, ptr_fill + w + 1, color, alpha_r); // right
ptr_fill += pitch;
}
}
}
template<typename PixelType>
void VectorRendererAA<PixelType>::
drawInteriorRoundedSquareAlg(int x1, int y1, int r, int w, int h, PixelType color, VectorRenderer::FillMode fill_m) {
w -= 2*Base::_strokeWidth;
h -= 2*Base::_strokeWidth;
// Do not draw empty space rounded squares.
if (w <= 0 || h <= 0) {
return;
}
int x, y;
const int pitch = Base::_activeSurface->pitch / Base::_activeSurface->format.bytesPerPixel;
int px, py;
uint32 rsq = r*r;
frac_t T = 0, oldT;
uint8 a1, a2;
r -= Base::_strokeWidth;
x1 += Base::_strokeWidth;
y1 += Base::_strokeWidth;
rsq = r*r;
PixelType *ptr_tl = (PixelType *)Base::_activeSurface->getBasePtr(x1 + r, y1 + r);
PixelType *ptr_tr = (PixelType *)Base::_activeSurface->getBasePtr(x1 + w - r, y1 + r);
PixelType *ptr_bl = (PixelType *)Base::_activeSurface->getBasePtr(x1 + r, y1 + h - r);
PixelType *ptr_br = (PixelType *)Base::_activeSurface->getBasePtr(x1 + w - r, y1 + h - r);
PixelType *ptr_fill = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1);
int short_h = h - 2 * r;
x = r;
y = 0;
T = 0;
px = pitch * x;
py = 0;
if (fill_m == Base::kFillGradient) {
Base::precalcGradient(h);
PixelType color1, color2, color3, color4;
while (x > y++) {
WU_ALGORITHM();
color1 = Base::calcGradient(r - x, h);
color2 = Base::calcGradient(r - y, h);
color3 = Base::calcGradient(h - r + x, h);
color4 = Base::calcGradient(h - r + y, h);
Base::gradientFill(ptr_tl - x - py + 1, w - 2 * r + 2 * x - 1, x1 + r - x - y + 1, r - y);
// Only fill each horizontal line once (or we destroy
// the gradient effect at the edges)
if (T < oldT || y == 1)
Base::gradientFill(ptr_tl - y - px + 1, w - 2 * r + 2 * y - 1, x1 + r - y - x + 1, r - x);
Base::gradientFill(ptr_bl - x + py + 1, w - 2 * r + 2 * x - 1, x1 + r - x - y + 1, h - r + y);
// Only fill each horizontal line once (or we destroy
// the gradient effect at the edges)
if (T < oldT || y == 1)
Base::gradientFill(ptr_bl - y + px + 1, w - 2 * r + 2 * y - 1, x1 + r - y - x + 1, h - r + x);
// This shape is used for dialog backgrounds.
// If we're drawing on top of an empty overlay background,
// and the overlay supports alpha, we have to do AA by
// setting the dest alpha channel, instead of blending with
// dest color channels.
if (!g_system->hasFeature(OSystem::kFeatureOverlaySupportsAlpha))
WU_DRAWCIRCLE_XCOLOR(ptr_tr, ptr_tl, ptr_bl, ptr_br, x, y, px, py, a1, blendPixelPtr);
else
WU_DRAWCIRCLE_XCOLOR(ptr_tr, ptr_tl, ptr_bl, ptr_br, x, y, px, py, a1, blendPixelDestAlphaPtr);
}
ptr_fill += pitch * r;
while (short_h-- >= 0) {
Base::gradientFill(ptr_fill, w + 1, x1, r++);
ptr_fill += pitch;
}
} else {
while (x > y++) {
WU_ALGORITHM();
colorFill<PixelType>(ptr_tl - x - py + 1, ptr_tr + x - py, color);
if (T < oldT || y == 1)
colorFill<PixelType>(ptr_tl - y - px + 1, ptr_tr + y - px, color);
colorFill<PixelType>(ptr_bl - x + py + 1, ptr_br + x + py, color);
if (T < oldT || y == 1)
colorFill<PixelType>(ptr_bl - y + px + 1, ptr_br + y + px, color);
WU_DRAWCIRCLE(ptr_tr, ptr_tl, ptr_bl, ptr_br, x, y, px, py, a1);
}
ptr_fill += pitch * r;
while (short_h-- >= 0) {
colorFill<PixelType>(ptr_fill, ptr_fill + w + 1, color);
ptr_fill += pitch;
}
}
}
template<typename PixelType>
void VectorRendererAA<PixelType>::
drawRoundedSquareAlg(int x1, int y1, int r, int w, int h, PixelType color, VectorRenderer::FillMode fill_m) {
const uint8 borderAlpha_t = 0;
const uint8 borderAlpha_r = 127;
const uint8 borderAlpha_b = 255;
const uint8 borderAlpha_l = 63;
const uint8 bevelAlpha_t = 255;
const uint8 bevelAlpha_r = 31;
const uint8 bevelAlpha_b = 0;
const uint8 bevelAlpha_l = 127;
if (Base::_strokeWidth) {
if (r != 0 && Base::_bevel > 0) {
drawBorderRoundedSquareAlg(x1, y1, r, w, h, color, fill_m, borderAlpha_t, borderAlpha_r, borderAlpha_b, borderAlpha_l);
drawBorderRoundedSquareAlg(x1, y1, r, w, h, Base::_bevelColor, fill_m, bevelAlpha_t, bevelAlpha_r, bevelAlpha_b, bevelAlpha_l);
} else {
drawBorderRoundedSquareAlg(x1, y1, r, w, h, color, fill_m, 255, 255, 255, 255);
}
}
// If only border is visible
if ((!(w <= 0 || h <= 0)) && (fill_m != Base::kFillDisabled)) {
if (fill_m == Base::kFillBackground)
drawInteriorRoundedSquareAlg(x1, y1, r, w, h, Base::_bgColor, fill_m);
else
drawInteriorRoundedSquareAlg(x1, y1, r, w, h, color, fill_m);
}
}
/** CIRCLES **/
template<typename PixelType>
void VectorRendererAA<PixelType>::
drawCircleAlg(int x1, int y1, int r, PixelType color, VectorRenderer::FillMode fill_m) {
int x, y, sw = 0;
const int pitch = Base::_activeSurface->pitch / Base::_activeSurface->format.bytesPerPixel;
int px, py;
uint32 rsq = r*r;
frac_t T = 0, oldT;
uint8 a1, a2;
PixelType *ptr = (PixelType *)Base::_activeSurface->getBasePtr(x1, y1);
if (fill_m == VectorRenderer::kFillDisabled) {
while (sw++ < Base::_strokeWidth) {
x = r - (sw - 1);
y = 0;
T = 0;
px = pitch * x;
py = 0;
*(ptr + x) = (PixelType)color;
*(ptr - x) = (PixelType)color;
*(ptr + px) = (PixelType)color;
*(ptr - px) = (PixelType)color;
while (x > y++) {
WU_ALGORITHM();
if (sw != 1 && sw != Base::_strokeWidth)
a2 = a1 = 255;
WU_DRAWCIRCLE(ptr, ptr, ptr, ptr, (x - 1), y, (px - pitch), py, a2);
WU_DRAWCIRCLE(ptr, ptr, ptr, ptr, x, y, px, py, a1);
}
}
} else {
colorFill<PixelType>(ptr - r, ptr + r + 1, color);
x = r;
y = 0;
T = 0;
px = pitch * x;
py = 0;
while (x > y++) {
WU_ALGORITHM();
colorFill<PixelType>(ptr - x + py, ptr + x + py, color);
colorFill<PixelType>(ptr - x - py, ptr + x - py, color);
colorFill<PixelType>(ptr - y + px, ptr + y + px, color);
colorFill<PixelType>(ptr - y - px, ptr + y - px, color);
WU_DRAWCIRCLE(ptr, ptr, ptr, ptr, x, y, px, py, a1);
}
}
}
#endif
}