scummvm/engines/sci/engine/seg_manager.cpp

1281 lines
34 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "sci/sci.h"
#include "sci/engine/seg_manager.h"
#include "sci/engine/state.h"
namespace Sci {
/**
* Verify the the given condition is true, output the message if condition is false, and exit.
* @param cond condition to be verified
* @param msg the message to be printed if condition fails
*/
#define VERIFY( cond, msg ) if (!(cond)) {\
error("%s, line, %d, %s", __FILE__, __LINE__, msg); \
}
#define DEFAULT_SCRIPTS 32
#define DEFAULT_OBJECTS 8 // default # of objects per script
#define DEFAULT_OBJECTS_INCREMENT 4 // Number of additional objects to instantiate if we're running out of them
#undef DEBUG_segMan // Define to turn on debugging
SegManager::SegManager(ResourceManager *resMan) {
_heap.push_back(0);
Clones_seg_id = 0;
Lists_seg_id = 0;
Nodes_seg_id = 0;
Hunks_seg_id = 0;
_exportsAreWide = false;
_resMan = resMan;
int result = 0;
result = createClassTable();
if (result)
error("SegManager: Failed to initialize class table");
}
// Destroy the object, free the memorys if allocated before
SegManager::~SegManager() {
// Free memory
for (uint i = 0; i < _heap.size(); i++) {
if (_heap[i])
deallocate(i, false);
}
}
SegmentId SegManager::findFreeSegment() const {
// FIXME: This is a very crude approach: We find a free segment id by scanning
// from the start. This can be slow if the number of segments becomes large.
// Optimizations are possible and easy, but I refrain from doing any until this
// refactoring is complete.
// One very simple yet probably effective approach would be to add
// "int firstFreeSegment", which is updated when allocating/freeing segments.
// There are some scenarios where it performs badly, but we should first check
// whether those occur at all. If so, there are easy refinements that deal
// with this. Finally, we could switch to a more elaborate scheme,
// such as keeping track of all free segments. But I doubt this is necessary.
uint seg = 1;
while (seg < _heap.size() && _heap[seg]) {
++seg;
}
assert(seg < 65536);
return seg;
}
SegmentObj *SegManager::allocSegment(SegmentObj *mem, SegmentId *segid) {
// Find a free segment
*segid = findFreeSegment();
if (!mem)
error("SegManager: invalid mobj");
// ... and put it into the (formerly) free segment.
if (*segid >= (int)_heap.size()) {
assert(*segid == (int)_heap.size());
_heap.push_back(0);
}
_heap[*segid] = mem;
return mem;
}
Script *SegManager::allocateScript(int script_nr, SegmentId *seg_id) {
// Check if the script already has an allocated segment. If it
// does, return that segment.
*seg_id = _scriptSegMap.getVal(script_nr, 0);
if (*seg_id > 0) {
return (Script *)_heap[*seg_id];
}
// allocate the SegmentObj
SegmentObj *mem = allocSegment(new Script(), seg_id);
// Add the script to the "script id -> segment id" hashmap
_scriptSegMap[script_nr] = *seg_id;
return (Script *)mem;
}
void Script::setScriptSize(int script_nr, ResourceManager *resMan) {
Resource *script = resMan->findResource(ResourceId(kResourceTypeScript, script_nr), 0);
Resource *heap = resMan->findResource(ResourceId(kResourceTypeHeap, script_nr), 0);
bool oldScriptHeader = (getSciVersion() == SCI_VERSION_0_EARLY);
_scriptSize = script->size;
_heapSize = 0; // Set later
if (!script || (getSciVersion() >= SCI_VERSION_1_1 && !heap)) {
error("SegManager::setScriptSize: failed to load %s", !script ? "script" : "heap");
}
if (oldScriptHeader) {
_bufSize = script->size + READ_LE_UINT16(script->data) * 2;
//locals_size = READ_LE_UINT16(script->data) * 2;
} else if (getSciVersion() < SCI_VERSION_1_1) {
_bufSize = script->size;
} else {
_bufSize = script->size + heap->size;
_heapSize = heap->size;
// Ensure that the start of the heap resource can be word-aligned.
if (script->size & 2) {
_bufSize++;
_scriptSize++;
}
if (_bufSize > 65535) {
error("Script and heap sizes combined exceed 64K."
"This means a fundamental design bug was made in SCI\n"
"regarding SCI1.1 games.\nPlease report this so it can be"
"fixed in the next major version");
return;
}
}
}
int SegManager::deallocate(SegmentId seg, bool recursive) {
SegmentObj *mobj;
VERIFY(check(seg), "invalid seg id");
mobj = _heap[seg];
if (mobj->getType() == SEG_TYPE_SCRIPT) {
Script *scr = (Script *)mobj;
_scriptSegMap.erase(scr->_nr);
if (recursive && scr->_localsSegment)
deallocate(scr->_localsSegment, recursive);
}
delete mobj;
_heap[seg] = NULL;
return 1;
}
bool SegManager::isHeapObject(reg_t pos) {
Object *obj = getObject(pos);
if (obj == NULL)
return false;
if (obj->_flags & OBJECT_FLAG_FREED)
return false;
Script *scr = getScriptIfLoaded(pos.segment);
return !(scr && scr->_markedAsDeleted);
}
void SegManager::deallocateScript(int script_nr) {
SegmentId seg = getScriptSegment(script_nr);
deallocate(seg, true);
}
Script *SegManager::getScript(const SegmentId seg) {
if (seg < 1 || (uint)seg >= _heap.size()) {
error("SegManager::getScript(): seg id %x out of bounds", seg);
}
if (!_heap[seg]) {
error("SegManager::getScript(): seg id %x is not in memory", seg);
}
if (_heap[seg]->getType() != SEG_TYPE_SCRIPT) {
error("SegManager::getScript(): seg id %x refers to type %d != SEG_TYPE_SCRIPT", seg, _heap[seg]->getType());
}
return (Script *)_heap[seg];
}
Script *SegManager::getScriptIfLoaded(const SegmentId seg) {
if (seg < 1 || (uint)seg >= _heap.size() || !_heap[seg] || _heap[seg]->getType() != SEG_TYPE_SCRIPT)
return 0;
return (Script *)_heap[seg];
}
SegmentId SegManager::findSegmentByType(int type) {
for (uint i = 0; i < _heap.size(); i++)
if (_heap[i] && _heap[i]->getType() == type)
return i;
return 0;
}
SegmentObj *SegManager::getSegmentObj(SegmentId seg) {
if (seg < 1 || (uint)seg >= _heap.size() || !_heap[seg])
return 0;
return _heap[seg];
}
SegmentType SegManager::getSegmentType(SegmentId seg) {
if (seg < 1 || (uint)seg >= _heap.size() || !_heap[seg])
return SEG_TYPE_INVALID;
return _heap[seg]->getType();
}
Object *SegManager::getObject(reg_t pos) {
SegmentObj *mobj = getSegmentObj(pos.segment);
Object *obj = NULL;
if (mobj != NULL) {
if (mobj->getType() == SEG_TYPE_CLONES) {
CloneTable *ct = (CloneTable *)mobj;
if (ct->isValidEntry(pos.offset))
obj = &(ct->_table[pos.offset]);
} else if (mobj->getType() == SEG_TYPE_SCRIPT) {
Script *scr = (Script *)mobj;
if (pos.offset <= scr->_bufSize && pos.offset >= -SCRIPT_OBJECT_MAGIC_OFFSET
&& RAW_IS_OBJECT(scr->_buf + pos.offset)) {
obj = scr->getObject(pos.offset);
}
}
}
return obj;
}
const char *SegManager::getObjectName(reg_t pos) {
Object *obj = getObject(pos);
if (!obj)
return "<no such object>";
reg_t nameReg = obj->getNameSelector();
if (nameReg.isNull())
return "<no name>";
const char *name = derefString(nameReg);
if (!name)
return "<invalid name>";
return name;
}
reg_t SegManager::findObjectByName(const Common::String &name, int index) {
reg_t retVal = NULL_REG;
// Now all values are available; iterate over all objects.
int timesFound = 0;
for (uint i = 0; i < _heap.size(); i++) {
SegmentObj *mobj = _heap[i];
int idx = 0;
int max_index = 0;
ObjMap::iterator it;
Script *scr = 0;
CloneTable *ct = 0;
if (mobj) {
if (mobj->getType() == SEG_TYPE_SCRIPT) {
scr = (Script *)mobj;
max_index = scr->_objects.size();
it = scr->_objects.begin();
} else if (mobj->getType() == SEG_TYPE_CLONES) {
ct = (CloneTable *)mobj;
max_index = ct->_table.size();
}
}
// It's a script or a clone table, scan all objects in it
for (; idx < max_index; ++idx) {
Object *obj = NULL;
reg_t objpos;
objpos.offset = 0;
objpos.segment = i;
if (mobj->getType() == SEG_TYPE_SCRIPT) {
obj = &(it->_value);
objpos.offset = obj->_pos.offset;
++it;
} else if (mobj->getType() == SEG_TYPE_CLONES) {
if (!ct->isValidEntry(idx))
continue;
obj = &(ct->_table[idx]);
objpos.offset = idx;
}
const char *objname = getObjectName(objpos);
if (name == objname) {
// Found a match!
if ((index < 0) && (timesFound > 0)) {
if (timesFound == 1) {
// First time we realized the ambiguity
printf("Ambiguous:\n");
printf(" %3x: [%04x:%04x] %s\n", 0, PRINT_REG(retVal), name.c_str());
}
printf(" %3x: [%04x:%04x] %s\n", timesFound, PRINT_REG(objpos), name.c_str());
}
if (index < 0 || timesFound == index)
retVal = objpos;
++timesFound;
}
}
}
if (!timesFound)
return NULL_REG;
if (timesFound > 1 && index < 0) {
printf("Ambiguous: Aborting.\n");
return NULL_REG; // Ambiguous
}
if (timesFound <= index)
return NULL_REG; // Not found
return retVal;
}
// validate the seg
// return:
// false - invalid seg
// true - valid seg
bool SegManager::check(SegmentId seg) {
if (seg < 1 || (uint)seg >= _heap.size()) {
return false;
}
if (!_heap[seg]) {
warning("SegManager: seg %x is removed from memory, but not removed from hash_map", seg);
return false;
}
return true;
}
void SegManager::setExportAreWide(bool flag) {
_exportsAreWide = flag;
}
int Script::relocateBlock(Common::Array<reg_t> &block, int block_location, SegmentId segment, int location) {
int rel = location - block_location;
if (rel < 0)
return 0;
uint idx = rel >> 1;
if (idx >= block.size())
return 0;
if (rel & 1) {
warning("Attempt to relocate odd variable #%d.5e (relative to %04x)\n", idx, block_location);
return 0;
}
block[idx].segment = segment; // Perform relocation
if (getSciVersion() >= SCI_VERSION_1_1)
block[idx].offset += _scriptSize;
return 1;
}
int Script::relocateLocal(SegmentId segment, int location) {
if (_localsBlock)
return relocateBlock(_localsBlock->_locals, _localsOffset, segment, location);
else
return 0; // No hands, no cookies
}
int Script::relocateObject(Object &obj, SegmentId segment, int location) {
return relocateBlock(obj._variables, obj._pos.offset, segment, location);
}
void Script::scriptAddCodeBlock(reg_t location) {
CodeBlock cb;
cb.pos = location;
cb.size = READ_LE_UINT16(_buf + location.offset - 2);
_codeBlocks.push_back(cb);
}
void Script::scriptRelocate(reg_t block) {
VERIFY(block.offset < (uint16)_bufSize && READ_LE_UINT16(_buf + block.offset) * 2 + block.offset < (uint16)_bufSize,
"Relocation block outside of script\n");
int count = READ_LE_UINT16(_buf + block.offset);
for (int i = 0; i <= count; i++) {
int pos = READ_LE_UINT16(_buf + block.offset + 2 + (i * 2));
if (!pos)
continue; // FIXME: A hack pending investigation
if (!relocateLocal(block.segment, pos)) {
bool done = false;
uint k;
ObjMap::iterator it;
const ObjMap::iterator end = _objects.end();
for (it = _objects.begin(); !done && it != end; ++it) {
if (relocateObject(it->_value, block.segment, pos))
done = true;
}
for (k = 0; !done && k < _codeBlocks.size(); k++) {
if (pos >= _codeBlocks[k].pos.offset &&
pos < _codeBlocks[k].pos.offset + _codeBlocks[k].size)
done = true;
}
if (!done) {
printf("While processing relocation block %04x:%04x:\n", PRINT_REG(block));
printf("Relocation failed for index %04x (%d/%d)\n", pos, i + 1, count);
if (_localsBlock)
printf("- locals: %d at %04x\n", _localsBlock->_locals.size(), _localsOffset);
else
printf("- No locals\n");
for (it = _objects.begin(), k = 0; it != end; ++it, ++k)
printf("- obj#%d at %04x w/ %d vars\n", k, it->_value._pos.offset, it->_value._variables.size());
// SQ3 script 71 has broken relocation entries.
printf("Trying to continue anyway...\n");
}
}
}
}
void Script::heapRelocate(reg_t block) {
VERIFY(block.offset < (uint16)_heapSize && READ_LE_UINT16(_heapStart + block.offset) * 2 + block.offset < (uint16)_bufSize,
"Relocation block outside of script\n");
if (_relocated)
return;
_relocated = true;
int count = READ_LE_UINT16(_heapStart + block.offset);
for (int i = 0; i < count; i++) {
int pos = READ_LE_UINT16(_heapStart + block.offset + 2 + (i * 2)) + _scriptSize;
if (!relocateLocal(block.segment, pos)) {
bool done = false;
uint k;
ObjMap::iterator it;
const ObjMap::iterator end = _objects.end();
for (it = _objects.begin(); !done && it != end; ++it) {
if (relocateObject(it->_value, block.segment, pos))
done = true;
}
if (!done) {
printf("While processing relocation block %04x:%04x:\n", PRINT_REG(block));
printf("Relocation failed for index %04x (%d/%d)\n", pos, i + 1, count);
if (_localsBlock)
printf("- locals: %d at %04x\n", _localsBlock->_locals.size(), _localsOffset);
else
printf("- No locals\n");
for (it = _objects.begin(), k = 0; it != end; ++it, ++k)
printf("- obj#%d at %04x w/ %d vars\n", k, it->_value._pos.offset, it->_value._variables.size());
error("Breakpoint in %s, line %d", __FILE__, __LINE__);
}
}
}
}
// return the seg if script_id is valid and in the map, else 0
SegmentId SegManager::getScriptSegment(int script_id) const {
return _scriptSegMap.getVal(script_id, 0);
}
SegmentId SegManager::getScriptSegment(int script_nr, ScriptLoadType load) {
SegmentId segment;
if ((load & SCRIPT_GET_LOAD) == SCRIPT_GET_LOAD)
script_instantiate(_resMan, this, script_nr);
segment = getScriptSegment(script_nr);
if (segment > 0) {
if ((load & SCRIPT_GET_LOCK) == SCRIPT_GET_LOCK)
getScript(segment)->incrementLockers();
}
return segment;
}
reg_t SegManager::getClassAddress(int classnr, ScriptLoadType lock, reg_t caller) {
if (classnr == 0xffff)
return NULL_REG;
if (classnr < 0 || (int)_classtable.size() <= classnr || _classtable[classnr].script < 0) {
error("[VM] Attempt to dereference class %x, which doesn't exist (max %x)", classnr, _classtable.size());
return NULL_REG;
} else {
Class *the_class = &_classtable[classnr];
if (!the_class->reg.segment) {
getScriptSegment(the_class->script, lock);
if (!the_class->reg.segment) {
error("[VM] Trying to instantiate class %x by instantiating script 0x%x (%03d) failed;"
" Entering debugger.", classnr, the_class->script, the_class->script);
return NULL_REG;
}
} else
if (caller.segment != the_class->reg.segment)
getScript(the_class->reg.segment)->incrementLockers();
return the_class->reg;
}
}
Object *Script::scriptObjInit(reg_t obj_pos) {
Object *obj;
if (getSciVersion() < SCI_VERSION_1_1)
obj_pos.offset += 8; // magic offset (SCRIPT_OBJECT_MAGIC_OFFSET)
VERIFY(obj_pos.offset < _bufSize, "Attempt to initialize object beyond end of script\n");
obj = allocateObject(obj_pos.offset);
VERIFY(obj_pos.offset + SCRIPT_FUNCTAREAPTR_OFFSET < (int)_bufSize, "Function area pointer stored beyond end of script\n");
byte *data = (byte *)(_buf + obj_pos.offset);
uint16 *funct_area = 0;
bool isClass;
if (getSciVersion() < SCI_VERSION_1_1) {
obj->variable_names_nr = READ_LE_UINT16(data + SCRIPT_SELECTORCTR_OFFSET);
obj->base_vars = 0;
funct_area = (uint16 *)(data + READ_LE_UINT16(data + SCRIPT_FUNCTAREAPTR_OFFSET));
obj->methods_nr = READ_LE_UINT16(funct_area - 1);
isClass = READ_LE_UINT16(data + 4) & SCRIPT_INFO_CLASS; // SCRIPT_INFO_OFFSET
} else {
obj->variable_names_nr = READ_LE_UINT16(data + 2);
obj->base_vars = (uint16 *)(_buf + READ_LE_UINT16(data + 4));
funct_area = (uint16 *)(_buf + READ_LE_UINT16(data + 6));
obj->methods_nr = READ_LE_UINT16(funct_area);
isClass = READ_LE_UINT16(data + 14) & SCRIPT_INFO_CLASS;
}
obj->_flags = 0;
obj->_pos = obj_pos;
obj->base_method = funct_area;
VERIFY((byte *)funct_area < _buf + _bufSize, "Function area pointer references beyond end of script");
if (getSciVersion() < SCI_VERSION_1_1) {
VERIFY((byte *)funct_area + obj->methods_nr * 2
// add again for classes, since those also store selectors
+ (isClass ? obj->methods_nr * 2 : 0) < _buf + _bufSize, "Function area extends beyond end of script");
} else {
VERIFY(((byte *)funct_area + obj->variable_names_nr) < _buf + _bufSize, "Function area extends beyond end of script");
}
obj->_variables.resize(obj->variable_names_nr);
obj->base = _buf;
obj->base_obj = data;
for (int i = 0; i < obj->variable_names_nr; i++)
obj->_variables[i] = make_reg(0, READ_LE_UINT16(data + (i * 2)));
return obj;
}
LocalVariables *SegManager::allocLocalsSegment(Script *scr, int count) {
if (!count) { // No locals
scr->_localsSegment = 0;
scr->_localsBlock = NULL;
return NULL;
} else {
LocalVariables *locals;
if (scr->_localsSegment) {
locals = (LocalVariables *)_heap[scr->_localsSegment];
VERIFY(locals != NULL, "Re-used locals segment was NULL'd out");
VERIFY(locals->getType() == SEG_TYPE_LOCALS, "Re-used locals segment did not consist of local variables");
VERIFY(locals->script_id == scr->_nr, "Re-used locals segment belonged to other script");
} else
locals = (LocalVariables *)allocSegment(new LocalVariables(), &scr->_localsSegment);
scr->_localsBlock = locals;
locals->script_id = scr->_nr;
locals->_locals.resize(count);
return locals;
}
}
void SegManager::scriptInitialiseLocalsZero(SegmentId seg, int count) {
Script *scr = getScript(seg);
scr->_localsOffset = -count * 2; // Make sure it's invalid
allocLocalsSegment(scr, count);
}
void SegManager::scriptInitialiseLocals(reg_t location) {
Script *scr = getScript(location.segment);
unsigned int count;
VERIFY(location.offset + 1 < (uint16)scr->_bufSize, "Locals beyond end of script\n");
if (getSciVersion() >= SCI_VERSION_1_1)
count = READ_LE_UINT16(scr->_buf + location.offset - 2);
else
count = (READ_LE_UINT16(scr->_buf + location.offset - 2) - 4) >> 1;
// half block size
scr->_localsOffset = location.offset;
if (!(location.offset + count * 2 + 1 < scr->_bufSize)) {
warning("Locals extend beyond end of script: offset %04x, count %x vs size %x", location.offset, count, (uint)scr->_bufSize);
count = (scr->_bufSize - location.offset) >> 1;
}
LocalVariables *locals = allocLocalsSegment(scr, count);
if (locals) {
uint i;
byte *base = (byte *)(scr->_buf + location.offset);
for (i = 0; i < count; i++)
locals->_locals[i].offset = READ_LE_UINT16(base + i * 2);
}
}
void SegManager::scriptRelocateExportsSci11(SegmentId seg) {
Script *scr = getScript(seg);
for (int i = 0; i < scr->_numExports; i++) {
/* We are forced to use an ugly heuristic here to distinguish function
exports from object/class exports. The former kind points into the
script resource, the latter into the heap resource. */
uint16 location = READ_LE_UINT16((byte *)(scr->_exportTable + i));
if ((location < scr->_heapSize - 1) && (READ_LE_UINT16(scr->_heapStart + location) == SCRIPT_OBJECT_MAGIC_NUMBER)) {
WRITE_LE_UINT16((byte *)(scr->_exportTable + i), location + scr->_heapStart - scr->_buf);
} else {
// Otherwise it's probably a function export,
// and we don't need to do anything.
}
}
}
void SegManager::scriptInitialiseObjectsSci11(SegmentId seg) {
Script *scr = getScript(seg);
byte *seeker = scr->_heapStart + 4 + READ_LE_UINT16(scr->_heapStart + 2) * 2;
while (READ_LE_UINT16(seeker) == SCRIPT_OBJECT_MAGIC_NUMBER) {
if (READ_LE_UINT16(seeker + 14) & SCRIPT_INFO_CLASS) {
int classpos = seeker - scr->_buf;
int species = READ_LE_UINT16(seeker + 10);
if (species < 0 || species >= (int)_classtable.size()) {
error("Invalid species %d(0x%x) not in interval [0,%d) while instantiating script %d",
species, species, _classtable.size(), scr->_nr);
return;
}
_classtable[species].reg.segment = seg;
_classtable[species].reg.offset = classpos;
}
seeker += READ_LE_UINT16(seeker + 2) * 2;
}
seeker = scr->_heapStart + 4 + READ_LE_UINT16(scr->_heapStart + 2) * 2;
while (READ_LE_UINT16(seeker) == SCRIPT_OBJECT_MAGIC_NUMBER) {
reg_t reg;
Object *obj;
reg.segment = seg;
reg.offset = seeker - scr->_buf;
obj = scr->scriptObjInit(reg);
#if 0
if (obj->_variables[5].offset != 0xffff) {
obj->_variables[5] = INST_LOOKUP_CLASS(obj->_variables[5].offset);
base_obj = getObject(obj->_variables[5]);
obj->variable_names_nr = base_obj->variables_nr;
obj->base_obj = base_obj->base_obj;
}
#endif
// Copy base from species class, as we need its selector IDs
obj->setSuperClassSelector(
getClassAddress(obj->getSuperClassSelector().offset, SCRIPT_GET_LOCK, NULL_REG));
// Set the -classScript- selector to the script number.
// FIXME: As this selector is filled in at run-time, it is likely
// that it is supposed to hold a pointer. The Obj::isKindOf method
// uses this selector together with -propDict- to compare classes.
// For the purpose of Obj::isKindOf, using the script number appears
// to be sufficient.
obj->setClassScriptSelector(make_reg(0, scr->_nr));
seeker += READ_LE_UINT16(seeker + 2) * 2;
}
}
/*
static char *SegManager::dynprintf(char *msg, ...) {
va_list argp;
char *buf = (char *)malloc(strlen(msg) + 100);
va_start(argp, msg);
vsprintf(buf, msg, argp);
va_end(argp);
return buf;
}
*/
DataStack *SegManager::allocateStack(int size, SegmentId *segid) {
SegmentObj *mobj = allocSegment(new DataStack(), segid);
DataStack *retval = (DataStack *)mobj;
retval->_entries = (reg_t *)calloc(size, sizeof(reg_t));
retval->_capacity = size;
return retval;
}
SystemStrings *SegManager::allocateSysStrings(SegmentId *segid) {
return (SystemStrings *)allocSegment(new SystemStrings(), segid);
}
SegmentId SegManager::allocateStringFrags() {
SegmentId segid;
allocSegment(new StringFrag(), &segid);
return segid;
}
uint16 SegManager::validateExportFunc(int pubfunct, SegmentId seg) {
Script *scr = getScript(seg);
if (scr->_numExports <= pubfunct) {
warning("validateExportFunc(): pubfunct is invalid");
return 0;
}
if (_exportsAreWide)
pubfunct *= 2;
uint16 offset = READ_LE_UINT16((byte *)(scr->_exportTable + pubfunct));
VERIFY(offset < scr->_bufSize, "invalid export function pointer");
return offset;
}
void SegManager::freeHunkEntry(reg_t addr) {
HunkTable *ht = (HunkTable *)GET_SEGMENT(*this, addr.segment, SEG_TYPE_HUNK);
if (!ht) {
warning("Attempt to free Hunk from address %04x:%04x: Invalid segment type", PRINT_REG(addr));
return;
}
ht->freeEntry(addr.offset);
}
Hunk *SegManager::allocateHunkEntry(const char *hunk_type, int size, reg_t *reg) {
Hunk *h = alloc_Hunk(reg);
if (!h)
return NULL;
h->mem = malloc(size);
h->size = size;
h->type = hunk_type;
return h;
}
Clone *SegManager::allocateClone(reg_t *addr) {
CloneTable *table;
int offset;
if (!Clones_seg_id) {
table = (CloneTable *)allocSegment(new CloneTable(), &(Clones_seg_id));
} else
table = (CloneTable *)_heap[Clones_seg_id];
offset = table->allocEntry();
*addr = make_reg(Clones_seg_id, offset);
return &(table->_table[offset]);
}
void SegManager::reconstructClones() {
for (uint i = 0; i < _heap.size(); i++) {
if (_heap[i]) {
SegmentObj *mobj = _heap[i];
if (mobj->getType() == SEG_TYPE_CLONES) {
CloneTable *ct = (CloneTable *)mobj;
for (uint j = 0; j < ct->_table.size(); j++) {
Object *base_obj;
// Check if the clone entry is used
uint entryNum = (uint)ct->first_free;
bool isUsed = true;
while (entryNum != ((uint) CloneTable::HEAPENTRY_INVALID)) {
if (entryNum == j) {
isUsed = false;
break;
}
entryNum = ct->_table[entryNum].next_free;
}
if (!isUsed)
continue;
CloneTable::Entry &seeker = ct->_table[j];
base_obj = getObject(seeker.getSpeciesSelector());
if (!base_obj) {
warning("Clone entry without a base class: %d", j);
seeker.base = NULL;
seeker.base_obj = NULL;
seeker.base_vars = NULL;
seeker.base_method = NULL;
} else {
seeker.base = base_obj->base;
seeker.base_obj = base_obj->base_obj;
seeker.base_vars = base_obj->base_vars;
seeker.base_method = base_obj->base_method;
}
} // end for
} // end if
} // end if
} // end for
}
List *SegManager::allocateList(reg_t *addr) {
ListTable *table;
int offset;
if (!Lists_seg_id)
allocSegment(new ListTable(), &(Lists_seg_id));
table = (ListTable *)_heap[Lists_seg_id];
offset = table->allocEntry();
*addr = make_reg(Lists_seg_id, offset);
return &(table->_table[offset]);
}
Node *SegManager::allocateNode(reg_t *addr) {
NodeTable *table;
int offset;
if (!Nodes_seg_id)
allocSegment(new NodeTable(), &(Nodes_seg_id));
table = (NodeTable *)_heap[Nodes_seg_id];
offset = table->allocEntry();
*addr = make_reg(Nodes_seg_id, offset);
return &(table->_table[offset]);
}
Hunk *SegManager::alloc_Hunk(reg_t *addr) {
HunkTable *table;
int offset;
if (!Hunks_seg_id)
allocSegment(new HunkTable(), &(Hunks_seg_id));
table = (HunkTable *)_heap[Hunks_seg_id];
offset = table->allocEntry();
*addr = make_reg(Hunks_seg_id, offset);
return &(table->_table[offset]);
}
SegmentRef SegManager::dereference(reg_t pointer) {
SegmentRef ret;
if (!pointer.segment || (pointer.segment >= _heap.size()) || !_heap[pointer.segment]) {
// This occurs in KQ5CD when interacting with certain objects
warning("Attempt to dereference invalid pointer %04x:%04x", PRINT_REG(pointer));
return ret; /* Invalid */
}
SegmentObj *mobj = _heap[pointer.segment];
return mobj->dereference(pointer);
}
static void *_kernel_dereference_pointer(SegManager *segMan, reg_t pointer, int entries, bool wantRaw) {
SegmentRef ret = segMan->dereference(pointer);
if (!ret.isValid())
return NULL;
if (ret.isRaw != wantRaw) {
warning("Dereferencing pointer %04x:%04x (type %d) which is %s, but expected %s", PRINT_REG(pointer),
segMan->_heap[pointer.segment]->getType(),
ret.isRaw ? "raw" : "not raw",
wantRaw ? "raw" : "not raw");
}
if (entries > ret.maxSize) {
warning("Trying to dereference pointer %04x:%04x beyond end of segment", PRINT_REG(pointer));
return NULL;
}
return ret.raw;
}
byte *SegManager::derefBulkPtr(reg_t pointer, int entries) {
return (byte *)_kernel_dereference_pointer(this, pointer, entries, true);
}
reg_t *SegManager::derefRegPtr(reg_t pointer, int entries) {
if (pointer.offset & 1) {
warning("Unaligned pointer read: %04x:%04x expected with word alignment", PRINT_REG(pointer));
return NULL;
}
return (reg_t *)_kernel_dereference_pointer(this, pointer, 2*entries, false);
}
char *SegManager::derefString(reg_t pointer, int entries) {
return (char *)_kernel_dereference_pointer(this, pointer, entries, true);
}
// TODO: memcpy, strcpy and strncpy could maybe be folded into a single function
void SegManager::strncpy(reg_t dest, const char* src, size_t n) {
SegmentRef dest_r = dereference(dest);
if (!dest_r.isValid()) {
warning("Attempt to strncpy to invalid pointer %04x:%04x", PRINT_REG(dest));
return;
}
if (dest_r.isRaw) {
// raw -> raw
if (n == 0xFFFFFFFFU)
::strcpy((char*)dest_r.raw, src);
else
::strncpy((char*)dest_r.raw, src, n);
} else {
// raw -> non-raw
reg_t* d = dest_r.reg;
while (n > 0) {
d->segment = 0; // STRINGFRAG_SEGMENT?
if (n > 1 && src[0]) {
d->offset = (src[0] & 0x00ff) | (src[1] << 8);
} else {
d->offset &= 0xff00;
d->offset |= src[0] & 0x00ff;
break;
}
if (!src[1])
break;
src += 2;
n -= 2;
d++;
}
}
}
void SegManager::strncpy(reg_t dest, reg_t src, size_t n) {
SegmentRef dest_r = dereference(dest);
const SegmentRef src_r = dereference(src);
if (!src_r.isValid()) {
warning("Attempt to strncpy from invalid pointer %04x:%04x", PRINT_REG(src));
// Clear target string instead.
if (n > 0)
strcpy(dest, "");
return;
}
if (!dest_r.isValid()) {
warning("Attempt to strncpy to invalid pointer %04x:%04x", PRINT_REG(dest));
return;
}
if (src_r.isRaw) {
// raw -> *
strncpy(dest, (const char*)src_r.raw, n);
} else if (dest_r.isRaw && !src_r.isRaw) {
// non-raw -> raw
const reg_t* s = src_r.reg;
char *d = (char*)dest_r.raw;
reg_t x;
while (n > 0) {
x = *s++;
*d++ = x.offset & 0x00ff;
if (n > 1 && x.offset & 0x00ff) {
*d++ = x.offset >> 8;
} else {
break;
}
if (!(x.offset >> 8))
break;
n -= 2;
}
} else {
// non-raw -> non-raw
const reg_t* s = src_r.reg;
reg_t* d = dest_r.reg;
reg_t x;
while (n > 0) {
x = *s++;
if (n > 1 && x.offset & 0x00ff) {
*d++ = x;
} else {
d->offset &= 0xff00;
d->offset |= x.offset & 0x00ff;
break;
}
if (!(x.offset & 0xff00))
break;
n -= 2;
}
}
}
void SegManager::strcpy(reg_t dest, const char* src) {
strncpy(dest, src, 0xFFFFFFFFU);
}
void SegManager::strcpy(reg_t dest, reg_t src) {
strncpy(dest, src, 0xFFFFFFFFU);
}
void SegManager::memcpy(reg_t dest, const byte* src, size_t n) {
SegmentRef dest_r = dereference(dest);
if (!dest_r.isValid()) {
warning("Attempt to memcpy to invalid pointer %04x:%04x", PRINT_REG(dest));
return;
}
if ((int)n > dest_r.maxSize) {
warning("Trying to dereference pointer %04x:%04x beyond end of segment", PRINT_REG(dest));
return;
}
if (dest_r.isRaw) {
// raw -> raw
::memcpy((char*)dest_r.raw, src, n);
} else {
// raw -> non-raw
reg_t* d = dest_r.reg;
while (n > 0) {
d->segment = 0; // STRINGFRAG_SEGMENT?
if (n > 1) {
d->offset = (src[0] & 0x00ff) | (src[1] << 8);
} else {
d->offset &= 0xff00;
d->offset |= src[0] & 0x00ff;
break;
}
src += 2;
n -= 2;
d++;
}
}
}
void SegManager::memcpy(reg_t dest, reg_t src, size_t n) {
SegmentRef dest_r = dereference(dest);
const SegmentRef src_r = dereference(src);
if (!dest_r.isValid()) {
warning("Attempt to memcpy to invalid pointer %04x:%04x", PRINT_REG(dest));
return;
}
if ((int)n > dest_r.maxSize) {
warning("Trying to dereference pointer %04x:%04x beyond end of segment", PRINT_REG(dest));
return;
}
if (!src_r.isValid()) {
warning("Attempt to memcpy from invalid pointer %04x:%04x", PRINT_REG(src));
return;
}
if ((int)n > src_r.maxSize) {
warning("Trying to dereference pointer %04x:%04x beyond end of segment", PRINT_REG(src));
return;
}
if (src_r.isRaw) {
// raw -> *
memcpy(dest, src_r.raw, n);
} else if (dest_r.isRaw) {
// * -> raw
memcpy(dest_r.raw, src, n);
} else {
// non-raw -> non-raw
const reg_t* s = src_r.reg;
reg_t* d = dest_r.reg;
reg_t x;
while (n > 0) {
x = *s++;
if (n > 1) {
*d++ = x;
} else {
d->offset &= 0xff00;
d->offset |= x.offset & 0x00ff;
break;
}
n -= 2;
}
}
}
void SegManager::memcpy(byte *dest, reg_t src, size_t n) {
const SegmentRef src_r = dereference(src);
if (!src_r.isValid()) {
warning("Attempt to memcpy from invalid pointer %04x:%04x", PRINT_REG(src));
return;
}
if ((int)n > src_r.maxSize) {
warning("Trying to dereference pointer %04x:%04x beyond end of segment", PRINT_REG(src));
return;
}
if (src_r.isRaw) {
// raw -> raw
::memcpy(dest, src_r.raw, n);
} else {
// non-raw -> raw
const reg_t* s = src_r.reg;
reg_t x;
while (n > 0) {
x = *s++;
*dest++ = x.offset & 0x00ff;
if (n > 1) {
*dest++ = x.offset >> 8;
} else {
break;
}
n -= 2;
}
}
}
size_t SegManager::strlen(reg_t str) {
SegmentRef str_r = dereference(str);
if (!str_r.isValid()) {
warning("Attempt to call strlen on invalid pointer %04x:%04x", PRINT_REG(str));
return 0;
}
if (str_r.isRaw) {
return ::strlen((const char*)str_r.raw);
} else {
const reg_t* s = str_r.reg;
size_t n = 0;
while ((s->offset & 0x00ff) && (s->offset >> 8)) {
++s;
n += 2;
}
if (s->offset & 0x00ff)
n++;
return n;
}
}
Common::String SegManager::getString(reg_t pointer, int entries)
{
Common::String ret;
SegmentRef src_r = dereference(pointer);
if (!src_r.isValid()) {
warning("Attempt to dereference invalid pointer %04x:%04x", PRINT_REG(pointer));
return ret;
}
if (entries > src_r.maxSize) {
warning("Trying to dereference pointer %04x:%04x beyond end of segment", PRINT_REG(pointer));
return ret;
}
if (src_r.isRaw)
ret = (char*)src_r.raw;
else {
const reg_t* s = src_r.reg;
char c;
do {
c = s->offset & 0x00ff;
if (c) {
ret += c;
c = s->offset >> 8;
if (c) {
ret += c;
s++;
}
}
} while (c);
}
return ret;
}
byte *SegManager::allocDynmem(int size, const char *descr, reg_t *addr) {
SegmentId seg;
SegmentObj *mobj = allocSegment(new DynMem(), &seg);
*addr = make_reg(seg, 0);
DynMem &d = *(DynMem *)mobj;
d._size = size;
if (size == 0)
d._buf = NULL;
else
d._buf = (byte *)malloc(size);
d._description = descr;
return (byte *)(d._buf);
}
const char *SegManager::getDescription(reg_t addr) {
if (addr.segment < 1 || addr.segment >= _heap.size())
return "";
SegmentObj *mobj = _heap[addr.segment];
switch (mobj->getType()) {
case SEG_TYPE_DYNMEM:
return (*(DynMem *)mobj)._description.c_str();
default:
return "";
}
}
int SegManager::freeDynmem(reg_t addr) {
if (addr.segment < 1 || addr.segment >= _heap.size() || !_heap[addr.segment] || _heap[addr.segment]->getType() != SEG_TYPE_DYNMEM)
return 1; // error
deallocate(addr.segment, true);
return 0; // OK
}
int SegManager::createClassTable() {
Resource *vocab996 = _resMan->findResource(ResourceId(kResourceTypeVocab, 996), 1);
if (!vocab996)
error("SegManager: failed to open vocab 996");
int totalClasses = vocab996->size >> 2;
_classtable.resize(totalClasses);
for (uint16 classNr = 0; classNr < totalClasses; classNr++) {
uint16 scriptNr = READ_LE_UINT16(vocab996->data + classNr * 4 + 2);
_classtable[classNr].reg = NULL_REG;
_classtable[classNr].script = scriptNr;
}
_resMan->unlockResource(vocab996);
return 0;
}
} // End of namespace Sci