scummvm/engines/agos/midi.cpp
Martin Kiewitz 870b33743f AGOS: Simon 2: extract MIDPAK.AD from SETUP.SHR
implements support for extracting MIDPAK.AD from SETUP.SHR
this way the user isn't required to install the game and can just
use the files copied from CD-ROM.
Files inside SETUP.SHR were compressed using PKWARE data compression
library.

PKWARE decompression code based on information released by
Ben Rudiak-Gould in comp.compression on 13.8.2001

Miles Audio support is still disabled atm
and has to be enabled manually
2015-07-03 21:02:13 +02:00

1223 lines
34 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "common/config-manager.h"
#include "common/file.h"
#include "common/textconsole.h"
#include "agos/agos.h"
#include "agos/midi.h"
#include "agos/drivers/accolade/mididriver.h"
// Miles Audio for Simon 2
#include "audio/miles.h"
#include "gui/message.h"
namespace AGOS {
// MidiParser_S1D is not considered part of the standard
// MidiParser suite, but we still try to mask its details
// and just provide a factory function.
extern MidiParser *MidiParser_createS1D();
MidiPlayer::MidiPlayer() {
// Since initialize() is called every time the music changes,
// this is where we'll initialize stuff that must persist
// between songs.
_driver = 0;
_map_mt32_to_gm = false;
_adlibPatches = NULL;
_enable_sfx = true;
_current = 0;
_musicVolume = 255;
_sfxVolume = 255;
resetVolumeTable();
_paused = false;
_currentTrack = 255;
_loopTrackDefault = false;
_queuedTrack = 255;
_loopQueuedTrack = 0;
_musicMode = kMusicModeDisabled;
}
MidiPlayer::~MidiPlayer() {
stop();
Common::StackLock lock(_mutex);
if (_driver) {
_driver->setTimerCallback(0, 0);
_driver->close();
delete _driver;
}
_driver = NULL;
clearConstructs();
unloadAdlibPatches();
}
int MidiPlayer::open(int gameType, bool isDemo) {
// Don't call open() twice!
assert(!_driver);
Common::String accoladeDriverFilename;
MusicType musicType = MT_INVALID;
switch (gameType) {
case GType_ELVIRA1:
_musicMode = kMusicModeAccolade;
accoladeDriverFilename = "INSTR.DAT";
break;
case GType_ELVIRA2:
case GType_WW:
// Attention: Elvira 2 shipped with INSTR.DAT and MUSIC.DRV
// MUSIC.DRV is the correct one. INSTR.DAT seems to be a left-over
_musicMode = kMusicModeAccolade;
accoladeDriverFilename = "MUSIC.DRV";
break;
case GType_SIMON1:
if (isDemo) {
_musicMode = kMusicModeAccolade;
accoladeDriverFilename = "MUSIC.DRV";
}
break;
case GType_SIMON2:
//_musicMode = kMusicModeMilesAudio;
// currently disabled, because there are a few issues
// MT32 seems to work fine now, AdLib seems to use bad instruments and is also outputting music on
// the right speaker only. The original driver did initialize the panning to 0 and the Simon2 XMIDI
// tracks don't set panning at all. We can reset panning to be centered, which would solve this
// issue, but we still don't know who's setting it in the original interpreter.
break;
default:
break;
}
MidiDriver::DeviceHandle dev;
int ret = 0;
if (_musicMode != kMusicModeDisabled) {
dev = MidiDriver::detectDevice(MDT_MIDI | MDT_ADLIB | MDT_PREFER_MT32);
musicType = MidiDriver::getMusicType(dev);
switch (musicType) {
case MT_ADLIB:
case MT_MT32:
break;
case MT_GM:
if (!ConfMan.getBool("native_mt32")) {
// Not a real MT32 / no MUNT
::GUI::MessageDialog dialog(("You appear to be using a General MIDI device,\n"
"but your game only supports Roland MT32 MIDI.\n"
"We try to map the Roland MT32 instruments to\n"
"General MIDI ones. It is still possible that\n"
"some tracks sound incorrect."));
dialog.runModal();
}
// Switch to MT32 driver in any case
musicType = MT_MT32;
break;
default:
_musicMode = kMusicModeDisabled;
break;
}
}
switch (_musicMode) {
case kMusicModeAccolade: {
// Setup midi driver
switch (musicType) {
case MT_ADLIB:
_driver = MidiDriver_Accolade_AdLib_create(accoladeDriverFilename);
break;
case MT_MT32:
_driver = MidiDriver_Accolade_MT32_create(accoladeDriverFilename);
break;
default:
assert(0);
break;
}
if (!_driver)
return 255;
ret = _driver->open();
if (ret == 0) {
// Reset is done inside our MIDI driver
_driver->setTimerCallback(this, &onTimer);
}
//setTimerRate(_driver->getBaseTempo());
return 0;
}
case kMusicModeMilesAudio: {
switch (musicType) {
case MT_ADLIB: {
Common::File instrumentDataFile;
if (instrumentDataFile.exists("MIDPAK.AD")) {
// if there is a file called MIDPAK.AD, use it directly
warning("SIMON 2: using MIDPAK.AD");
_driver = Audio::MidiDriver_Miles_AdLib_create("MIDPAK.AD", "MIDPAK.AD");
} else {
// if there is no file called MIDPAK.AD, try to extract it from the file SETUP.SHR
// if we didn't do this, the user would be forced to "install" the game instead of simply
// copying all files from CD-ROM.
const byte *instrumentRawData = NULL;
uint32 instrumentRawDataSize = 0;
instrumentRawData = simon2SetupExtractFile("MIDPAK.AD", instrumentRawDataSize);
if (!instrumentRawData)
error("MidiPlayer: could not extract MIDPAK.AD from SETUP.SHR");
// Pass this extracted data to the driver
warning("SIMON 2: using MIDPAK.AD extracted from SETUP.SHR");
_driver = Audio::MidiDriver_Miles_AdLib_create("", "", instrumentRawData, instrumentRawDataSize);
delete[] instrumentRawData;
}
// TODO: not sure what's going wrong with AdLib
// it doesn't seem to matter if we use the regular XMIDI tracks or the 2nd set meant for MT32
break;
}
case MT_MT32:
_driver = Audio::MidiDriver_Miles_MT32_create("");
_nativeMT32 = true; // use 2nd set of XMIDI tracks
break;
case MT_GM:
if (ConfMan.getBool("native_mt32")) {
_driver = Audio::MidiDriver_Miles_MT32_create("");
_nativeMT32 = true; // use 2nd set of XMIDI tracks
}
break;
default:
break;
}
if (!_driver)
return 255;
ret = _driver->open();
if (ret == 0) {
// Reset is done inside our MIDI driver
_driver->setTimerCallback(this, &onTimer);
}
return 0;
}
default:
break;
}
dev = MidiDriver::detectDevice(MDT_ADLIB | MDT_MIDI | (gameType == GType_SIMON1 ? MDT_PREFER_MT32 : MDT_PREFER_GM));
_nativeMT32 = ((MidiDriver::getMusicType(dev) == MT_MT32) || ConfMan.getBool("native_mt32"));
_driver = MidiDriver::createMidi(dev);
if (!_driver)
return 255;
if (_nativeMT32)
_driver->property(MidiDriver::PROP_CHANNEL_MASK, 0x03FE);
/* Disabled due to not sounding right, and low volume level
if (gameType == GType_SIMON1 && MidiDriver::getMusicType(dev) == MT_ADLIB) {
loadAdlibPatches();
}
*/
_map_mt32_to_gm = (gameType != GType_SIMON2 && !_nativeMT32);
ret = _driver->open();
if (ret)
return ret;
_driver->setTimerCallback(this, &onTimer);
if (_nativeMT32)
_driver->sendMT32Reset();
else
_driver->sendGMReset();
return 0;
}
void MidiPlayer::send(uint32 b) {
if (!_current)
return;
if (_musicMode != kMusicModeDisabled) {
// Send directly to Accolade/Miles Audio driver
_driver->send(b);
return;
}
byte channel = (byte)(b & 0x0F);
if ((b & 0xFFF0) == 0x07B0) {
// Adjust volume changes by master music and master sfx volume.
byte volume = (byte)((b >> 16) & 0x7F);
_current->volume[channel] = volume;
if (_current == &_sfx)
volume = volume * _sfxVolume / 255;
else if (_current == &_music)
volume = volume * _musicVolume / 255;
b = (b & 0xFF00FFFF) | (volume << 16);
} else if ((b & 0xF0) == 0xC0) {
if (_map_mt32_to_gm && !_adlibPatches) {
b = (b & 0xFFFF00FF) | (MidiDriver::_mt32ToGm[(b >> 8) & 0xFF] << 8);
}
} else if ((b & 0xFFF0) == 0x007BB0) {
// Only respond to an All Notes Off if this channel
// has already been allocated.
if (!_current->channel[b & 0x0F])
return;
} else if ((b & 0xFFF0) == 0x79B0) {
// "Reset All Controllers". There seems to be some confusion
// about what this message should do to the volume controller.
// See http://www.midi.org/about-midi/rp15.shtml for more
// information.
//
// If I understand it correctly, the current standard indicates
// that the volume should be reset, but the next revision will
// exclude it. On my system, both ALSA and FluidSynth seem to
// reset it, while AdLib does not. Let's follow the majority.
_current->volume[channel] = 127;
}
// Allocate channels if needed
if (!_current->channel[channel])
_current->channel[channel] = (channel == 9) ? _driver->getPercussionChannel() : _driver->allocateChannel();
if (_current->channel[channel]) {
if (channel == 9) {
if (_current == &_sfx)
_current->channel[9]->volume(_current->volume[9] * _sfxVolume / 255);
else if (_current == &_music)
_current->channel[9]->volume(_current->volume[9] * _musicVolume / 255);
}
if ((b & 0xF0) == 0xC0 && _adlibPatches) {
// NOTE: In the percussion channel, this function is a
// no-op. Any percussion instruments you hear may
// be the stock ones from adlib.cpp.
_driver->sysEx_customInstrument(_current->channel[channel]->getNumber(), 'ADL ', _adlibPatches + 30 * ((b >> 8) & 0xFF));
} else {
_current->channel[channel]->send(b);
}
if ((b & 0xFFF0) == 0x79B0) {
// We have received a "Reset All Controllers" message
// and passed it on to the MIDI driver. This may or may
// not have affected the volume controller. To ensure
// consistent behavior, explicitly set the volume to
// what we think it should be.
if (_current == &_sfx)
_current->channel[channel]->volume(_current->volume[channel] * _sfxVolume / 255);
else if (_current == &_music)
_current->channel[channel]->volume(_current->volume[channel] * _musicVolume / 255);
}
}
}
void MidiPlayer::metaEvent(byte type, byte *data, uint16 length) {
// Only thing we care about is End of Track.
if (!_current || type != 0x2F) {
return;
} else if (_current == &_sfx) {
clearConstructs(_sfx);
} else if (_current->loopTrack) {
_current->parser->jumpToTick(0);
} else if (_queuedTrack != 255) {
_currentTrack = 255;
byte destination = _queuedTrack;
_queuedTrack = 255;
_current->loopTrack = _loopQueuedTrack;
_loopQueuedTrack = false;
// Remember, we're still inside the locked mutex.
// Have to unlock it before calling jump()
// (which locks it itself), and then relock it
// upon returning.
_mutex.unlock();
startTrack(destination);
_mutex.lock();
} else {
stop();
}
}
void MidiPlayer::onTimer(void *data) {
MidiPlayer *p = (MidiPlayer *)data;
Common::StackLock lock(p->_mutex);
if (!p->_paused) {
if (p->_music.parser && p->_currentTrack != 255) {
p->_current = &p->_music;
p->_music.parser->onTimer();
}
}
if (p->_sfx.parser) {
p->_current = &p->_sfx;
p->_sfx.parser->onTimer();
}
p->_current = 0;
}
void MidiPlayer::startTrack(int track) {
Common::StackLock lock(_mutex);
if (track == _currentTrack)
return;
if (_music.num_songs > 0) {
if (track >= _music.num_songs)
return;
if (_music.parser) {
_current = &_music;
delete _music.parser;
_current = 0;
_music.parser = 0;
}
MidiParser *parser = MidiParser::createParser_SMF();
parser->property (MidiParser::mpMalformedPitchBends, 1);
parser->setMidiDriver(this);
parser->setTimerRate(_driver->getBaseTempo());
if (!parser->loadMusic(_music.songs[track], _music.song_sizes[track])) {
warning("Error reading track %d", track);
delete parser;
parser = 0;
}
_currentTrack = (byte)track;
_music.parser = parser; // That plugs the power cord into the wall
} else if (_music.parser) {
if (!_music.parser->setTrack(track)) {
return;
}
_currentTrack = (byte)track;
_current = &_music;
_music.parser->jumpToTick(0);
_current = 0;
}
}
void MidiPlayer::stop() {
Common::StackLock lock(_mutex);
if (_music.parser) {
_current = &_music;
_music.parser->jumpToTick(0);
}
_current = 0;
_currentTrack = 255;
}
void MidiPlayer::pause(bool b) {
if (_paused == b || !_driver)
return;
_paused = b;
Common::StackLock lock(_mutex);
for (int i = 0; i < 16; ++i) {
if (_music.channel[i])
_music.channel[i]->volume(_paused ? 0 : (_music.volume[i] * _musicVolume / 255));
if (_sfx.channel[i])
_sfx.channel[i]->volume(_paused ? 0 : (_sfx.volume[i] * _sfxVolume / 255));
}
}
void MidiPlayer::setVolume(int musicVol, int sfxVol) {
if (musicVol < 0)
musicVol = 0;
else if (musicVol > 255)
musicVol = 255;
if (sfxVol < 0)
sfxVol = 0;
else if (sfxVol > 255)
sfxVol = 255;
if (_musicVolume == musicVol && _sfxVolume == sfxVol)
return;
_musicVolume = musicVol;
_sfxVolume = sfxVol;
// Now tell all the channels this.
Common::StackLock lock(_mutex);
if (_driver && !_paused) {
for (int i = 0; i < 16; ++i) {
if (_music.channel[i])
_music.channel[i]->volume(_music.volume[i] * _musicVolume / 255);
if (_sfx.channel[i])
_sfx.channel[i]->volume(_sfx.volume[i] * _sfxVolume / 255);
}
}
}
void MidiPlayer::setLoop(bool loop) {
Common::StackLock lock(_mutex);
_loopTrackDefault = loop;
}
void MidiPlayer::queueTrack(int track, bool loop) {
_mutex.lock();
if (_currentTrack == 255) {
_mutex.unlock();
setLoop(loop);
startTrack(track);
} else {
_queuedTrack = track;
_loopQueuedTrack = loop;
_mutex.unlock();
}
}
void MidiPlayer::clearConstructs() {
clearConstructs(_music);
clearConstructs(_sfx);
}
void MidiPlayer::clearConstructs(MusicInfo &info) {
int i;
if (info.num_songs > 0) {
for (i = 0; i < info.num_songs; ++i)
free(info.songs[i]);
info.num_songs = 0;
}
free(info.data);
info.data = 0;
delete info.parser;
info.parser = 0;
if (_driver) {
for (i = 0; i < 16; ++i) {
if (info.channel[i]) {
info.channel[i]->allNotesOff();
info.channel[i]->release();
}
}
}
info.clear();
}
void MidiPlayer::resetVolumeTable() {
int i;
for (i = 0; i < 16; ++i) {
_music.volume[i] = _sfx.volume[i] = 127;
if (_driver)
_driver->send(((_musicVolume >> 1) << 16) | 0x7B0 | i);
}
}
void MidiPlayer::loadAdlibPatches() {
Common::File ibk;
if (!ibk.open("mt_fm.ibk"))
return;
if (ibk.readUint32BE() == 0x49424b1a) {
_adlibPatches = new byte[128 * 30];
byte *ptr = _adlibPatches;
memset(_adlibPatches, 0, 128 * 30);
for (int i = 0; i < 128; i++) {
byte instr[16];
ibk.read(instr, 16);
ptr[0] = instr[0]; // Modulator Sound Characteristics
ptr[1] = instr[2]; // Modulator Scaling/Output Level
ptr[2] = ~instr[4]; // Modulator Attack/Decay
ptr[3] = ~instr[6]; // Modulator Sustain/Release
ptr[4] = instr[8]; // Modulator Wave Select
ptr[5] = instr[1]; // Carrier Sound Characteristics
ptr[6] = instr[3]; // Carrier Scaling/Output Level
ptr[7] = ~instr[5]; // Carrier Attack/Delay
ptr[8] = ~instr[7]; // Carrier Sustain/Release
ptr[9] = instr[9]; // Carrier Wave Select
ptr[10] = instr[10]; // Feedback/Connection
// The remaining six bytes are reserved for future use
ptr += 30;
}
}
}
void MidiPlayer::unloadAdlibPatches() {
delete[] _adlibPatches;
_adlibPatches = NULL;
}
static const int simon1_gmf_size[] = {
8900, 12166, 2848, 3442, 4034, 4508, 7064, 9730, 6014, 4742, 3138,
6570, 5384, 8909, 6457, 16321, 2742, 8968, 4804, 8442, 7717,
9444, 5800, 1381, 5660, 6684, 2456, 4744, 2455, 1177, 1232,
17256, 5103, 8794, 4884, 16
};
void MidiPlayer::loadSMF(Common::File *in, int song, bool sfx) {
Common::StackLock lock(_mutex);
MusicInfo *p = sfx ? &_sfx : &_music;
clearConstructs(*p);
uint32 startpos = in->pos();
byte header[4];
in->read(header, 4);
bool isGMF = !memcmp(header, "GMF\x1", 4);
in->seek(startpos, SEEK_SET);
uint32 size = in->size() - in->pos();
if (isGMF) {
if (sfx) {
// Multiple GMF resources are stored in the SFX files,
// but each one is referenced by a pointer at the
// beginning of the file. Those pointers can be used
// to determine file size.
in->seek(0, SEEK_SET);
uint16 value = in->readUint16LE() >> 2; // Number of resources
if (song != value - 1) {
in->seek(song * 2 + 2, SEEK_SET);
value = in->readUint16LE();
size = value - startpos;
}
in->seek(startpos, SEEK_SET);
} else if (size >= 64000) {
// For GMF resources not in separate
// files, we're going to have to use
// hardcoded size tables.
size = simon1_gmf_size[song];
}
}
// When allocating space, add 4 bytes in case
// this is a GMF and we have to tack on our own
// End of Track event.
p->data = (byte *)calloc(size + 4, 1);
in->read(p->data, size);
uint32 timerRate = _driver->getBaseTempo();
if (isGMF) {
// The GMF header
// 3 BYTES: 'GMF'
// 1 BYTE : Major version
// 1 BYTE : Minor version
// 1 BYTE : Ticks (Ranges from 2 - 8, always 2 for SFX)
// 1 BYTE : Loop control. 0 = no loop, 1 = loop
// In the original, the ticks value indicated how many
// times the music timer was called before it actually
// did something. The larger the value the slower the
// music.
//
// We, on the other hand, have a timer rate which is
// used to control by how much the music advances on
// each onTimer() call. The larger the value, the
// faster the music.
//
// It seems that 4 corresponds to our base tempo, so
// this should be the right way to calculate it.
timerRate = (4 * _driver->getBaseTempo()) / p->data[5];
p->loopTrack = (p->data[6] != 0);
} else {
p->loopTrack = _loopTrackDefault;
}
MidiParser *parser = MidiParser::createParser_SMF();
parser->property(MidiParser::mpMalformedPitchBends, 1);
parser->setMidiDriver(this);
parser->setTimerRate(timerRate);
if (!parser->loadMusic(p->data, size)) {
warning("Error reading track");
delete parser;
parser = 0;
}
if (!sfx) {
_currentTrack = 255;
resetVolumeTable();
}
p->parser = parser; // That plugs the power cord into the wall
}
void MidiPlayer::loadMultipleSMF(Common::File *in, bool sfx) {
// This is a special case for Simon 2 Windows.
// Instead of having multiple sequences as
// separate tracks in a Type 2 file, simon2win
// has multiple songs, each of which is a Type 1
// file. Thus, preceding the songs is a single
// byte specifying how many songs are coming.
// We need to load ALL the songs and then
// treat them as separate tracks -- for the
// purpose of jumps, anyway.
Common::StackLock lock(_mutex);
MusicInfo *p = sfx ? &_sfx : &_music;
clearConstructs(*p);
p->num_songs = in->readByte();
if (p->num_songs > 16) {
warning("playMultipleSMF: %d is too many songs to keep track of", (int)p->num_songs);
return;
}
byte i;
for (i = 0; i < p->num_songs; ++i) {
byte buf[5];
uint32 pos = in->pos();
// Make sure there's a MThd
in->read(buf, 4);
if (memcmp(buf, "MThd", 4) != 0) {
warning("Expected MThd but found '%c%c%c%c' instead", buf[0], buf[1], buf[2], buf[3]);
return;
}
in->seek(in->readUint32BE(), SEEK_CUR);
// Now skip all the MTrk blocks
while (true) {
in->read(buf, 4);
if (memcmp(buf, "MTrk", 4) != 0)
break;
in->seek(in->readUint32BE(), SEEK_CUR);
}
uint32 pos2 = in->pos() - 4;
uint32 size = pos2 - pos;
p->songs[i] = (byte *)calloc(size, 1);
in->seek(pos, SEEK_SET);
in->read(p->songs[i], size);
p->song_sizes[i] = size;
}
p->loopTrack = _loopTrackDefault;
if (!sfx) {
_currentTrack = 255;
resetVolumeTable();
}
}
void MidiPlayer::loadXMIDI(Common::File *in, bool sfx) {
Common::StackLock lock(_mutex);
MusicInfo *p = sfx ? &_sfx : &_music;
clearConstructs(*p);
char buf[4];
uint32 pos = in->pos();
uint32 size = 4;
in->read(buf, 4);
if (!memcmp(buf, "FORM", 4)) {
int i;
for (i = 0; i < 16; ++i) {
if (!memcmp(buf, "CAT ", 4))
break;
size += 2;
memcpy(buf, &buf[2], 2);
in->read(&buf[2], 2);
}
if (memcmp(buf, "CAT ", 4) != 0) {
error("Could not find 'CAT ' tag to determine resource size");
}
size += 4 + in->readUint32BE();
in->seek(pos, 0);
p->data = (byte *)calloc(size, 1);
in->read(p->data, size);
p->loopTrack = _loopTrackDefault;
} else {
error("Expected 'FORM' tag but found '%c%c%c%c' instead", buf[0], buf[1], buf[2], buf[3]);
}
// In the DOS version of Simon the Sorcerer 2, the music contains lots
// of XMIDI callback controller events. As far as we know, they aren't
// actually used, so we disable the callback handler explicitly.
MidiParser *parser = MidiParser::createParser_XMIDI(NULL);
parser->setMidiDriver(this);
parser->setTimerRate(_driver->getBaseTempo());
if (!parser->loadMusic(p->data, size))
error("Error reading track");
if (!sfx) {
_currentTrack = 255;
resetVolumeTable();
}
p->parser = parser; // That plugs the power cord into the wall
}
void MidiPlayer::loadS1D(Common::File *in, bool sfx) {
Common::StackLock lock(_mutex);
MusicInfo *p = sfx ? &_sfx : &_music;
clearConstructs(*p);
uint16 size = in->readUint16LE();
if (size != in->size() - 2) {
error("Size mismatch in MUS file (%ld versus reported %d)", (long)in->size() - 2, (int)size);
}
p->data = (byte *)calloc(size, 1);
in->read(p->data, size);
MidiParser *parser = MidiParser_createS1D();
parser->setMidiDriver(this);
parser->setTimerRate(_driver->getBaseTempo());
if (!parser->loadMusic(p->data, size))
error("Error reading track");
if (!sfx) {
_currentTrack = 255;
resetVolumeTable();
}
p->loopTrack = _loopTrackDefault;
p->parser = parser; // That plugs the power cord into the wall
}
#define MIDI_SETUP_BUNDLE_HEADER_SIZE 56
#define MIDI_SETUP_BUNDLE_FILEHEADER_SIZE 48
#define MIDI_SETUP_BUNDLE_FILENAME_MAX_SIZE 12
// PKWARE data compression is used for storing files within SETUP.SHR
// we need it to be able to get the file MIDPAK.AD, otherwise we would have to require the user
// to "install" the game before being able to actually play it, when using AdLib.
//
// SETUP.SHR file format:
// [bundle file header]
// [compressed file header] [compressed file data]
// * compressed file count
const byte *MidiPlayer::simon2SetupExtractFile(const Common::String &requestedFileName, uint32 &extractedDataSize) {
Common::File *setupBundleStream = new Common::File();
uint32 bundleSize = 0;
uint32 bundleBytesLeft = 0;
byte bundleHeader[MIDI_SETUP_BUNDLE_HEADER_SIZE];
byte bundleFileHeader[MIDI_SETUP_BUNDLE_FILEHEADER_SIZE];
uint16 bundleFileCount = 0;
uint16 bundleFileNr = 0;
Common::String fileName;
uint32 fileCompressedSize = 0;
byte *fileCompressedDataPtr = nullptr;
const byte *extractedDataPtr = nullptr;
extractedDataSize = 0;
if (!setupBundleStream->open("setup.shr"))
error("MidiPlayer: could not open setup.shr");
bundleSize = setupBundleStream->size();
bundleBytesLeft = bundleSize;
if (bundleSize < MIDI_SETUP_BUNDLE_HEADER_SIZE)
error("MidiPlayer: unexpected EOF in setup.shr");
if (setupBundleStream->read(bundleHeader, MIDI_SETUP_BUNDLE_HEADER_SIZE) != MIDI_SETUP_BUNDLE_HEADER_SIZE)
error("MidiPlayer: setup.shr read error");
bundleBytesLeft -= MIDI_SETUP_BUNDLE_HEADER_SIZE;
// Verify header byte
if (bundleHeader[13] != 't')
error("MidiPlayer: setup.shr bundle header data mismatch");
bundleFileCount = READ_LE_UINT16(&bundleHeader[14]);
// Search for requested file
while (bundleFileNr < bundleFileCount) {
if (bundleBytesLeft < sizeof(bundleFileHeader))
error("MidiPlayer: unexpected EOF in setup.shr");
if (setupBundleStream->read(bundleFileHeader, sizeof(bundleFileHeader)) != sizeof(bundleFileHeader))
error("MidiPlayer: setup.shr read error");
bundleBytesLeft -= MIDI_SETUP_BUNDLE_FILEHEADER_SIZE;
// Extract filename from file-header
fileName.clear();
for (byte curPos = 0; curPos < MIDI_SETUP_BUNDLE_FILENAME_MAX_SIZE; curPos++) {
if (!bundleFileHeader[curPos]) // terminating NUL
break;
fileName.insertChar(bundleFileHeader[curPos], curPos);
}
// Get compressed
fileCompressedSize = READ_LE_UINT32(&bundleFileHeader[20]);
if (!fileCompressedSize)
error("MidiPlayer: compressed file is 0 bytes, data corruption?");
if (bundleBytesLeft < fileCompressedSize)
error("MidiPlayer: unexpected EOF in setup.shr");
if (fileName == requestedFileName) {
// requested file found
fileCompressedDataPtr = new byte[fileCompressedSize];
if (setupBundleStream->read(fileCompressedDataPtr, fileCompressedSize) != fileCompressedSize)
error("MidiPlayer: setup.shr read error");
// now extract the data
extractedDataPtr = simon2SetupDecompressFile(fileCompressedDataPtr, fileCompressedSize, extractedDataSize);
break;
}
// skip compressed size
setupBundleStream->skip(fileCompressedSize);
bundleBytesLeft -= fileCompressedSize;
bundleFileNr++;
}
setupBundleStream->close();
delete setupBundleStream;
return extractedDataPtr;
}
static byte simon2SetupBitsMask[9] = {
0,
0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F, 0xFF
};
// gets [bitCount] bits from dataPtr, going from LSB to MSB
inline uint16 MidiPlayer::simon2SetupGetBits(byte bitCount, const byte *&dataPtr, const byte *dataEndPtr, byte &dataBitsLeft) {
byte resultBitsLeft = bitCount;
byte resultBitsPos = 0;
uint16 result = 0;
byte currentByte = *dataPtr;
byte currentBits = 0;
// Get bits of current byte
while (resultBitsLeft) {
if (resultBitsLeft < dataBitsLeft) {
// we need less than we have left
currentBits = (currentByte >> (8 - dataBitsLeft)) & simon2SetupBitsMask[resultBitsLeft];
result |= (currentBits << resultBitsPos);
dataBitsLeft -= resultBitsLeft;
resultBitsLeft = 0;
} else {
// we need as much as we have left or more
resultBitsLeft -= dataBitsLeft;
currentBits = currentByte >> (8 - dataBitsLeft);
result |= (currentBits << resultBitsPos);
resultBitsPos += dataBitsLeft;
// Go to next byte
dataPtr++;
if (dataPtr >= dataEndPtr)
error("MidiPlayer: setup.shr: unexpected end of compressed data stream");
dataBitsLeft = 8;
if (resultBitsLeft) {
currentByte = *dataPtr;
}
}
}
return result;
}
// Decode length from bitstream
inline uint16 MidiPlayer::simon2SetupGetLength(const byte *&dataPtr, const byte *dataEndPtr, byte &dataBitsLeft) {
uint16 bits;
bits = simon2SetupGetBits(2, dataPtr, dataEndPtr, dataBitsLeft);
switch (bits) {
case 3:
return 3; // 11b
case 2:
bits = simon2SetupGetBits(1, dataPtr, dataEndPtr, dataBitsLeft);
if (bits)
return 5; // 011b
bits = simon2SetupGetBits(1, dataPtr, dataEndPtr, dataBitsLeft);
if (bits)
return 6; // 0101b
return 7;
case 1:
bits = simon2SetupGetBits(1, dataPtr, dataEndPtr, dataBitsLeft);
if (bits)
return 2; // 101b
return 4; // 100b
case 0:
bits = simon2SetupGetBits(1, dataPtr, dataEndPtr, dataBitsLeft);
if (bits) {
bits = simon2SetupGetBits(1, dataPtr, dataEndPtr, dataBitsLeft);
if (bits)
return 8; // 0011b
bits = simon2SetupGetBits(1, dataPtr, dataEndPtr, dataBitsLeft);
if (bits)
return 9; // 00101b
bits = simon2SetupGetBits(1, dataPtr, dataEndPtr, dataBitsLeft);
if (bits)
return 11; // 001001b
return 10; // 001000b
} else {
bits = simon2SetupGetBits(1, dataPtr, dataEndPtr, dataBitsLeft);
if (bits) {
bits = simon2SetupGetBits(1, dataPtr, dataEndPtr, dataBitsLeft);
if (bits) {
bits = simon2SetupGetBits(2, dataPtr, dataEndPtr, dataBitsLeft);
return 12 + bits; // 00011XXb
} else {
bits = simon2SetupGetBits(3, dataPtr, dataEndPtr, dataBitsLeft);
return 16 + bits; // 00010XXXb
}
} else {
bits = simon2SetupGetBits(2, dataPtr, dataEndPtr, dataBitsLeft);
switch (bits) {
case 3:
bits = simon2SetupGetBits(4, dataPtr, dataEndPtr, dataBitsLeft);
return 24 + bits; // 000011XXXXb
case 2:
bits = simon2SetupGetBits(6, dataPtr, dataEndPtr, dataBitsLeft);
return 72 + bits; // 000001XXXXXXb
case 1:
bits = simon2SetupGetBits(5, dataPtr, dataEndPtr, dataBitsLeft);
return 40 + bits; // 000010XXXXXb
case 0:
bits = simon2SetupGetBits(1, dataPtr, dataEndPtr, dataBitsLeft);
if (bits) {
bits = simon2SetupGetBits(7, dataPtr, dataEndPtr, dataBitsLeft);
return 136 + bits; // 0000001XXXXXXXXb
} else {
bits = simon2SetupGetBits(8, dataPtr, dataEndPtr, dataBitsLeft);
return 264 + bits; // 0000000XXXXXXXXb
}
default:
break;
}
}
}
break;
default:
break;
}
return 0;
}
// Decode offset from bitstream
inline uint16 MidiPlayer::simon2SetupGetOffset(byte lowOrderBits, const byte *&dataPtr, const byte *dataEndPtr, byte &dataBitsLeft) {
uint16 baseOffset = 0;
uint16 bits = 0;
bits = simon2SetupGetBits(2, dataPtr, dataEndPtr, dataBitsLeft);
switch (bits) {
case 3:
baseOffset = 0; // 11b
break;
case 2:
bits = simon2SetupGetBits(4, dataPtr, dataEndPtr, dataBitsLeft);
if (bits) {
baseOffset = 0x16 - simon2SetupReverseBits(bits, 4);
} else {
bits = simon2SetupGetBits(1, dataPtr, dataEndPtr, dataBitsLeft);
baseOffset = 0x17 - bits;
}
break;
case 1:
bits = simon2SetupGetBits(1, dataPtr, dataEndPtr, dataBitsLeft);
if (bits) {
bits = simon2SetupGetBits(1, dataPtr, dataEndPtr, dataBitsLeft);
if (bits) {
baseOffset = 0x01;
} else {
baseOffset = 0x02;
}
} else {
bits = simon2SetupGetBits(2, dataPtr, dataEndPtr, dataBitsLeft);
baseOffset = 0x06 - simon2SetupReverseBits(bits, 2);
}
break;
case 0:
bits = simon2SetupGetBits(1, dataPtr, dataEndPtr, dataBitsLeft);
if (bits) {
bits = simon2SetupGetBits(4, dataPtr, dataEndPtr, dataBitsLeft);
baseOffset = 0x27 - simon2SetupReverseBits(bits, 4);
} else {
bits = simon2SetupGetBits(1, dataPtr, dataEndPtr, dataBitsLeft);
if (bits) {
bits = simon2SetupGetBits(3, dataPtr, dataEndPtr, dataBitsLeft);
baseOffset = 0x2F - simon2SetupReverseBits(bits, 3);
} else {
bits = simon2SetupGetBits(4, dataPtr, dataEndPtr, dataBitsLeft);
baseOffset = 0x3F - simon2SetupReverseBits(bits, 4);
}
}
break;
default:
break;
}
bits = simon2SetupGetBits(lowOrderBits, dataPtr, dataEndPtr, dataBitsLeft);
return (baseOffset << lowOrderBits) + bits;
}
inline uint16 MidiPlayer::simon2SetupReverseBits(uint16 bits, byte bitCount) {
uint16 result = 0;
for (byte bitNr = 0; bitNr < bitCount; bitNr++) {
result = (result << 1) | (bits & 0x01);
bits = bits >> 1;
}
return result;
}
#define MIDI_SETUP_BUNDLE_FILE_MAXIMUM_DICTIONARY_SIZE 4096
// Implementation of "PKWARE data compression library" decompression
// Based on information released by Ben Rudiak-Gould in comp.compression on 13.8.2001
const byte *MidiPlayer::simon2SetupDecompressFile(const byte *compressedDataPtr, uint32 compressedDataSize, uint32 &extractedDataSize) {
byte compressedLiteralType = 0;
byte compressedDictionaryType = 0;
uint16 compressedDictionarySize = 0;
const byte *readDataPtr = compressedDataPtr;
const byte *readDataEndPtr = compressedDataPtr + compressedDataSize;
uint32 readBytesLeft = compressedDataSize;
// check if there are at least 3 bytes of compressed data
if (readBytesLeft < 3)
error("MidiPlayer: setup.shr compressed file data not enough bytes");
compressedLiteralType = readDataPtr[0];
compressedDictionaryType = readDataPtr[1];
readDataPtr += 2;
readBytesLeft -= 2;
if (compressedLiteralType != 0)
error("MidiPlayer: setup.shr: unsupported variable length literals");
switch(compressedDictionaryType) {
case 4:
compressedDictionarySize = 1024;
break;
case 5:
compressedDictionarySize = 2048;
break;
case 6:
compressedDictionarySize = 4096;
break;
default:
error("MidiPlayer: setup.shr: invalid dictionary size");
break;
}
byte dataBitsLeft = 8;
byte tokenType = 0;
byte tokenLiteral = 0;
byte tokenLowOrderBits = 0;
uint16 tokenLength = 0;
uint16 tokenOffset = 0;
byte dictionary[MIDI_SETUP_BUNDLE_FILE_MAXIMUM_DICTIONARY_SIZE];
uint16 dictionaryPos = 0;
byte *outputDataPtr = nullptr;
byte *outputPtr = nullptr;
uint32 outputSize = 0;
// First calculate the size of the uncompressed data
do {
tokenType = simon2SetupGetBits(1, readDataPtr, readDataEndPtr, dataBitsLeft);
if (!tokenType) {
// literal
tokenLiteral = simon2SetupGetBits(8, readDataPtr, readDataEndPtr, dataBitsLeft);
outputSize++;
} else {
// length+offset
tokenLength = simon2SetupGetLength(readDataPtr, readDataEndPtr, dataBitsLeft);
if (tokenLength == 519)
break; // end of data
tokenLowOrderBits = (tokenLength == 2) ? 2 : compressedDictionaryType;
tokenOffset = simon2SetupGetOffset(tokenLowOrderBits, readDataPtr, readDataEndPtr, dataBitsLeft);
outputSize += tokenLength;
}
} while (1);
// allocate output buffer
outputDataPtr = new byte[outputSize];
outputPtr = outputDataPtr;
// reset everything
dataBitsLeft = 8;
readDataPtr = compressedDataPtr + 2;
dictionaryPos = 0;
do {
tokenType = simon2SetupGetBits(1, readDataPtr, readDataEndPtr, dataBitsLeft);
if (!tokenType) {
// literal
tokenLiteral = simon2SetupGetBits(8, readDataPtr, readDataEndPtr, dataBitsLeft);
// write literal to output buffer
*outputPtr = tokenLiteral;
outputPtr++;
dictionary[dictionaryPos] = tokenLiteral;
dictionaryPos++;
if (dictionaryPos >= compressedDictionarySize)
dictionaryPos = 0;
} else {
// length+offset
tokenLength = simon2SetupGetLength(readDataPtr, readDataEndPtr, dataBitsLeft);
if (tokenLength == 519)
break; // end of data
tokenLowOrderBits = (tokenLength == 2) ? 2 : compressedDictionaryType;
tokenOffset = simon2SetupGetOffset(tokenLowOrderBits, readDataPtr, readDataEndPtr, dataBitsLeft);
uint16 dictionaryBaseIndex = (dictionaryPos - 1 - tokenOffset) & (compressedDictionarySize - 1);
uint16 dictionaryIndex = dictionaryBaseIndex;
uint16 dictionaryNextIndex = dictionaryPos;
uint16 copyBytesLeft = tokenLength;
while (copyBytesLeft) {
// write byte from dictionary
*outputPtr = dictionary[dictionaryIndex];
outputPtr++;
dictionary[dictionaryNextIndex] = dictionary[dictionaryIndex];
dictionaryNextIndex++; dictionaryIndex++;
if (dictionaryIndex >= dictionaryPos)
dictionaryIndex = dictionaryBaseIndex;
if (dictionaryNextIndex >= compressedDictionarySize)
dictionaryNextIndex = 0;
copyBytesLeft--;
}
dictionaryPos = dictionaryNextIndex;
}
} while (1);
extractedDataSize = outputSize;
return outputDataPtr;
}
} // End of namespace AGOS