scummvm/engines/hugo/schedule.cpp
2011-02-11 20:27:48 +00:00

1526 lines
53 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
/*
* This code is based on original Hugo Trilogy source code
*
* Copyright (c) 1989-1995 David P. Gray
*
*/
// This module contains all the scheduling and timing stuff
#include "common/system.h"
#include "hugo/hugo.h"
#include "hugo/schedule.h"
#include "hugo/file.h"
#include "hugo/display.h"
#include "hugo/util.h"
#include "hugo/object.h"
#include "hugo/sound.h"
#include "hugo/parser.h"
#include "hugo/text.h"
#include "hugo/route.h"
#include "hugo/mouse.h"
namespace Hugo {
Scheduler::Scheduler(HugoEngine *vm) : _vm(vm), _actListArr(0), _curTick(0), _oldTime(0), _refreshTimeout(0) {
memset(_events, 0, sizeof(_events));
}
Scheduler::~Scheduler() {
}
/**
* Initialise the timer event queue
*/
void Scheduler::initEventQueue() {
debugC(1, kDebugSchedule, "initEventQueue");
// Chain next_p from first to last
for (int i = kMaxEvents; --i;)
_events[i - 1].nextEvent = &_events[i];
_events[kMaxEvents - 1].nextEvent = 0;
// Chain prev_p from last to first
for (int i = 1; i < kMaxEvents; i++)
_events[i].prevEvent = &_events[i - 1];
_events[0].prevEvent = 0;
_headEvent = _tailEvent = 0; // Event list is empty
_freeEvent = _events; // Free list is full
}
/**
* Return a ptr to an event structure from the free list
*/
event_t *Scheduler::getQueue() {
debugC(4, kDebugSchedule, "getQueue");
if (!_freeEvent) // Error: no more events available
error("An error has occurred: %s", "getQueue");
event_t *resEvent = _freeEvent;
_freeEvent = _freeEvent->nextEvent;
resEvent->nextEvent = 0;
return resEvent;
}
/**
* Call Insert_action for each action in the list supplied
*/
void Scheduler::insertActionList(const uint16 actIndex) {
debugC(1, kDebugSchedule, "insertActionList(%d)", actIndex);
if (_actListArr[actIndex]) {
for (int i = 0; _actListArr[actIndex][i].a0.actType != ANULL; i++)
insertAction(&_actListArr[actIndex][i]);
}
}
/**
* Return system time in ticks. A tick is 1/TICKS_PER_SEC mS
*/
uint32 Scheduler::getWinTicks() const {
debugC(5, kDebugSchedule, "getWinTicks()");
return _vm->getGameStatus().tick;
}
/**
* Return system time in ticks. A tick is 1/TICKS_PER_SEC mS
* If update FALSE, simply return last known time
* Note that this is real time unless a processing cycle takes longer than
* a real tick, in which case the system tick is simply incremented
*/
uint32 Scheduler::getDosTicks(const bool updateFl) {
debugC(5, kDebugSchedule, "getDosTicks(%s)", (updateFl) ? "TRUE" : "FALSE");
uint32 t_now; // Current wall time in ticks
if (!updateFl)
return(_curTick);
if (_oldTime == 0)
_oldTime = (uint32) floor((double) (g_system->getMillis() * _vm->getTPS() / 1000));
// Calculate current wall time in ticks
t_now = g_system->getMillis() * _vm->getTPS() / 1000 ;
if ((t_now - _oldTime) > 0) {
_oldTime = t_now;
_curTick++;
}
return(_curTick);
}
/**
* Add indecated bonus to score if not added already
*/
void Scheduler::processBonus(const int bonusIndex) {
debugC(1, kDebugSchedule, "processBonus(%d)", bonusIndex);
if (!_vm->_points[bonusIndex].scoredFl) {
_vm->adjustScore(_vm->_points[bonusIndex].score);
_vm->_points[bonusIndex].scoredFl = true;
}
}
/**
* Transition to a new screen as follows:
* 1. Clear out all non-global events from event list.
* 2. Set the new screen (in the hero object and any carried objects)
* 3. Read in the screen files for the new screen
* 4. Schedule action list for new screen
* 5. Initialise prompt line and status line
*/
void Scheduler::newScreen(const int screenIndex) {
debugC(1, kDebugSchedule, "newScreen(%d)", screenIndex);
// Make sure the background file exists!
if (!_vm->isPacked()) {
Common::String filename = Common::String(_vm->_text->getScreenNames(screenIndex));
if (!_vm->_file->fileExists(_vm->_picDir + filename + ".PCX") &&
!_vm->_file->fileExists(filename + ".ART")) {
error("Unable to find background file for %s", filename.c_str());
return;
}
}
// 1. Clear out all local events
event_t *curEvent = _headEvent; // The earliest event
event_t *wrkEvent; // Event ptr
while (curEvent) { // While mature events found
wrkEvent = curEvent->nextEvent; // Save p (becomes undefined after Del)
if (curEvent->localActionFl)
delQueue(curEvent); // Return event to free list
curEvent = wrkEvent;
}
// 2. Set the new screen in the hero object and any being carried
_vm->setNewScreen(screenIndex);
// 3. Read in new screen files
_vm->readScreenFiles(screenIndex);
// 4. Schedule action list for this screen
_vm->screenActions(screenIndex);
// 5. Initialise prompt line and status line
_vm->_screen->initNewScreenDisplay();
}
/**
* Transition to a new screen as follows:
* 1. Set the new screen (in the hero object and any carried objects)
* 2. Read in the screen files for the new screen
* 3. Initialise prompt line and status line
*/
void Scheduler::restoreScreen(const int screenIndex) {
debugC(1, kDebugSchedule, "restoreScreen(%d)", screenIndex);
// 1. Set the new screen in the hero object and any being carried
_vm->setNewScreen(screenIndex);
// 2. Read in new screen files
_vm->readScreenFiles(screenIndex);
// 3. Initialise prompt line and status line
_vm->_screen->initNewScreenDisplay();
}
/**
* Wait (if necessary) for next synchronizing tick
* Slow machines won't make it by the end of tick, so will just plod on
* at their own speed, not waiting here, but free running.
* Note: DOS Versions only
*/
void Scheduler::waitForRefresh() {
debugC(5, kDebugSchedule, "waitForRefresh()");
uint32 t;
if (_refreshTimeout == 0)
_refreshTimeout = getDosTicks(true);
while ((t = getDosTicks(true)) < _refreshTimeout)
;
_refreshTimeout = ++t;
}
/**
* Read kALnewscr used by maze (Hugo 2)
*/
void Scheduler::loadAlNewscrIndex(Common::File &in) {
debugC(6, kDebugSchedule, "loadAlNewscrIndex(&in)");
int numElem;
for (int varnt = 0; varnt < _vm->_numVariant; varnt++) {
numElem = in.readUint16BE();
if (varnt == _vm->_gameVariant)
_alNewscrIndex = numElem;
}
}
/**
* Load actListArr from Hugo.dat
*/
void Scheduler::loadActListArr(Common::File &in) {
debugC(6, kDebugSchedule, "loadActListArr(&in)");
int numElem, numSubElem, numSubAct;
for (int varnt = 0; varnt < _vm->_numVariant; varnt++) {
numElem = in.readUint16BE();
if (varnt == _vm->_gameVariant) {
_actListArrSize = numElem;
_actListArr = (act **)malloc(sizeof(act *) * _actListArrSize);
for (int i = 0; i < _actListArrSize; i++) {
numSubElem = in.readUint16BE();
_actListArr[i] = (act *) malloc(sizeof(act) * (numSubElem + 1));
for (int j = 0; j < numSubElem; j++) {
_actListArr[i][j].a0.actType = (action_t) in.readByte();
switch (_actListArr[i][j].a0.actType) {
case ANULL: // -1
break;
case ASCHEDULE: // 0
_actListArr[i][j].a0.timer = in.readSint16BE();
_actListArr[i][j].a0.actIndex = in.readUint16BE();
break;
case START_OBJ: // 1
_actListArr[i][j].a1.timer = in.readSint16BE();
_actListArr[i][j].a1.objIndex = in.readSint16BE();
_actListArr[i][j].a1.cycleNumb = in.readSint16BE();
_actListArr[i][j].a1.cycle = (cycle_t) in.readByte();
break;
case INIT_OBJXY: // 2
_actListArr[i][j].a2.timer = in.readSint16BE();
_actListArr[i][j].a2.objIndex = in.readSint16BE();
_actListArr[i][j].a2.x = in.readSint16BE();
_actListArr[i][j].a2.y = in.readSint16BE();
break;
case PROMPT: // 3
_actListArr[i][j].a3.timer = in.readSint16BE();
_actListArr[i][j].a3.promptIndex = in.readSint16BE();
numSubAct = in.readUint16BE();
_actListArr[i][j].a3.responsePtr = (int *) malloc(sizeof(int) * numSubAct);
for (int k = 0; k < numSubAct; k++)
_actListArr[i][j].a3.responsePtr[k] = in.readSint16BE();
_actListArr[i][j].a3.actPassIndex = in.readUint16BE();
_actListArr[i][j].a3.actFailIndex = in.readUint16BE();
_actListArr[i][j].a3.encodedFl = (in.readByte() == 1) ? true : false;
break;
case BKGD_COLOR: // 4
_actListArr[i][j].a4.timer = in.readSint16BE();
_actListArr[i][j].a4.newBackgroundColor = in.readUint32BE();
break;
case INIT_OBJVXY: // 5
_actListArr[i][j].a5.timer = in.readSint16BE();
_actListArr[i][j].a5.objIndex = in.readSint16BE();
_actListArr[i][j].a5.vx = in.readSint16BE();
_actListArr[i][j].a5.vy = in.readSint16BE();
break;
case INIT_CARRY: // 6
_actListArr[i][j].a6.timer = in.readSint16BE();
_actListArr[i][j].a6.objIndex = in.readSint16BE();
_actListArr[i][j].a6.carriedFl = (in.readByte() == 1) ? true : false;
break;
case INIT_HF_COORD: // 7
_actListArr[i][j].a7.timer = in.readSint16BE();
_actListArr[i][j].a7.objIndex = in.readSint16BE();
break;
case NEW_SCREEN: // 8
_actListArr[i][j].a8.timer = in.readSint16BE();
_actListArr[i][j].a8.screenIndex = in.readSint16BE();
break;
case INIT_OBJSTATE: // 9
_actListArr[i][j].a9.timer = in.readSint16BE();
_actListArr[i][j].a9.objIndex = in.readSint16BE();
_actListArr[i][j].a9.newState = in.readByte();
break;
case INIT_PATH: // 10
_actListArr[i][j].a10.timer = in.readSint16BE();
_actListArr[i][j].a10.objIndex = in.readSint16BE();
_actListArr[i][j].a10.newPathType = in.readSint16BE();
_actListArr[i][j].a10.vxPath = in.readByte();
_actListArr[i][j].a10.vyPath = in.readByte();
break;
case COND_R: // 11
_actListArr[i][j].a11.timer = in.readSint16BE();
_actListArr[i][j].a11.objIndex = in.readSint16BE();
_actListArr[i][j].a11.stateReq = in.readByte();
_actListArr[i][j].a11.actPassIndex = in.readUint16BE();
_actListArr[i][j].a11.actFailIndex = in.readUint16BE();
break;
case TEXT: // 12
_actListArr[i][j].a12.timer = in.readSint16BE();
_actListArr[i][j].a12.stringIndex = in.readSint16BE();
break;
case SWAP_IMAGES: // 13
_actListArr[i][j].a13.timer = in.readSint16BE();
_actListArr[i][j].a13.objIndex1 = in.readSint16BE();
_actListArr[i][j].a13.objIndex2 = in.readSint16BE();
break;
case COND_SCR: // 14
_actListArr[i][j].a14.timer = in.readSint16BE();
_actListArr[i][j].a14.objIndex = in.readSint16BE();
_actListArr[i][j].a14.screenReq = in.readSint16BE();
_actListArr[i][j].a14.actPassIndex = in.readUint16BE();
_actListArr[i][j].a14.actFailIndex = in.readUint16BE();
break;
case AUTOPILOT: // 15
_actListArr[i][j].a15.timer = in.readSint16BE();
_actListArr[i][j].a15.objIndex1 = in.readSint16BE();
_actListArr[i][j].a15.objIndex2 = in.readSint16BE();
_actListArr[i][j].a15.dx = in.readByte();
_actListArr[i][j].a15.dy = in.readByte();
break;
case INIT_OBJ_SEQ: // 16
_actListArr[i][j].a16.timer = in.readSint16BE();
_actListArr[i][j].a16.objIndex = in.readSint16BE();
_actListArr[i][j].a16.seqIndex = in.readSint16BE();
break;
case SET_STATE_BITS: // 17
_actListArr[i][j].a17.timer = in.readSint16BE();
_actListArr[i][j].a17.objIndex = in.readSint16BE();
_actListArr[i][j].a17.stateMask = in.readSint16BE();
break;
case CLEAR_STATE_BITS: // 18
_actListArr[i][j].a18.timer = in.readSint16BE();
_actListArr[i][j].a18.objIndex = in.readSint16BE();
_actListArr[i][j].a18.stateMask = in.readSint16BE();
break;
case TEST_STATE_BITS: // 19
_actListArr[i][j].a19.timer = in.readSint16BE();
_actListArr[i][j].a19.objIndex = in.readSint16BE();
_actListArr[i][j].a19.stateMask = in.readSint16BE();
_actListArr[i][j].a19.actPassIndex = in.readUint16BE();
_actListArr[i][j].a19.actFailIndex = in.readUint16BE();
break;
case DEL_EVENTS: // 20
_actListArr[i][j].a20.timer = in.readSint16BE();
_actListArr[i][j].a20.actTypeDel = (action_t) in.readByte();
break;
case GAMEOVER: // 21
_actListArr[i][j].a21.timer = in.readSint16BE();
break;
case INIT_HH_COORD: // 22
_actListArr[i][j].a22.timer = in.readSint16BE();
_actListArr[i][j].a22.objIndex = in.readSint16BE();
break;
case EXIT: // 23
_actListArr[i][j].a23.timer = in.readSint16BE();
break;
case BONUS: // 24
_actListArr[i][j].a24.timer = in.readSint16BE();
_actListArr[i][j].a24.pointIndex = in.readSint16BE();
break;
case COND_BOX: // 25
_actListArr[i][j].a25.timer = in.readSint16BE();
_actListArr[i][j].a25.objIndex = in.readSint16BE();
_actListArr[i][j].a25.x1 = in.readSint16BE();
_actListArr[i][j].a25.y1 = in.readSint16BE();
_actListArr[i][j].a25.x2 = in.readSint16BE();
_actListArr[i][j].a25.y2 = in.readSint16BE();
_actListArr[i][j].a25.actPassIndex = in.readUint16BE();
_actListArr[i][j].a25.actFailIndex = in.readUint16BE();
break;
case SOUND: // 26
_actListArr[i][j].a26.timer = in.readSint16BE();
_actListArr[i][j].a26.soundIndex = in.readSint16BE();
break;
case ADD_SCORE: // 27
_actListArr[i][j].a27.timer = in.readSint16BE();
_actListArr[i][j].a27.objIndex = in.readSint16BE();
break;
case SUB_SCORE: // 28
_actListArr[i][j].a28.timer = in.readSint16BE();
_actListArr[i][j].a28.objIndex = in.readSint16BE();
break;
case COND_CARRY: // 29
_actListArr[i][j].a29.timer = in.readSint16BE();
_actListArr[i][j].a29.objIndex = in.readSint16BE();
_actListArr[i][j].a29.actPassIndex = in.readUint16BE();
_actListArr[i][j].a29.actFailIndex = in.readUint16BE();
break;
case INIT_MAZE: // 30
_actListArr[i][j].a30.timer = in.readSint16BE();
_actListArr[i][j].a30.mazeSize = in.readByte();
_actListArr[i][j].a30.x1 = in.readSint16BE();
_actListArr[i][j].a30.y1 = in.readSint16BE();
_actListArr[i][j].a30.x2 = in.readSint16BE();
_actListArr[i][j].a30.y2 = in.readSint16BE();
_actListArr[i][j].a30.x3 = in.readSint16BE();
_actListArr[i][j].a30.x4 = in.readSint16BE();
_actListArr[i][j].a30.firstScreenIndex = in.readByte();
break;
case EXIT_MAZE: // 31
_actListArr[i][j].a31.timer = in.readSint16BE();
break;
case INIT_PRIORITY: // 32
_actListArr[i][j].a32.timer = in.readSint16BE();
_actListArr[i][j].a32.objIndex = in.readSint16BE();
_actListArr[i][j].a32.priority = in.readByte();
break;
case INIT_SCREEN: // 33
_actListArr[i][j].a33.timer = in.readSint16BE();
_actListArr[i][j].a33.objIndex = in.readSint16BE();
_actListArr[i][j].a33.screenIndex = in.readSint16BE();
break;
case AGSCHEDULE: // 34
_actListArr[i][j].a34.timer = in.readSint16BE();
_actListArr[i][j].a34.actIndex = in.readUint16BE();
break;
case REMAPPAL: // 35
_actListArr[i][j].a35.timer = in.readSint16BE();
_actListArr[i][j].a35.oldColorIndex = in.readSint16BE();
_actListArr[i][j].a35.newColorIndex = in.readSint16BE();
break;
case COND_NOUN: // 36
_actListArr[i][j].a36.timer = in.readSint16BE();
_actListArr[i][j].a36.nounIndex = in.readUint16BE();
_actListArr[i][j].a36.actPassIndex = in.readUint16BE();
_actListArr[i][j].a36.actFailIndex = in.readUint16BE();
break;
case SCREEN_STATE: // 37
_actListArr[i][j].a37.timer = in.readSint16BE();
_actListArr[i][j].a37.screenIndex = in.readSint16BE();
_actListArr[i][j].a37.newState = in.readByte();
break;
case INIT_LIPS: // 38
_actListArr[i][j].a38.timer = in.readSint16BE();
_actListArr[i][j].a38.lipsObjIndex = in.readSint16BE();
_actListArr[i][j].a38.objIndex = in.readSint16BE();
_actListArr[i][j].a38.dxLips = in.readByte();
_actListArr[i][j].a38.dyLips = in.readByte();
break;
case INIT_STORY_MODE: // 39
_actListArr[i][j].a39.timer = in.readSint16BE();
_actListArr[i][j].a39.storyModeFl = (in.readByte() == 1);
break;
case WARN: // 40
_actListArr[i][j].a40.timer = in.readSint16BE();
_actListArr[i][j].a40.stringIndex = in.readSint16BE();
break;
case COND_BONUS: // 41
_actListArr[i][j].a41.timer = in.readSint16BE();
_actListArr[i][j].a41.BonusIndex = in.readSint16BE();
_actListArr[i][j].a41.actPassIndex = in.readUint16BE();
_actListArr[i][j].a41.actFailIndex = in.readUint16BE();
break;
case TEXT_TAKE: // 42
_actListArr[i][j].a42.timer = in.readSint16BE();
_actListArr[i][j].a42.objIndex = in.readSint16BE();
break;
case YESNO: // 43
_actListArr[i][j].a43.timer = in.readSint16BE();
_actListArr[i][j].a43.promptIndex = in.readSint16BE();
_actListArr[i][j].a43.actYesIndex = in.readUint16BE();
_actListArr[i][j].a43.actNoIndex = in.readUint16BE();
break;
case STOP_ROUTE: // 44
_actListArr[i][j].a44.timer = in.readSint16BE();
break;
case COND_ROUTE: // 45
_actListArr[i][j].a45.timer = in.readSint16BE();
_actListArr[i][j].a45.routeIndex = in.readSint16BE();
_actListArr[i][j].a45.actPassIndex = in.readUint16BE();
_actListArr[i][j].a45.actFailIndex = in.readUint16BE();
break;
case INIT_JUMPEXIT: // 46
_actListArr[i][j].a46.timer = in.readSint16BE();
_actListArr[i][j].a46.jumpExitFl = (in.readByte() == 1);
break;
case INIT_VIEW: // 47
_actListArr[i][j].a47.timer = in.readSint16BE();
_actListArr[i][j].a47.objIndex = in.readSint16BE();
_actListArr[i][j].a47.viewx = in.readSint16BE();
_actListArr[i][j].a47.viewy = in.readSint16BE();
_actListArr[i][j].a47.direction = in.readSint16BE();
break;
case INIT_OBJ_FRAME: // 48
_actListArr[i][j].a48.timer = in.readSint16BE();
_actListArr[i][j].a48.objIndex = in.readSint16BE();
_actListArr[i][j].a48.seqIndex = in.readSint16BE();
_actListArr[i][j].a48.frameIndex = in.readSint16BE();
break;
case OLD_SONG: //49
_actListArr[i][j].a49.timer = in.readSint16BE();
_actListArr[i][j].a49.songIndex = in.readUint16BE();
break;
default:
error("Engine - Unknown action type encountered: %d", _actListArr[i][j].a0.actType);
}
}
_actListArr[i][numSubElem].a0.actType = ANULL;
}
} else {
for (int i = 0; i < numElem; i++) {
numSubElem = in.readUint16BE();
for (int j = 0; j < numSubElem; j++) {
numSubAct = in.readByte();
switch (numSubAct) {
case ANULL: // -1
break;
case ASCHEDULE: // 0
in.readSint16BE();
in.readUint16BE();
break;
case START_OBJ: // 1
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
in.readByte();
break;
case INIT_OBJXY: // 2
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
break;
case PROMPT: // 3
in.readSint16BE();
in.readSint16BE();
numSubAct = in.readUint16BE();
for (int k = 0; k < numSubAct; k++)
in.readSint16BE();
in.readUint16BE();
in.readUint16BE();
in.readByte();
break;
case BKGD_COLOR: // 4
in.readSint16BE();
in.readUint32BE();
break;
case INIT_OBJVXY: // 5
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
break;
case INIT_CARRY: // 6
in.readSint16BE();
in.readSint16BE();
in.readByte();
break;
case INIT_HF_COORD: // 7
in.readSint16BE();
in.readSint16BE();
break;
case NEW_SCREEN: // 8
in.readSint16BE();
in.readSint16BE();
break;
case INIT_OBJSTATE: // 9
in.readSint16BE();
in.readSint16BE();
in.readByte();
break;
case INIT_PATH: // 10
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
in.readByte();
in.readByte();
break;
case COND_R: // 11
in.readSint16BE();
in.readSint16BE();
in.readByte();
in.readUint16BE();
in.readUint16BE();
break;
case TEXT: // 12
in.readSint16BE();
in.readSint16BE();
break;
case SWAP_IMAGES: // 13
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
break;
case COND_SCR: // 14
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
in.readUint16BE();
in.readUint16BE();
break;
case AUTOPILOT: // 15
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
in.readByte();
in.readByte();
break;
case INIT_OBJ_SEQ: // 16
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
break;
case SET_STATE_BITS: // 17
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
break;
case CLEAR_STATE_BITS: // 18
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
break;
case TEST_STATE_BITS: // 19
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
in.readUint16BE();
in.readUint16BE();
break;
case DEL_EVENTS: // 20
in.readSint16BE();
in.readByte();
break;
case GAMEOVER: // 21
in.readSint16BE();
break;
case INIT_HH_COORD: // 22
in.readSint16BE();
in.readSint16BE();
break;
case EXIT: // 23
in.readSint16BE();
break;
case BONUS: // 24
in.readSint16BE();
in.readSint16BE();
break;
case COND_BOX: // 25
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
in.readUint16BE();
in.readUint16BE();
break;
case SOUND: // 26
in.readSint16BE();
in.readSint16BE();
break;
case ADD_SCORE: // 27
in.readSint16BE();
in.readSint16BE();
break;
case SUB_SCORE: // 28
in.readSint16BE();
in.readSint16BE();
break;
case COND_CARRY: // 29
in.readSint16BE();
in.readSint16BE();
in.readUint16BE();
in.readUint16BE();
break;
case INIT_MAZE: // 30
in.readSint16BE();
in.readByte();
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
in.readByte();
break;
case EXIT_MAZE: // 31
in.readSint16BE();
break;
case INIT_PRIORITY: // 32
in.readSint16BE();
in.readSint16BE();
in.readByte();
break;
case INIT_SCREEN: // 33
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
break;
case AGSCHEDULE: // 34
in.readSint16BE();
in.readUint16BE();
break;
case REMAPPAL: // 35
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
break;
case COND_NOUN: // 36
in.readSint16BE();
in.readUint16BE();
in.readUint16BE();
in.readUint16BE();
break;
case SCREEN_STATE: // 37
in.readSint16BE();
in.readSint16BE();
in.readByte();
break;
case INIT_LIPS: // 38
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
in.readByte();
in.readByte();
break;
case INIT_STORY_MODE: // 39
in.readSint16BE();
in.readByte();
break;
case WARN: // 40
in.readSint16BE();
in.readSint16BE();
break;
case COND_BONUS: // 41
in.readSint16BE();
in.readSint16BE();
in.readUint16BE();
in.readUint16BE();
break;
case TEXT_TAKE: // 42
in.readSint16BE();
in.readSint16BE();
break;
case YESNO: // 43
in.readSint16BE();
in.readSint16BE();
in.readUint16BE();
in.readUint16BE();
break;
case STOP_ROUTE: // 44
in.readSint16BE();
break;
case COND_ROUTE: // 45
in.readSint16BE();
in.readSint16BE();
in.readUint16BE();
in.readUint16BE();
break;
case INIT_JUMPEXIT: // 46
in.readSint16BE();
in.readByte();
break;
case INIT_VIEW: // 47
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
break;
case INIT_OBJ_FRAME: // 48
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
in.readSint16BE();
break;
case OLD_SONG: //49
in.readSint16BE();
in.readUint16BE();
break;
default:
error("Engine - Unknown action type encountered %d - variante %d pos %d.%d", numSubAct, varnt, i, j);
}
}
}
}
}
}
void Scheduler::freeActListArr() {
debugC(6, kDebugSchedule, "freeActListArr()");
if (_actListArr) {
for (int i = 0; i < _actListArrSize; i++) {
for (int j = 0; _actListArr[i][j].a0.actType != ANULL; j++) {
if (_actListArr[i][j].a0.actType == PROMPT)
free(_actListArr[i][j].a3.responsePtr);
}
free(_actListArr[i]);
}
free(_actListArr);
}
}
/**
* Maze mode is enabled. Check to see whether hero has crossed the maze
* bounding box, if so, go to the next room
*/
void Scheduler::processMaze(const int x1, const int x2, const int y1, const int y2) {
debugC(1, kDebugSchedule, "processMaze");
if (x1 < _maze.x1) {
// Exit west
_actListArr[_alNewscrIndex][3].a8.screenIndex = *_vm->_screen_p - 1;
_actListArr[_alNewscrIndex][0].a2.x = _maze.x2 - kShiftSize - (x2 - x1);
_actListArr[_alNewscrIndex][0].a2.y = _vm->_hero->y;
_vm->_route->resetRoute();
insertActionList(_alNewscrIndex);
} else if (x2 > _maze.x2) {
// Exit east
_actListArr[_alNewscrIndex][3].a8.screenIndex = *_vm->_screen_p + 1;
_actListArr[_alNewscrIndex][0].a2.x = _maze.x1 + kShiftSize;
_actListArr[_alNewscrIndex][0].a2.y = _vm->_hero->y;
_vm->_route->resetRoute();
insertActionList(_alNewscrIndex);
} else if (y1 < _maze.y1 - kShiftSize) {
// Exit north
_actListArr[_alNewscrIndex][3].a8.screenIndex = *_vm->_screen_p - _maze.size;
_actListArr[_alNewscrIndex][0].a2.x = _maze.x3;
_actListArr[_alNewscrIndex][0].a2.y = _maze.y2 - kShiftSize - (y2 - y1);
_vm->_route->resetRoute();
insertActionList(_alNewscrIndex);
} else if (y2 > _maze.y2 - kShiftSize / 2) {
// Exit south
_actListArr[_alNewscrIndex][3].a8.screenIndex = *_vm->_screen_p + _maze.size;
_actListArr[_alNewscrIndex][0].a2.x = _maze.x4;
_actListArr[_alNewscrIndex][0].a2.y = _maze.y1 + kShiftSize;
_vm->_route->resetRoute();
insertActionList(_alNewscrIndex);
}
}
/**
* Write the event queue to the file with handle f
* Note that we convert all the event structure ptrs to indexes
* using -1 for NULL. We can't convert the action ptrs to indexes
* so we save address of first dummy action ptr to compare on restore.
*/
void Scheduler::saveEvents(Common::WriteStream *f) {
debugC(1, kDebugSchedule, "saveEvents()");
f->writeUint32BE(getTicks());
int16 freeIndex = (_freeEvent == 0) ? -1 : _freeEvent - _events;
int16 headIndex = (_headEvent == 0) ? -1 : _headEvent - _events;
int16 tailIndex = (_tailEvent == 0) ? -1 : _tailEvent - _events;
f->writeSint16BE(freeIndex);
f->writeSint16BE(headIndex);
f->writeSint16BE(tailIndex);
// Convert event ptrs to indexes
event_t saveEventArr[kMaxEvents]; // Convert event ptrs to indexes
for (int16 i = 0; i < kMaxEvents; i++) {
event_t *wrkEvent = &_events[i];
saveEventArr[i] = *wrkEvent;
// fix up action pointer (to do better)
int16 index, subElem;
findAction(saveEventArr[i].action, &index, &subElem);
saveEventArr[i].action = (act*)((index << 16)| subElem);
saveEventArr[i].prevEvent = (wrkEvent->prevEvent == 0) ? (event_t *) - 1 : (event_t *)(wrkEvent->prevEvent - _events);
saveEventArr[i].nextEvent = (wrkEvent->nextEvent == 0) ? (event_t *) - 1 : (event_t *)(wrkEvent->nextEvent - _events);
}
f->write(saveEventArr, sizeof(saveEventArr));
}
/**
* Restore the action data from file with handle f
*/
void Scheduler::restoreActions(Common::SeekableReadStream *f) {
for (int i = 0; i < _actListArrSize; i++) {
// read all the sub elems
int j = 0;
do {
// handle special case for a3, keep list pointer
int* responsePtr = 0;
if (_actListArr[i][j].a3.actType == PROMPT) {
responsePtr = _actListArr[i][j].a3.responsePtr;
}
f->read(&_actListArr[i][j], sizeof(act));
// handle special case for a3, reset list pointer
if (_actListArr[i][j].a3.actType == PROMPT) {
_actListArr[i][j].a3.responsePtr = responsePtr;
}
j++;
} while (_actListArr[i][j-1].a0.actType != ANULL);
}
}
/*
* Save the action data in the file with handle f
*/
void Scheduler::saveActions(Common::WriteStream* f) const {
for (int i = 0; i < _actListArrSize; i++) {
// write all the sub elems data
int j = 0;
do {
f->write(&_actListArr[i][j], sizeof(act));
j++;
} while (_actListArr[i][j-1].a0.actType != ANULL);
}
}
/*
* Find the index in the action list to be able to serialize the action to save game
*/
void Scheduler::findAction(act* action, int16* index, int16* subElem) {
assert(index && subElem);
if (!action) {
*index = -1;
*subElem = -1;
return;
}
for (int i = 0; i < _actListArrSize; i++) {
int j = 0;
do {
if (action == &_actListArr[i][j]) {
*index = i;
*subElem = j;
return;
}
j++;
} while (_actListArr[i][j-1].a0.actType != ANULL);
}
// action not found ??
assert(0);
}
/**
* Restore the event list from file with handle f
*/
void Scheduler::restoreEvents(Common::SeekableReadStream *f) {
debugC(1, kDebugSchedule, "restoreEvents");
event_t savedEvents[kMaxEvents]; // Convert event ptrs to indexes
uint32 saveTime = f->readUint32BE(); // time of save
int16 freeIndex = f->readSint16BE(); // Free list index
int16 headIndex = f->readSint16BE(); // Head of list index
int16 tailIndex = f->readSint16BE(); // Tail of list index
f->read(savedEvents, sizeof(savedEvents));
event_t *wrkEvent;
// Restore events indexes to pointers
for (int i = 0; i < kMaxEvents; i++) {
wrkEvent = &savedEvents[i];
_events[i] = *wrkEvent;
// fix up action pointer (to do better)
int32 val = (size_t)_events[i].action;
if ((val & 0xffff) == 0xffff) {
_events[i].action = 0;
} else {
_events[i].action = (act*)&_actListArr[val >> 16][val & 0xffff];
}
_events[i].prevEvent = (wrkEvent->prevEvent == (event_t *) - 1) ? (event_t *)0 : &_events[(size_t)wrkEvent->prevEvent ];
_events[i].nextEvent = (wrkEvent->nextEvent == (event_t *) - 1) ? (event_t *)0 : &_events[(size_t)wrkEvent->nextEvent ];
}
_freeEvent = (freeIndex == -1) ? 0 : &_events[freeIndex];
_headEvent = (headIndex == -1) ? 0 : &_events[headIndex];
_tailEvent = (tailIndex == -1) ? 0 : &_events[tailIndex];
// Adjust times to fit our time
uint32 curTime = getTicks();
wrkEvent = _headEvent; // The earliest event
while (wrkEvent) { // While mature events found
wrkEvent->time = wrkEvent->time - saveTime + curTime;
wrkEvent = wrkEvent->nextEvent;
}
}
/**
* Insert the action pointed to by p into the timer event queue
* The queue goes from head (earliest) to tail (latest) timewise
*/
void Scheduler::insertAction(act *action) {
debugC(1, kDebugSchedule, "insertAction() - Action type A%d", action->a0.actType);
// First, get and initialise the event structure
event_t *curEvent = getQueue();
curEvent->action = action;
switch (action->a0.actType) { // Assign whether local or global
case AGSCHEDULE:
curEvent->localActionFl = false; // Lasts over a new screen
break;
default:
curEvent->localActionFl = true; // Rest are for current screen only
break;
}
curEvent->time = action->a0.timer + getTicks(); // Convert rel to abs time
// Now find the place to insert the event
if (!_tailEvent) { // Empty queue
_tailEvent = _headEvent = curEvent;
curEvent->nextEvent = curEvent->prevEvent = 0;
} else {
event_t *wrkEvent = _tailEvent; // Search from latest time back
bool found = false;
while (wrkEvent && !found) {
if (wrkEvent->time <= curEvent->time) { // Found if new event later
found = true;
if (wrkEvent == _tailEvent) // New latest in list
_tailEvent = curEvent;
else
wrkEvent->nextEvent->prevEvent = curEvent;
curEvent->nextEvent = wrkEvent->nextEvent;
wrkEvent->nextEvent = curEvent;
curEvent->prevEvent = wrkEvent;
}
wrkEvent = wrkEvent->prevEvent;
}
if (!found) { // Must be earliest in list
_headEvent->prevEvent = curEvent; // So insert as new head
curEvent->nextEvent = _headEvent;
curEvent->prevEvent = 0;
_headEvent = curEvent;
}
}
}
/**
* This function performs the action in the event structure pointed to by p
* It dequeues the event and returns it to the free list. It returns a ptr
* to the next action in the list, except special case of NEW_SCREEN
*/
event_t *Scheduler::doAction(event_t *curEvent) {
debugC(1, kDebugSchedule, "doAction - Event action type : %d", curEvent->action->a0.actType);
status_t &gameStatus = _vm->getGameStatus();
act *action = curEvent->action;
object_t *obj1;
int dx, dy;
event_t *wrkEvent; // Save ev_p->next_p for return
switch (action->a0.actType) {
case ANULL: // Big NOP from DEL_EVENTS
break;
case ASCHEDULE: // act0: Schedule an action list
insertActionList(action->a0.actIndex);
break;
case START_OBJ: // act1: Start an object cycling
_vm->_object->_objects[action->a1.objIndex].cycleNumb = action->a1.cycleNumb;
_vm->_object->_objects[action->a1.objIndex].cycling = action->a1.cycle;
break;
case INIT_OBJXY: // act2: Initialise an object
_vm->_object->_objects[action->a2.objIndex].x = action->a2.x; // Coordinates
_vm->_object->_objects[action->a2.objIndex].y = action->a2.y;
break;
case PROMPT: // act3: Prompt user for key phrase
promptAction(action);
break;
case BKGD_COLOR: // act4: Set new background color
_vm->_screen->setBackgroundColor(action->a4.newBackgroundColor);
break;
case INIT_OBJVXY: // act5: Initialise an object velocity
_vm->_object->setVelocity(action->a5.objIndex, action->a5.vx, action->a5.vy);
break;
case INIT_CARRY: // act6: Initialise an object
_vm->_object->setCarry(action->a6.objIndex, action->a6.carriedFl); // carried status
break;
case INIT_HF_COORD: // act7: Initialise an object to hero's "feet" coords
_vm->_object->_objects[action->a7.objIndex].x = _vm->_hero->x - 1;
_vm->_object->_objects[action->a7.objIndex].y = _vm->_hero->y + _vm->_hero->currImagePtr->y2 - 1;
_vm->_object->_objects[action->a7.objIndex].screenIndex = *_vm->_screen_p; // Don't forget screen!
break;
case NEW_SCREEN: // act8: Start new screen
newScreen(action->a8.screenIndex);
break;
case INIT_OBJSTATE: // act9: Initialise an object state
_vm->_object->_objects[action->a9.objIndex].state = action->a9.newState;
break;
case INIT_PATH: // act10: Initialise an object path and velocity
_vm->_object->setPath(action->a10.objIndex, (path_t) action->a10.newPathType, action->a10.vxPath, action->a10.vyPath);
break;
case COND_R: // act11: action lists conditional on object state
if (_vm->_object->_objects[action->a11.objIndex].state == action->a11.stateReq)
insertActionList(action->a11.actPassIndex);
else
insertActionList(action->a11.actFailIndex);
break;
case TEXT: // act12: Text box (CF WARN)
Utils::Box(kBoxAny, "%s", _vm->_file->fetchString(action->a12.stringIndex)); // Fetch string from file
break;
case SWAP_IMAGES: // act13: Swap 2 object images
_vm->_object->swapImages(action->a13.objIndex1, action->a13.objIndex2);
break;
case COND_SCR: // act14: Conditional on current screen
if (_vm->_object->_objects[action->a14.objIndex].screenIndex == action->a14.screenReq)
insertActionList(action->a14.actPassIndex);
else
insertActionList(action->a14.actFailIndex);
break;
case AUTOPILOT: // act15: Home in on a (stationary) object
_vm->_object->homeIn(action->a15.objIndex1, action->a15.objIndex2, action->a15.dx, action->a15.dy);
break;
case INIT_OBJ_SEQ: // act16: Set sequence number to use
// Note: Don't set a sequence at time 0 of a new screen, it causes
// problems clearing the boundary bits of the object! t>0 is safe
_vm->_object->_objects[action->a16.objIndex].currImagePtr = _vm->_object->_objects[action->a16.objIndex].seqList[action->a16.seqIndex].seqPtr;
break;
case SET_STATE_BITS: // act17: OR mask with curr obj state
_vm->_object->_objects[action->a17.objIndex].state |= action->a17.stateMask;
break;
case CLEAR_STATE_BITS: // act18: AND ~mask with curr obj state
_vm->_object->_objects[action->a18.objIndex].state &= ~action->a18.stateMask;
break;
case TEST_STATE_BITS: // act19: If all bits set, do apass else afail
if ((_vm->_object->_objects[action->a19.objIndex].state & action->a19.stateMask) == action->a19.stateMask)
insertActionList(action->a19.actPassIndex);
else
insertActionList(action->a19.actFailIndex);
break;
case DEL_EVENTS: // act20: Remove all events of this action type
delEventType(action->a20.actTypeDel);
break;
case GAMEOVER: // act21: Game over!
// NOTE: Must wait at least 1 tick before issuing this action if
// any objects are to be made invisible!
gameStatus.gameOverFl = true;
break;
case INIT_HH_COORD: // act22: Initialise an object to hero's actual coords
_vm->_object->_objects[action->a22.objIndex].x = _vm->_hero->x;
_vm->_object->_objects[action->a22.objIndex].y = _vm->_hero->y;
_vm->_object->_objects[action->a22.objIndex].screenIndex = *_vm->_screen_p;// Don't forget screen!
break;
case EXIT: // act23: Exit game back to DOS
_vm->endGame();
break;
case BONUS: // act24: Get bonus score for action
processBonus(action->a24.pointIndex);
break;
case COND_BOX: // act25: Conditional on bounding box
obj1 = &_vm->_object->_objects[action->a25.objIndex];
dx = obj1->x + obj1->currImagePtr->x1;
dy = obj1->y + obj1->currImagePtr->y2;
if ((dx >= action->a25.x1) && (dx <= action->a25.x2) &&
(dy >= action->a25.y1) && (dy <= action->a25.y2))
insertActionList(action->a25.actPassIndex);
else
insertActionList(action->a25.actFailIndex);
break;
case SOUND: // act26: Play a sound (or tune)
if (action->a26.soundIndex < _vm->_tunesNbr)
_vm->_sound->playMusic(action->a26.soundIndex);
else
_vm->_sound->playSound(action->a26.soundIndex, kSoundPriorityMedium);
break;
case ADD_SCORE: // act27: Add object's value to score
_vm->adjustScore(_vm->_object->_objects[action->a27.objIndex].objValue);
break;
case SUB_SCORE: // act28: Subtract object's value from score
_vm->adjustScore(-_vm->_object->_objects[action->a28.objIndex].objValue);
break;
case COND_CARRY: // act29: Conditional on object being carried
if (_vm->_object->isCarried(action->a29.objIndex))
insertActionList(action->a29.actPassIndex);
else
insertActionList(action->a29.actFailIndex);
break;
case INIT_MAZE: // act30: Enable and init maze structure
_maze.enabledFl = true;
_maze.size = action->a30.mazeSize;
_maze.x1 = action->a30.x1;
_maze.y1 = action->a30.y1;
_maze.x2 = action->a30.x2;
_maze.y2 = action->a30.y2;
_maze.x3 = action->a30.x3;
_maze.x4 = action->a30.x4;
_maze.firstScreenIndex = action->a30.firstScreenIndex;
break;
case EXIT_MAZE: // act31: Disable maze mode
_maze.enabledFl = false;
break;
case INIT_PRIORITY:
_vm->_object->_objects[action->a32.objIndex].priority = action->a32.priority;
break;
case INIT_SCREEN:
_vm->_object->_objects[action->a33.objIndex].screenIndex = action->a33.screenIndex;
break;
case AGSCHEDULE: // act34: Schedule a (global) action list
insertActionList(action->a34.actIndex);
break;
case REMAPPAL: // act35: Remap a palette color
_vm->_screen->remapPal(action->a35.oldColorIndex, action->a35.newColorIndex);
break;
case COND_NOUN: // act36: Conditional on noun mentioned
if (_vm->_parser->isWordPresent(_vm->_text->getNounArray(action->a36.nounIndex)))
insertActionList(action->a36.actPassIndex);
else
insertActionList(action->a36.actFailIndex);
break;
case SCREEN_STATE: // act37: Set new screen state
_vm->_screenStates[action->a37.screenIndex] = action->a37.newState;
break;
case INIT_LIPS: // act38: Position lips on object
_vm->_object->_objects[action->a38.lipsObjIndex].x = _vm->_object->_objects[action->a38.objIndex].x + action->a38.dxLips;
_vm->_object->_objects[action->a38.lipsObjIndex].y = _vm->_object->_objects[action->a38.objIndex].y + action->a38.dyLips;
_vm->_object->_objects[action->a38.lipsObjIndex].screenIndex = *_vm->_screen_p; // Don't forget screen!
_vm->_object->_objects[action->a38.lipsObjIndex].cycling = kCycleForward;
break;
case INIT_STORY_MODE: // act39: Init story_mode flag
// This is similar to the QUIET path mode, except that it is
// independant of it and it additionally disables the ">" prompt
gameStatus.storyModeFl = action->a39.storyModeFl;
break;
case WARN: // act40: Text box (CF TEXT)
Utils::Box(kBoxOk, "%s", _vm->_file->fetchString(action->a40.stringIndex));
break;
case COND_BONUS: // act41: Perform action if got bonus
if (_vm->_points[action->a41.BonusIndex].scoredFl)
insertActionList(action->a41.actPassIndex);
else
insertActionList(action->a41.actFailIndex);
break;
case TEXT_TAKE: // act42: Text box with "take" message
Utils::Box(kBoxAny, TAKE_TEXT, _vm->_text->getNoun(_vm->_object->_objects[action->a42.objIndex].nounIndex, TAKE_NAME));
break;
case YESNO: // act43: Prompt user for Yes or No
if (Utils::Box(kBoxYesNo, "%s", _vm->_file->fetchString(action->a43.promptIndex)) != 0)
insertActionList(action->a43.actYesIndex);
else
insertActionList(action->a43.actNoIndex);
break;
case STOP_ROUTE: // act44: Stop any route in progress
_vm->_route->resetRoute();
break;
case COND_ROUTE: // act45: Conditional on route in progress
if (_vm->_route->getRouteIndex() >= action->a45.routeIndex)
insertActionList(action->a45.actPassIndex);
else
insertActionList(action->a45.actFailIndex);
break;
case INIT_JUMPEXIT: // act46: Init status.jumpexit flag
// This is to allow left click on exit to get there immediately
// For example the plane crash in Hugo2 where hero is invisible
// Couldn't use INVISIBLE flag since conflicts with boat in Hugo1
_vm->_mouse->setJumpExitFl(action->a46.jumpExitFl);
break;
case INIT_VIEW: // act47: Init object.viewx, viewy, dir
_vm->_object->_objects[action->a47.objIndex].viewx = action->a47.viewx;
_vm->_object->_objects[action->a47.objIndex].viewy = action->a47.viewy;
_vm->_object->_objects[action->a47.objIndex].direction = action->a47.direction;
break;
case INIT_OBJ_FRAME: // act48: Set seq,frame number to use
// Note: Don't set a sequence at time 0 of a new screen, it causes
// problems clearing the boundary bits of the object! t>0 is safe
_vm->_object->_objects[action->a48.objIndex].currImagePtr = _vm->_object->_objects[action->a48.objIndex].seqList[action->a48.seqIndex].seqPtr;
for (dx = 0; dx < action->a48.frameIndex; dx++)
_vm->_object->_objects[action->a48.objIndex].currImagePtr = _vm->_object->_objects[action->a48.objIndex].currImagePtr->nextSeqPtr;
break;
case OLD_SONG:
// Replaces ACT26 for DOS games.
_vm->_sound->DOSSongPtr = _vm->_text->getTextData(action->a49.songIndex);
break;
default:
error("An error has occurred: %s", "doAction");
break;
}
if (action->a0.actType == NEW_SCREEN) { // New_screen() deletes entire list
return 0; // next_p = 0 since list now empty
} else {
wrkEvent = curEvent->nextEvent;
delQueue(curEvent); // Return event to free list
return wrkEvent; // Return next event ptr
}
}
/**
* Delete an event structure (i.e. return it to the free list)
* Historical note: Originally event p was assumed to be at head of queue
* (i.e. earliest) since all events were deleted in order when proceeding to
* a new screen. To delete an event from the middle of the queue, the action
* was overwritten to be ANULL. With the advent of GLOBAL events, delQueue
* was modified to allow deletes anywhere in the list, and the DEL_EVENT
* action was modified to perform the actual delete.
*/
void Scheduler::delQueue(event_t *curEvent) {
debugC(4, kDebugSchedule, "delQueue()");
if (curEvent == _headEvent) { // If p was the head ptr
_headEvent = curEvent->nextEvent; // then make new head_p
} else { // Unlink p
curEvent->prevEvent->nextEvent = curEvent->nextEvent;
if (curEvent->nextEvent)
curEvent->nextEvent->prevEvent = curEvent->prevEvent;
else
_tailEvent = curEvent->prevEvent;
}
if (_headEvent)
_headEvent->prevEvent = 0; // Mark end of list
else
_tailEvent = 0; // Empty queue
curEvent->nextEvent = _freeEvent; // Return p to free list
if (_freeEvent) // Special case, if free list was empty
_freeEvent->prevEvent = curEvent;
_freeEvent = curEvent;
}
void Scheduler::delEventType(const action_t actTypeDel) {
// Note: actions are not deleted here, simply turned into NOPs!
event_t *wrkEvent = _headEvent; // The earliest event
event_t *saveEvent;
while (wrkEvent) { // While events found in list
saveEvent = wrkEvent->nextEvent;
if (wrkEvent->action->a20.actType == actTypeDel)
delQueue(wrkEvent);
wrkEvent = saveEvent;
}
}
Scheduler_v1d::Scheduler_v1d(HugoEngine *vm) : Scheduler(vm) {
}
Scheduler_v1d::~Scheduler_v1d() {
}
const char *Scheduler_v1d::getCypher() const {
return "Copyright (c) 1990, Gray Design Associates";
}
uint32 Scheduler_v1d::getTicks() {
return getDosTicks(false);
}
/**
* This is the scheduler which runs every tick. It examines the event queue
* for any events whose time has come. It dequeues these events and performs
* the action associated with the event, returning it to the free queue
*/
void Scheduler_v1d::runScheduler() {
debugC(6, kDebugSchedule, "runScheduler");
uint32 ticker = getTicks(); // The time now, in ticks
event_t *curEvent = _headEvent; // The earliest event
while (curEvent && (curEvent->time <= ticker)) // While mature events found
curEvent = doAction(curEvent); // Perform the action (returns next_p)
}
void Scheduler_v1d::promptAction(act *action) {
Utils::Box(kBoxPrompt, "%s", _vm->_file->fetchString(action->a3.promptIndex));
warning("STUB: doAction(act3)");
// TODO: The answer of the player is not handled currently! Once it'll be read in the messageBox, uncomment this block
#if 0
char response[256];
// TODO: Put user input in response
Utils::strlwr(response);
if (action->a3.encodedFl) {
warning("Encrypted flag set");
decodeString(response);
}
if (strstr(response, _vm->_file->fetchString(action->a3.responsePtr[0]))
insertActionList(action->a3.actPassIndex);
else
insertActionList(action->a3.actFailIndex);
#endif
// HACK: As the answer is not read, currently it's always considered correct
insertActionList(action->a3.actPassIndex);
}
/**
* Decode a response to a prompt
*/
void Scheduler_v1d::decodeString(char *line) {
debugC(1, kDebugSchedule, "decodeString(%s)", line);
static const char *cypher = getCypher();
for(uint16 i = 0; i < strlen(line); i++) {
line[i] = (line[i] + cypher[i]) % '~';
if (line[i] < ' ')
line[i] += ' ';
}
}
Scheduler_v2d::Scheduler_v2d(HugoEngine *vm) : Scheduler_v1d(vm) {
}
Scheduler_v2d::~Scheduler_v2d() {
}
const char *Scheduler_v2d::getCypher() const {
return "Copyright 1991, Gray Design Associates";
}
void Scheduler_v2d::promptAction(act *action) {
Utils::Box(kBoxPrompt, "%s", _vm->_file->fetchString(action->a3.promptIndex));
warning("STUB: doAction(act3), expecting answer %s", _vm->_file->fetchString(action->a3.responsePtr[0]));
// TODO: The answer of the player is not handled currently! Once it'll be read in the messageBox, uncomment this block
#if 0
char *response = Utils::Box(BOX_PROMPT, "%s", _vm->_file->fetchString(action->a3.promptIndex));
bool found = false;
char *tmpStr; // General purpose string ptr
for (dx = 0; !found && (action->a3.responsePtr[dx] != -1); dx++) {
tmpStr = _vm->_file->fetchString(action->a3.responsePtr[dx]);
if (strstr(Utils::strlwr(response) , tmpStr))
found = true;
}
if (found)
insertActionList(action->a3.actPassIndex);
else
insertActionList(action->a3.actFailIndex);
#endif
// HACK: As the answer is not read, currently it's always considered correct
insertActionList(action->a3.actPassIndex);
}
/**
* Decode a string
*/
void Scheduler_v2d::decodeString(char *line) {
debugC(1, kDebugSchedule, "decodeString(%s)", line);
static const char *cypher = getCypher();
for (uint16 i = 0; i < strlen(line); i++)
line[i] -= cypher[i % strlen(cypher)];
debugC(1, kDebugSchedule, "result : %s", line);
}
Scheduler_v3d::Scheduler_v3d(HugoEngine *vm) : Scheduler_v2d(vm) {
}
Scheduler_v3d::~Scheduler_v3d() {
}
const char *Scheduler_v3d::getCypher() const {
return "Copyright 1992, Gray Design Associates";
}
Scheduler_v1w::Scheduler_v1w(HugoEngine *vm) : Scheduler_v3d(vm) {
}
Scheduler_v1w::~Scheduler_v1w() {
}
uint32 Scheduler_v1w::getTicks() {
return getWinTicks();
}
/**
* This is the scheduler which runs every tick. It examines the event queue
* for any events whose time has come. It dequeues these events and performs
* the action associated with the event, returning it to the free queue
*/
void Scheduler_v1w::runScheduler() {
debugC(6, kDebugSchedule, "runScheduler");
uint32 ticker = getTicks(); // The time now, in ticks
event_t *curEvent = _headEvent; // The earliest event
while (curEvent && (curEvent->time <= ticker)) // While mature events found
curEvent = doAction(curEvent); // Perform the action (returns next_p)
_vm->getGameStatus().tick++; // Accessed elsewhere via getTicks()
}
} // End of namespace Hugo