scummvm/graphics/transparent_surface.cpp

854 lines
25 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "common/algorithm.h"
#include "common/endian.h"
#include "common/util.h"
#include "common/rect.h"
#include "common/math.h"
#include "common/textconsole.h"
#include "graphics/conversion.h"
#include "graphics/primitives.h"
#include "graphics/transparent_surface.h"
#include "graphics/transform_tools.h"
namespace Graphics {
static const int kBModShift = 8;//img->format.bShift;
static const int kGModShift = 16;//img->format.gShift;
static const int kRModShift = 24;//img->format.rShift;
static const int kAModShift = 0;//img->format.aShift;
#ifdef SCUMM_LITTLE_ENDIAN
static const int kAIndex = 0;
static const int kBIndex = 1;
static const int kGIndex = 2;
static const int kRIndex = 3;
#else
static const int kAIndex = 3;
static const int kBIndex = 2;
static const int kGIndex = 1;
static const int kRIndex = 0;
#endif
void doBlitOpaqueFast(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep);
void doBlitBinaryFast(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep);
void doBlitAlphaBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color);
void doBlitAdditiveBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color);
void doBlitSubtractiveBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color);
void doBlitMultiplyBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color);
TransparentSurface::TransparentSurface() : Surface(), _alphaMode(ALPHA_FULL) {}
TransparentSurface::TransparentSurface(const Surface &surf, bool copyData) : Surface(), _alphaMode(ALPHA_FULL) {
if (copyData) {
copyFrom(surf);
} else {
w = surf.w;
h = surf.h;
pitch = surf.pitch;
format = surf.format;
// We need to cast the const qualifier away here because 'pixels'
// always needs to be writable. 'surf' however is a constant Surface,
// thus getPixels will always return const pixel data.
pixels = const_cast<void *>(surf.getPixels());
}
}
/**
* Optimized version of doBlit to be used w/opaque blitting (no alpha).
*/
void doBlitOpaqueFast(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep) {
byte *in;
byte *out;
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
memcpy(out, in, width * 4);
for (uint32 j = 0; j < width; j++) {
out[kAIndex] = 0xFF;
out += 4;
}
outo += pitch;
ino += inoStep;
}
}
/**
* Optimized version of doBlit to be used w/binary blitting (blit or no-blit, no blending).
*/
void doBlitBinaryFast(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep) {
byte *in;
byte *out;
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
for (uint32 j = 0; j < width; j++) {
uint32 pix = *(uint32 *)in;
int a = in[kAIndex];
if (a != 0) { // Full opacity (Any value not exactly 0 is Opaque here)
*(uint32 *)out = pix;
out[kAIndex] = 0xFF;
}
out += 4;
in += inStep;
}
outo += pitch;
ino += inoStep;
}
}
/**
* Optimized version of doBlit to be used with alpha blended blitting
* @param ino a pointer to the input surface
* @param outo a pointer to the output surface
* @param width width of the input surface
* @param height height of the input surface
* @param pitch pitch of the output surface - that is, width in bytes of every row, usually bpp * width of the TARGET surface (the area we are blitting to might be smaller, do the math)
* @inStep size in bytes to skip to address each pixel, usually bpp of the source surface
* @inoStep width in bytes of every row on the *input* surface / kind of like pitch
* @color colormod in 0xAARRGGBB format - 0xFFFFFFFF for no colormod
*/
void doBlitAlphaBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color) {
byte *in;
byte *out;
if (color == 0xffffffff) {
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
for (uint32 j = 0; j < width; j++) {
if (in[kAIndex] != 0) {
out[kAIndex] = 255;
out[kRIndex] = ((in[kRIndex] * in[kAIndex]) + out[kRIndex] * (255 - in[kAIndex])) >> 8;
out[kGIndex] = ((in[kGIndex] * in[kAIndex]) + out[kGIndex] * (255 - in[kAIndex])) >> 8;
out[kBIndex] = ((in[kBIndex] * in[kAIndex]) + out[kBIndex] * (255 - in[kAIndex])) >> 8;
}
in += inStep;
out += 4;
}
outo += pitch;
ino += inoStep;
}
} else {
byte ca = (color >> kAModShift) & 0xFF;
byte cr = (color >> kRModShift) & 0xFF;
byte cg = (color >> kGModShift) & 0xFF;
byte cb = (color >> kBModShift) & 0xFF;
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
for (uint32 j = 0; j < width; j++) {
uint32 ina = in[kAIndex] * ca >> 8;
if (ina != 0) {
out[kAIndex] = 255;
out[kBIndex] = (out[kBIndex] * (255 - ina) >> 8);
out[kGIndex] = (out[kGIndex] * (255 - ina) >> 8);
out[kRIndex] = (out[kRIndex] * (255 - ina) >> 8);
out[kBIndex] = out[kBIndex] + (in[kBIndex] * ina * cb >> 16);
out[kGIndex] = out[kGIndex] + (in[kGIndex] * ina * cg >> 16);
out[kRIndex] = out[kRIndex] + (in[kRIndex] * ina * cr >> 16);
}
in += inStep;
out += 4;
}
outo += pitch;
ino += inoStep;
}
}
}
/**
* Optimized version of doBlit to be used with additive blended blitting
*/
void doBlitAdditiveBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color) {
byte *in;
byte *out;
if (color == 0xffffffff) {
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
for (uint32 j = 0; j < width; j++) {
if (in[kAIndex] != 0) {
out[kRIndex] = MIN((in[kRIndex] * in[kAIndex] >> 8) + out[kRIndex], 255);
out[kGIndex] = MIN((in[kGIndex] * in[kAIndex] >> 8) + out[kGIndex], 255);
out[kBIndex] = MIN((in[kBIndex] * in[kAIndex] >> 8) + out[kBIndex], 255);
}
in += inStep;
out += 4;
}
outo += pitch;
ino += inoStep;
}
} else {
byte ca = (color >> kAModShift) & 0xFF;
byte cr = (color >> kRModShift) & 0xFF;
byte cg = (color >> kGModShift) & 0xFF;
byte cb = (color >> kBModShift) & 0xFF;
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
for (uint32 j = 0; j < width; j++) {
uint32 ina = in[kAIndex] * ca >> 8;
if (cb != 255) {
out[kBIndex] = MIN<uint>(out[kBIndex] + ((in[kBIndex] * cb * ina) >> 16), 255u);
} else {
out[kBIndex] = MIN<uint>(out[kBIndex] + (in[kBIndex] * ina >> 8), 255u);
}
if (cg != 255) {
out[kGIndex] = MIN<uint>(out[kGIndex] + ((in[kGIndex] * cg * ina) >> 16), 255u);
} else {
out[kGIndex] = MIN<uint>(out[kGIndex] + (in[kGIndex] * ina >> 8), 255u);
}
if (cr != 255) {
out[kRIndex] = MIN<uint>(out[kRIndex] + ((in[kRIndex] * cr * ina) >> 16), 255u);
} else {
out[kRIndex] = MIN<uint>(out[kRIndex] + (in[kRIndex] * ina >> 8), 255u);
}
in += inStep;
out += 4;
}
outo += pitch;
ino += inoStep;
}
}
}
/**
* Optimized version of doBlit to be used with subtractive blended blitting
*/
void doBlitSubtractiveBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color) {
byte *in;
byte *out;
if (color == 0xffffffff) {
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
for (uint32 j = 0; j < width; j++) {
if (in[kAIndex] != 0) {
out[kRIndex] = MAX(out[kRIndex] - ((in[kRIndex] * out[kRIndex]) * in[kAIndex] >> 16), 0);
out[kGIndex] = MAX(out[kGIndex] - ((in[kGIndex] * out[kGIndex]) * in[kAIndex] >> 16), 0);
out[kBIndex] = MAX(out[kBIndex] - ((in[kBIndex] * out[kBIndex]) * in[kAIndex] >> 16), 0);
}
in += inStep;
out += 4;
}
outo += pitch;
ino += inoStep;
}
} else {
byte cr = (color >> kRModShift) & 0xFF;
byte cg = (color >> kGModShift) & 0xFF;
byte cb = (color >> kBModShift) & 0xFF;
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
for (uint32 j = 0; j < width; j++) {
out[kAIndex] = 255;
if (cb != 255) {
out[kBIndex] = MAX(out[kBIndex] - ((in[kBIndex] * cb * (out[kBIndex]) * in[kAIndex]) >> 24), 0);
} else {
out[kBIndex] = MAX(out[kBIndex] - (in[kBIndex] * (out[kBIndex]) * in[kAIndex] >> 16), 0);
}
if (cg != 255) {
out[kGIndex] = MAX(out[kGIndex] - ((in[kGIndex] * cg * (out[kGIndex]) * in[kAIndex]) >> 24), 0);
} else {
out[kGIndex] = MAX(out[kGIndex] - (in[kGIndex] * (out[kGIndex]) * in[kAIndex] >> 16), 0);
}
if (cr != 255) {
out[kRIndex] = MAX(out[kRIndex] - ((in[kRIndex] * cr * (out[kRIndex]) * in[kAIndex]) >> 24), 0);
} else {
out[kRIndex] = MAX(out[kRIndex] - (in[kRIndex] * (out[kRIndex]) * in[kAIndex] >> 16), 0);
}
in += inStep;
out += 4;
}
outo += pitch;
ino += inoStep;
}
}
}
/**
* Optimized version of doBlit to be used with multiply blended blitting
*/
void doBlitMultiplyBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color) {
byte *in;
byte *out;
if (color == 0xffffffff) {
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
for (uint32 j = 0; j < width; j++) {
if (in[kAIndex] != 0) {
out[kRIndex] = MIN((in[kRIndex] * in[kAIndex] >> 8) * out[kRIndex] >> 8, 255);
out[kGIndex] = MIN((in[kGIndex] * in[kAIndex] >> 8) * out[kGIndex] >> 8, 255);
out[kBIndex] = MIN((in[kBIndex] * in[kAIndex] >> 8) * out[kBIndex] >> 8, 255);
}
in += inStep;
out += 4;
}
outo += pitch;
ino += inoStep;
}
} else {
byte ca = (color >> kAModShift) & 0xFF;
byte cr = (color >> kRModShift) & 0xFF;
byte cg = (color >> kGModShift) & 0xFF;
byte cb = (color >> kBModShift) & 0xFF;
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
for (uint32 j = 0; j < width; j++) {
uint32 ina = in[kAIndex] * ca >> 8;
if (cb != 255) {
out[kBIndex] = MIN<uint>(out[kBIndex] * ((in[kBIndex] * cb * ina) >> 16) >> 8, 255u);
} else {
out[kBIndex] = MIN<uint>(out[kBIndex] * (in[kBIndex] * ina >> 8) >> 8, 255u);
}
if (cg != 255) {
out[kGIndex] = MIN<uint>(out[kGIndex] * ((in[kGIndex] * cg * ina) >> 16) >> 8, 255u);
} else {
out[kGIndex] = MIN<uint>(out[kGIndex] * (in[kGIndex] * ina >> 8) >> 8, 255u);
}
if (cr != 255) {
out[kRIndex] = MIN<uint>(out[kRIndex] * ((in[kRIndex] * cr * ina) >> 16) >> 8, 255u);
} else {
out[kRIndex] = MIN<uint>(out[kRIndex] * (in[kRIndex] * ina >> 8) >> 8, 255u);
}
in += inStep;
out += 4;
}
outo += pitch;
ino += inoStep;
}
}
}
Common::Rect TransparentSurface::blit(Graphics::Surface &target, int posX, int posY, int flipping, Common::Rect *pPartRect, uint color, int width, int height, TSpriteBlendMode blendMode) {
Common::Rect retSize;
retSize.top = 0;
retSize.left = 0;
retSize.setWidth(0);
retSize.setHeight(0);
// Check if we need to draw anything at all
int ca = (color >> kAModShift) & 0xff;
if (ca == 0) {
return retSize;
}
// Create an encapsulating surface for the data
TransparentSurface srcImage(*this, false);
// TODO: Is the data really in the screen format?
if (format.bytesPerPixel != 4) {
warning("TransparentSurface can only blit 32bpp images, but got %d", format.bytesPerPixel * 8);
return retSize;
}
if (pPartRect) {
int xOffset = pPartRect->left;
int yOffset = pPartRect->top;
if (flipping & FLIP_V) {
yOffset = srcImage.h - pPartRect->bottom;
}
if (flipping & FLIP_H) {
xOffset = srcImage.w - pPartRect->right;
}
srcImage.pixels = getBasePtr(xOffset, yOffset);
srcImage.w = pPartRect->width();
srcImage.h = pPartRect->height();
debug(6, "Blit(%d, %d, %d, [%d, %d, %d, %d], %08x, %d, %d)", posX, posY, flipping,
pPartRect->left, pPartRect->top, pPartRect->width(), pPartRect->height(), color, width, height);
} else {
debug(6, "Blit(%d, %d, %d, [%d, %d, %d, %d], %08x, %d, %d)", posX, posY, flipping, 0, 0,
srcImage.w, srcImage.h, color, width, height);
}
if (width == -1) {
width = srcImage.w;
}
if (height == -1) {
height = srcImage.h;
}
#ifdef SCALING_TESTING
// Hardcode scaling to 66% to test scaling
width = width * 2 / 3;
height = height * 2 / 3;
#endif
Graphics::Surface *img = nullptr;
Graphics::Surface *imgScaled = nullptr;
byte *savedPixels = nullptr;
if ((width != srcImage.w) || (height != srcImage.h)) {
// Scale the image
img = imgScaled = srcImage.scale(width, height);
savedPixels = (byte *)img->getPixels();
} else {
img = &srcImage;
}
// Handle off-screen clipping
if (posY < 0) {
img->h = MAX(0, (int)img->h - -posY);
if (!(flipping & FLIP_V))
img->setPixels((byte *)img->getBasePtr(0, -posY));
posY = 0;
}
if (posX < 0) {
img->w = MAX(0, (int)img->w - -posX);
if (!(flipping & FLIP_H))
img->setPixels((byte *)img->getBasePtr(-posX, 0));
posX = 0;
}
if (img->w > target.w - posX) {
if (flipping & FLIP_H)
img->setPixels((byte *)img->getBasePtr(img->w - target.w + posX, 0));
img->w = CLIP((int)img->w, 0, (int)MAX((int)target.w - posX, 0));
}
if (img->h > target.h - posY) {
if (flipping & FLIP_V)
img->setPixels((byte *)img->getBasePtr(0, img->h - target.h + posY));
img->h = CLIP((int)img->h, 0, (int)MAX((int)target.h - posY, 0));
}
// Flip surface
if ((img->w > 0) && (img->h > 0)) {
int xp = 0, yp = 0;
int inStep = 4;
int inoStep = img->pitch;
if (flipping & FLIP_H) {
inStep = -inStep;
xp = img->w - 1;
}
if (flipping & FLIP_V) {
inoStep = -inoStep;
yp = img->h - 1;
}
byte *ino = (byte *)img->getBasePtr(xp, yp);
byte *outo = (byte *)target.getBasePtr(posX, posY);
if (color == 0xFFFFFFFF && blendMode == BLEND_NORMAL && _alphaMode == ALPHA_OPAQUE) {
doBlitOpaqueFast(ino, outo, img->w, img->h, target.pitch, inStep, inoStep);
} else if (color == 0xFFFFFFFF && blendMode == BLEND_NORMAL && _alphaMode == ALPHA_BINARY) {
doBlitBinaryFast(ino, outo, img->w, img->h, target.pitch, inStep, inoStep);
} else {
if (blendMode == BLEND_ADDITIVE) {
doBlitAdditiveBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
} else if (blendMode == BLEND_SUBTRACTIVE) {
doBlitSubtractiveBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
} else if (blendMode == BLEND_MULTIPLY) {
doBlitMultiplyBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
} else {
assert(blendMode == BLEND_NORMAL);
doBlitAlphaBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
}
}
}
retSize.setWidth(img->w);
retSize.setHeight(img->h);
if (imgScaled) {
imgScaled->setPixels(savedPixels);
imgScaled->free();
delete imgScaled;
}
return retSize;
}
Common::Rect TransparentSurface::blitClip(Graphics::Surface &target, Common::Rect clippingArea, int posX, int posY, int flipping, Common::Rect *pPartRect, uint color, int width, int height, TSpriteBlendMode blendMode) {
Common::Rect retSize;
retSize.top = 0;
retSize.left = 0;
retSize.setWidth(0);
retSize.setHeight(0);
// Check if we need to draw anything at all
int ca = (color >> kAModShift) & 0xff;
if (ca == 0) {
return retSize;
}
// Create an encapsulating surface for the data
TransparentSurface srcImage(*this, false);
// TODO: Is the data really in the screen format?
if (format.bytesPerPixel != 4) {
warning("TransparentSurface can only blit 32bpp images, but got %d", format.bytesPerPixel * 8);
return retSize;
}
if (pPartRect) {
int xOffset = pPartRect->left;
int yOffset = pPartRect->top;
if (flipping & FLIP_V) {
yOffset = srcImage.h - pPartRect->bottom;
}
if (flipping & FLIP_H) {
xOffset = srcImage.w - pPartRect->right;
}
srcImage.pixels = getBasePtr(xOffset, yOffset);
srcImage.w = pPartRect->width();
srcImage.h = pPartRect->height();
debug(6, "Blit(%d, %d, %d, [%d, %d, %d, %d], %08x, %d, %d)", posX, posY, flipping,
pPartRect->left, pPartRect->top, pPartRect->width(), pPartRect->height(), color, width, height);
} else {
debug(6, "Blit(%d, %d, %d, [%d, %d, %d, %d], %08x, %d, %d)", posX, posY, flipping, 0, 0,
srcImage.w, srcImage.h, color, width, height);
}
if (width == -1) {
width = srcImage.w;
}
if (height == -1) {
height = srcImage.h;
}
#ifdef SCALING_TESTING
// Hardcode scaling to 66% to test scaling
width = width * 2 / 3;
height = height * 2 / 3;
#endif
Graphics::Surface *img = nullptr;
Graphics::Surface *imgScaled = nullptr;
byte *savedPixels = nullptr;
if ((width != srcImage.w) || (height != srcImage.h)) {
// Scale the image
img = imgScaled = srcImage.scale(width, height);
savedPixels = (byte *)img->getPixels();
} else {
img = &srcImage;
}
// Handle off-screen clipping
if (posY < clippingArea.top) {
img->h = MAX(0, (int)img->h - (clippingArea.top - posY));
if (!(flipping & FLIP_V))
img->setPixels((byte *)img->getBasePtr(0, clippingArea.top - posY));
posY = clippingArea.top;
}
if (posX < clippingArea.left) {
img->w = MAX(0, (int)img->w - (clippingArea.left - posX));
if (!(flipping & FLIP_H))
img->setPixels((byte *)img->getBasePtr(clippingArea.left - posX, 0));
posX = clippingArea.left;
}
if (img->w > clippingArea.right - posX) {
if (flipping & FLIP_H)
img->setPixels((byte *)img->getBasePtr(img->w - clippingArea.right + posX, 0));
img->w = CLIP((int)img->w, 0, (int)MAX((int)clippingArea.right - posX, 0));
}
if (img->h > clippingArea.bottom - posY) {
if (flipping & FLIP_V)
img->setPixels((byte *)img->getBasePtr(0, img->h - clippingArea.bottom + posY));
img->h = CLIP((int)img->h, 0, (int)MAX((int)clippingArea.bottom - posY, 0));
}
// Flip surface
if ((img->w > 0) && (img->h > 0)) {
int xp = 0, yp = 0;
int inStep = 4;
int inoStep = img->pitch;
if (flipping & FLIP_H) {
inStep = -inStep;
xp = img->w - 1;
}
if (flipping & FLIP_V) {
inoStep = -inoStep;
yp = img->h - 1;
}
byte *ino = (byte *)img->getBasePtr(xp, yp);
byte *outo = (byte *)target.getBasePtr(posX, posY);
if (color == 0xFFFFFFFF && blendMode == BLEND_NORMAL && _alphaMode == ALPHA_OPAQUE) {
doBlitOpaqueFast(ino, outo, img->w, img->h, target.pitch, inStep, inoStep);
} else if (color == 0xFFFFFFFF && blendMode == BLEND_NORMAL && _alphaMode == ALPHA_BINARY) {
doBlitBinaryFast(ino, outo, img->w, img->h, target.pitch, inStep, inoStep);
} else {
if (blendMode == BLEND_ADDITIVE) {
doBlitAdditiveBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
} else if (blendMode == BLEND_SUBTRACTIVE) {
doBlitSubtractiveBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
} else if (blendMode == BLEND_MULTIPLY) {
doBlitMultiplyBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
} else {
assert(blendMode == BLEND_NORMAL);
doBlitAlphaBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
}
}
}
retSize.setWidth(img->w);
retSize.setHeight(img->h);
if (imgScaled) {
imgScaled->setPixels(savedPixels);
imgScaled->free();
delete imgScaled;
}
return retSize;
}
/**
* Writes a color key to the alpha channel of the surface
* @param rKey the red component of the color key
* @param gKey the green component of the color key
* @param bKey the blue component of the color key
* @param overwriteAlpha if true, all other alpha will be set fully opaque
*/
void TransparentSurface::applyColorKey(uint8 rKey, uint8 gKey, uint8 bKey, bool overwriteAlpha) {
assert(format.bytesPerPixel == 4);
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
uint32 pix = ((uint32 *)pixels)[i * w + j];
uint8 r, g, b, a;
format.colorToARGB(pix, a, r, g, b);
if (r == rKey && g == gKey && b == bKey) {
a = 0;
((uint32 *)pixels)[i * w + j] = format.ARGBToColor(a, r, g, b);
} else if (overwriteAlpha) {
a = 255;
((uint32 *)pixels)[i * w + j] = format.ARGBToColor(a, r, g, b);
}
}
}
}
/**
* Sets alpha channel for all pixels to specified value
* @param alpha value of the alpha channel to set
* @param skipTransparent if set to true, then do not touch pixels with alpha=0
*/
void TransparentSurface::setAlpha(uint8 alpha, bool skipTransparent) {
assert(format.bytesPerPixel == 4);
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
uint32 pix = ((uint32 *)pixels)[i * w + j];
uint8 r, g, b, a;
format.colorToARGB(pix, a, r, g, b);
if (!skipTransparent || a)
a = alpha;
((uint32 *)pixels)[i * w + j] = format.ARGBToColor(a, r, g, b);
}
}
}
AlphaType TransparentSurface::getAlphaMode() const {
return _alphaMode;
}
void TransparentSurface::setAlphaMode(AlphaType mode) {
_alphaMode = mode;
}
TransparentSurface *TransparentSurface::scale(int16 newWidth, int16 newHeight, bool filtering) const {
TransparentSurface *target = new TransparentSurface();
target->create(newWidth, newHeight, format);
if (filtering) {
scaleBlitBilinear((byte *)target->getPixels(), (const byte *)getPixels(), target->pitch, pitch, target->w, target->h, w, h, format);
} else {
scaleBlit((byte *)target->getPixels(), (const byte *)getPixels(), target->pitch, pitch, target->w, target->h, w, h, format);
}
return target;
}
TransparentSurface *TransparentSurface::rotoscale(const TransformStruct &transform, bool filtering) const {
Common::Point newHotspot;
Common::Rect rect = TransformTools::newRect(Common::Rect((int16)w, (int16)h), transform, &newHotspot);
TransparentSurface *target = new TransparentSurface();
target->create((uint16)rect.right - rect.left, (uint16)rect.bottom - rect.top, this->format);
if (filtering) {
rotoscaleBlitBilinear((byte *)target->getPixels(), (const byte *)getPixels(), target->pitch, pitch, target->w, target->h, w, h, format, transform, newHotspot);
} else {
rotoscaleBlit((byte *)target->getPixels(), (const byte *)getPixels(), target->pitch, pitch, target->w, target->h, w, h, format, transform, newHotspot);
}
return target;
}
TransparentSurface *TransparentSurface::convertTo(const PixelFormat &dstFormat, const byte *palette) const {
assert(pixels);
TransparentSurface *surface = new TransparentSurface();
// If the target format is the same, just copy
if (format == dstFormat) {
surface->copyFrom(*this);
return surface;
}
if (format.bytesPerPixel == 0 || format.bytesPerPixel > 4)
error("Surface::convertTo(): Can only convert from 1Bpp, 2Bpp, 3Bpp, and 4Bpp");
if (dstFormat.bytesPerPixel != 2 && dstFormat.bytesPerPixel != 4)
error("Surface::convertTo(): Can only convert to 2Bpp and 4Bpp");
surface->create(w, h, dstFormat);
if (format.bytesPerPixel == 1) {
// Converting from paletted to high color
assert(palette);
for (int y = 0; y < h; y++) {
const byte *srcRow = (const byte *)getBasePtr(0, y);
byte *dstRow = (byte *)surface->getBasePtr(0, y);
for (int x = 0; x < w; x++) {
byte index = *srcRow++;
byte r = palette[index * 3];
byte g = palette[index * 3 + 1];
byte b = palette[index * 3 + 2];
uint32 color = dstFormat.RGBToColor(r, g, b);
if (dstFormat.bytesPerPixel == 2)
*((uint16 *)dstRow) = color;
else
*((uint32 *)dstRow) = color;
dstRow += dstFormat.bytesPerPixel;
}
}
} else {
// Converting from high color to high color
for (int y = 0; y < h; y++) {
const byte *srcRow = (const byte *)getBasePtr(0, y);
byte *dstRow = (byte *)surface->getBasePtr(0, y);
for (int x = 0; x < w; x++) {
uint32 srcColor;
if (format.bytesPerPixel == 2)
srcColor = READ_UINT16(srcRow);
else if (format.bytesPerPixel == 3)
srcColor = READ_UINT24(srcRow);
else
srcColor = READ_UINT32(srcRow);
srcRow += format.bytesPerPixel;
// Convert that color to the new format
byte r, g, b, a;
format.colorToARGB(srcColor, a, r, g, b);
uint32 color = dstFormat.ARGBToColor(a, r, g, b);
if (dstFormat.bytesPerPixel == 2)
*((uint16 *)dstRow) = color;
else
*((uint32 *)dstRow) = color;
dstRow += dstFormat.bytesPerPixel;
}
}
}
return surface;
}
} // End of namespace Graphics