scummvm/engines/sci/graphics/picture.cpp
Martin Kiewitz dc9c627681 SCI: adding header comments about sci1.1 pictures
also fixing some of the offsets (those are DWORD instead of just WORDs)

svn-id: r51415
2010-07-28 12:41:24 +00:00

1150 lines
40 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "common/stack.h"
#include "common/system.h"
#include "sci/sci.h"
#include "sci/engine/state.h"
#include "sci/graphics/screen.h"
#include "sci/graphics/palette.h"
#include "sci/graphics/coordadjuster.h"
#include "sci/graphics/ports.h"
#include "sci/graphics/picture.h"
namespace Sci {
GfxPicture::GfxPicture(ResourceManager *resMan, GfxCoordAdjuster *coordAdjuster, GfxPorts *ports, GfxScreen *screen, GfxPalette *palette, GuiResourceId resourceId, bool EGAdrawingVisualize)
: _resMan(resMan), _coordAdjuster(coordAdjuster), _ports(ports), _screen(screen), _palette(palette), _resourceId(resourceId), _EGAdrawingVisualize(EGAdrawingVisualize) {
assert(resourceId != -1);
initData(resourceId);
}
GfxPicture::~GfxPicture() {
_resMan->unlockResource(_resource);
}
void GfxPicture::initData(GuiResourceId resourceId) {
_resource = _resMan->findResource(ResourceId(kResourceTypePic, resourceId), true);
if (!_resource) {
error("picture resource %d not found", resourceId);
}
}
GuiResourceId GfxPicture::getResourceId() {
return _resourceId;
}
// differentiation between various picture formats can NOT get done using sci-version checks.
// Games like PQ1 use the "old" vector data picture format, but are actually SCI1.1
// We should leave this that way to decide the format on-the-fly instead of hardcoding it in any way
void GfxPicture::draw(int16 animationNr, bool mirroredFlag, bool addToFlag, int16 EGApaletteNo) {
uint16 headerSize;
_animationNr = animationNr;
_mirroredFlag = mirroredFlag;
_addToFlag = addToFlag;
_EGApaletteNo = EGApaletteNo;
_priority = 0;
headerSize = READ_LE_UINT16(_resource->data);
switch (headerSize) {
case 0x26: // SCI 1.1 VGA picture
_resourceType = SCI_PICTURE_TYPE_SCI11;
drawSci11Vga();
break;
#ifdef ENABLE_SCI32
case 0x0e: // SCI32 VGA picture
_resourceType = SCI_PICTURE_TYPE_SCI32;
//drawSci32Vga();
break;
#endif
default:
// VGA, EGA or Amiga vector data
_resourceType = SCI_PICTURE_TYPE_REGULAR;
drawVectorData(_resource->data, _resource->size);
}
}
void GfxPicture::reset() {
int16 x, y;
for (y = _ports->getPort()->top; y < _screen->getHeight(); y++) {
for (x = 0; x < _screen->getWidth(); x++) {
_screen->putPixel(x, y, GFX_SCREEN_MASK_ALL, 255, 0, 0);
}
}
}
void GfxPicture::drawSci11Vga() {
byte *inbuffer = _resource->data;
int size = _resource->size;
int priorityBandsCount = inbuffer[3];
int has_cel = inbuffer[4];
int vector_dataPos = READ_LE_UINT32(inbuffer + 16);
int vector_size = size - vector_dataPos;
int palette_data_ptr = READ_LE_UINT32(inbuffer + 28);
int cel_headerPos = READ_LE_UINT32(inbuffer + 32);
int cel_RlePos = READ_LE_UINT32(inbuffer + cel_headerPos + 24);
int cel_LiteralPos = READ_LE_UINT32(inbuffer + cel_headerPos + 28);
Palette palette;
// Header
// [headerSize:WORD] [unknown:BYTE] [priorityBandCount:BYTE] [hasCel:BYTE] [unknown:BYTE]
// [unknown:WORD] [unknown:WORD] [unknown:WORD] [unknown:WORD] [unknown:WORD]
// Offset 16
// [vectorDataOffset:DWORD] [unknown:DWORD] [unknown:DWORD] [paletteDataOffset:DWORD]
// Offset 32
// [celHeaderOffset:DWORD] [unknown:DWORD]
// [priorityBandData:WORD] * priorityBandCount
// [priority:BYTE] [unknown:BYTE]
// Create palette and set it
_palette->createFromData(inbuffer + palette_data_ptr, size - palette_data_ptr, &palette);
_palette->set(&palette, true);
// priority bands are supposed to be 14 for sci1.1 pictures
assert(priorityBandsCount == 14);
if (_addToFlag) {
_priority = inbuffer[40 + priorityBandsCount * 2] & 0xF;
}
// display Cel-data
if (has_cel)
drawCelData(inbuffer, size, cel_headerPos, cel_RlePos, cel_LiteralPos, 0, 0, 0);
// process vector data
drawVectorData(inbuffer + vector_dataPos, vector_size);
// Set priority band information
_ports->priorityBandsInitSci11(inbuffer + 40);
}
#ifdef ENABLE_SCI32
int16 GfxPicture::getSci32celCount() {
byte *inbuffer = _resource->data;
return inbuffer[2];
}
int16 GfxPicture::getSci32celY(int16 celNo) {
byte *inbuffer = _resource->data;
int header_size = READ_LE_UINT16(inbuffer);
int cel_headerPos = header_size + 42 * celNo;
return READ_LE_UINT16(inbuffer + cel_headerPos + 40);
}
int16 GfxPicture::getSci32celX(int16 celNo) {
byte *inbuffer = _resource->data;
int header_size = READ_LE_UINT16(inbuffer);
int cel_headerPos = header_size + 42 * celNo;
return READ_LE_UINT16(inbuffer + cel_headerPos + 38);
}
int16 GfxPicture::getSci32celWidth(int16 celNo) {
byte *inbuffer = _resource->data;
int header_size = READ_LE_UINT16(inbuffer);
int cel_headerPos = header_size + 42 * celNo;
return READ_LE_UINT16(inbuffer + cel_headerPos + 0);
}
int16 GfxPicture::getSci32celPriority(int16 celNo) {
byte *inbuffer = _resource->data;
int header_size = READ_LE_UINT16(inbuffer);
int cel_headerPos = header_size + 42 * celNo;
return READ_LE_UINT16(inbuffer + cel_headerPos + 36);
}
void GfxPicture::drawSci32Vga(int16 celNo, int16 drawX, int16 drawY, int16 pictureX, bool mirrored) {
byte *inbuffer = _resource->data;
int size = _resource->size;
int header_size = READ_LE_UINT16(inbuffer);
int palette_data_ptr = READ_LE_UINT16(inbuffer + 6);
// int celCount = inbuffer[2];
int cel_headerPos = header_size;
int cel_RlePos, cel_LiteralPos;
Palette palette;
// HACK
_mirroredFlag = mirrored;
_addToFlag = false;
_resourceType = SCI_PICTURE_TYPE_SCI32;
if (celNo == 0) {
// Create palette and set it
_palette->createFromData(inbuffer + palette_data_ptr, size - palette_data_ptr, &palette);
_palette->set(&palette, true);
}
// Header
// [headerSize:WORD] [celCount:BYTE] [Unknown:BYTE] [Unknown:WORD] [paletteOffset:DWORD] [Unknown:DWORD]
// cel-header follow afterwards, each is 42 bytes
// Cel-Header
// [width:WORD] [height:WORD] [displaceX:WORD] [displaceY:WORD] [clearColor:BYTE] [compressed:BYTE]
// offset 10-23 is unknown
// [rleOffset:DWORD] [literalOffset:DWORD] [Unknown:WORD] [Unknown:WORD] [priority:WORD] [relativeXpos:WORD] [relativeYpos:WORD]
cel_headerPos += 42 * celNo;
if (mirrored) {
// switch around relativeXpos
Common::Rect displayArea = _coordAdjuster->pictureGetDisplayArea();
drawX = displayArea.width() - drawX - READ_LE_UINT16(inbuffer + cel_headerPos + 0);
}
cel_RlePos = READ_LE_UINT32(inbuffer + cel_headerPos + 24);
cel_LiteralPos = READ_LE_UINT32(inbuffer + cel_headerPos + 28);
drawCelData(inbuffer, size, cel_headerPos, cel_RlePos, cel_LiteralPos, drawX, drawY, pictureX);
cel_headerPos += 42;
}
#endif
void GfxPicture::drawCelData(byte *inbuffer, int size, int headerPos, int rlePos, int literalPos, int16 drawX, int16 drawY, int16 pictureX) {
byte *celBitmap = NULL;
byte *ptr = NULL;
byte *headerPtr = inbuffer + headerPos;
byte *rlePtr = inbuffer + rlePos;
byte *literalPtr = inbuffer + literalPos;
uint16 width = READ_LE_UINT16(headerPtr + 0);
uint16 height = READ_LE_UINT16(headerPtr + 2);
int16 displaceX, displaceY;
byte priority = _addToFlag ? _priority : 0;
byte clearColor;
bool compression = true;
byte curByte, runLength;
int16 y, lastY, x, leftX, rightX;
int pixelNr, pixelCount;
#ifdef ENABLE_SCI32
if (_resourceType != SCI_PICTURE_TYPE_SCI32) {
#endif
displaceX = (signed char)headerPtr[4];
displaceY = (unsigned char)headerPtr[5];
if (_resourceType == SCI_PICTURE_TYPE_SCI11) {
// SCI1.1 uses hardcoded clearcolor for pictures, even if cel header specifies otherwise
clearColor = _screen->getColorWhite();
} else {
clearColor = headerPtr[6];
}
#ifdef ENABLE_SCI32
} else {
displaceX = READ_LE_UINT16(headerPtr + 4); // probably signed?!?
displaceY = READ_LE_UINT16(headerPtr + 6); // probably signed?!?
clearColor = headerPtr[8];
if (headerPtr[9] == 0)
compression = false;
}
#endif
if (displaceX || displaceY)
error("unsupported embedded cel-data in picture");
pixelCount = width * height;
celBitmap = new byte[pixelCount];
if (!celBitmap)
error("Unable to allocate temporary memory for picture drawing");
if (compression) {
// We will unpack cel-data into a temporary buffer and then plot it to screen
// That needs to be done cause a mirrored picture may be requested
memset(celBitmap, clearColor, pixelCount);
pixelNr = 0;
ptr = celBitmap;
if (literalPos == 0) {
// decompression for data that has only one stream (vecor embedded view data)
switch (_resMan->getViewType()) {
case kViewEga:
while (pixelNr < pixelCount) {
curByte = *rlePtr++;
runLength = curByte >> 4;
memset(ptr + pixelNr, curByte & 0x0F, MIN<uint16>(runLength, pixelCount - pixelNr));
pixelNr += runLength;
}
break;
case kViewVga:
case kViewVga11:
while (pixelNr < pixelCount) {
curByte = *rlePtr++;
runLength = curByte & 0x3F;
switch (curByte & 0xC0) {
case 0: // copy bytes as-is
while (runLength-- && pixelNr < pixelCount)
ptr[pixelNr++] = *rlePtr++;
break;
case 0x80: // fill with color
memset(ptr + pixelNr, *rlePtr++, MIN<uint16>(runLength, pixelCount - pixelNr));
pixelNr += runLength;
break;
case 0xC0: // fill with transparent
pixelNr += runLength;
break;
}
}
break;
case kViewAmiga:
while (pixelNr < pixelCount) {
curByte = *rlePtr++;
if (curByte & 0x07) { // fill with color
runLength = curByte & 0x07;
curByte = curByte >> 3;
while (runLength-- && pixelNr < pixelCount) {
ptr[pixelNr++] = curByte;
}
} else { // fill with transparent
runLength = curByte >> 3;
pixelNr += runLength;
}
}
break;
default:
error("Unsupported picture viewtype");
}
} else {
// decompression for data that has two separate streams (probably SCI 1.1 picture)
while (pixelNr < pixelCount) {
curByte = *rlePtr++;
runLength = curByte & 0x3F;
switch (curByte & 0xC0) {
case 0: // copy bytes as-is
while (runLength-- && pixelNr < pixelCount)
ptr[pixelNr++] = *literalPtr++;
break;
case 0x80: // fill with color
memset(ptr + pixelNr, *literalPtr++, MIN<uint16>(runLength, pixelCount - pixelNr));
pixelNr += runLength;
break;
case 0xC0: // fill with transparent
pixelNr += runLength;
break;
}
}
}
} else {
// No compression (some SCI32 pictures)
memcpy(celBitmap, rlePtr, pixelCount);
}
Common::Rect displayArea = _coordAdjuster->pictureGetDisplayArea();
uint16 skipCelBitmapPixels = 0;
int16 displayWidth = width;
if (pictureX) {
// scroll position for picture active, we need to adjust drawX accordingly
drawX -= pictureX;
if (drawX < 0) {
skipCelBitmapPixels = -drawX;
displayWidth -= skipCelBitmapPixels;
drawX = 0;
}
}
if (displayWidth > 0) {
y = displayArea.top + drawY;
lastY = MIN<int16>(height + y, displayArea.bottom);
leftX = displayArea.left + drawX;
rightX = MIN<int16>(displayWidth + leftX, displayArea.right);
uint16 sourcePixelSkipPerRow = 0;
if (width > rightX - leftX)
sourcePixelSkipPerRow = width - (rightX - leftX);
// Change clearcolor to white, if we dont add to an existing picture. That way we will paint everything on screen
// but white and that wont matter because the screen is supposed to be already white. It seems that most (if not all)
// SCI1.1 games use color 0 as transparency and SCI1 games use color 255 as transparency. Sierra SCI seems to paint
// the whole data to screen and wont skip over transparent pixels. So this will actually make it work like Sierra
if (!_addToFlag)
clearColor = _screen->getColorWhite();
byte drawMask = priority == 255 ? GFX_SCREEN_MASK_VISUAL : GFX_SCREEN_MASK_VISUAL | GFX_SCREEN_MASK_PRIORITY;
ptr = celBitmap;
ptr += skipCelBitmapPixels;
if (!_mirroredFlag) {
// Draw bitmap to screen
x = leftX;
while (y < lastY) {
curByte = *ptr++;
if ((curByte != clearColor) && (priority >= _screen->getPriority(x, y)))
_screen->putPixel(x, y, drawMask, curByte, priority, 0);
x++;
if (x >= rightX) {
ptr += sourcePixelSkipPerRow;
x = leftX;
y++;
}
}
} else {
// Draw bitmap to screen (mirrored)
x = rightX - 1;
while (y < lastY) {
curByte = *ptr++;
if ((curByte != clearColor) && (priority >= _screen->getPriority(x, y)))
_screen->putPixel(x, y, drawMask, curByte, priority, 0);
if (x == leftX) {
ptr += sourcePixelSkipPerRow;
x = rightX;
y++;
}
x--;
}
}
}
delete[] celBitmap;
}
enum {
PIC_OP_SET_COLOR = 0xf0,
PIC_OP_DISABLE_VISUAL = 0xf1,
PIC_OP_SET_PRIORITY = 0xf2,
PIC_OP_DISABLE_PRIORITY = 0xf3,
PIC_OP_SHORT_PATTERNS = 0xf4,
PIC_OP_MEDIUM_LINES = 0xf5,
PIC_OP_LONG_LINES = 0xf6,
PIC_OP_SHORT_LINES = 0xf7,
PIC_OP_FILL = 0xf8,
PIC_OP_SET_PATTERN = 0xf9,
PIC_OP_ABSOLUTE_PATTERN = 0xfa,
PIC_OP_SET_CONTROL = 0xfb,
PIC_OP_DISABLE_CONTROL = 0xfc,
PIC_OP_MEDIUM_PATTERNS = 0xfd,
PIC_OP_OPX = 0xfe,
PIC_OP_TERMINATE = 0xff
};
#define PIC_OP_FIRST PIC_OP_SET_COLOR
enum {
PIC_OPX_EGA_SET_PALETTE_ENTRIES = 0,
PIC_OPX_EGA_SET_PALETTE = 1,
PIC_OPX_EGA_MONO0 = 2,
PIC_OPX_EGA_MONO1 = 3,
PIC_OPX_EGA_MONO2 = 4,
PIC_OPX_EGA_MONO3 = 5,
PIC_OPX_EGA_MONO4 = 6,
PIC_OPX_EGA_EMBEDDED_VIEW = 7,
PIC_OPX_EGA_SET_PRIORITY_TABLE = 8
};
enum {
PIC_OPX_VGA_SET_PALETTE_ENTRIES = 0,
PIC_OPX_VGA_EMBEDDED_VIEW = 1,
PIC_OPX_VGA_SET_PALETTE = 2,
PIC_OPX_VGA_PRIORITY_TABLE_EQDIST = 3,
PIC_OPX_VGA_PRIORITY_TABLE_EXPLICIT = 4
};
#define PIC_EGAPALETTE_COUNT 4
#define PIC_EGAPALETTE_SIZE 40
#define PIC_EGAPALETTE_TOTALSIZE PIC_EGAPALETTE_COUNT*PIC_EGAPALETTE_SIZE
#define PIC_EGAPRIORITY_SIZE PIC_EGAPALETTE_SIZE
static const byte vector_defaultEGApalette[PIC_EGAPALETTE_SIZE] = {
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0x88,
0x88, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x88,
0x88, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
0x08, 0x91, 0x2a, 0x3b, 0x4c, 0x5d, 0x6e, 0x88
};
static const byte vector_defaultEGApriority[PIC_EGAPRIORITY_SIZE] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
};
void GfxPicture::drawVectorData(byte *data, int dataSize) {
byte pic_op;
byte pic_color = _screen->getColorDefaultVectorData();
byte pic_priority = 255, pic_control = 255;
int16 x = 0, y = 0, oldx, oldy;
byte EGApalettes[PIC_EGAPALETTE_TOTALSIZE] = {0};
byte *EGApalette = &EGApalettes[_EGApaletteNo * PIC_EGAPALETTE_SIZE];
byte EGApriority[PIC_EGAPRIORITY_SIZE] = {0};
bool isEGA = false;
int curPos = 0;
uint16 size;
byte pixel;
int i;
Palette palette;
int16 pattern_Code = 0, pattern_Texture = 0;
bool icemanDrawFix = false;
memset(&palette, 0, sizeof(palette));
if (_EGApaletteNo >= PIC_EGAPALETTE_COUNT)
_EGApaletteNo = 0;
if (_resMan->getViewType() == kViewEga) {
isEGA = true;
// setup default mapping tables
for (i = 0; i < PIC_EGAPALETTE_TOTALSIZE; i += PIC_EGAPALETTE_SIZE)
memcpy(&EGApalettes[i], &vector_defaultEGApalette, sizeof(vector_defaultEGApalette));
memcpy(&EGApriority, &vector_defaultEGApriority, sizeof(vector_defaultEGApriority));
if (g_sci->getGameId() == GID_ICEMAN) {
// WORKAROUND: we remove certain visual&priority lines in underwater rooms of iceman, when not dithering the
// picture. Normally those lines aren't shown, because they share the same color as the dithered
// fill color combination. When not dithering, those lines would appear and get distracting.
if ((_screen->getUnditherState()) && ((_resourceId >= 53 && _resourceId <= 58) || (_resourceId == 61)))
icemanDrawFix = true;
}
}
// Drawing
while (curPos < dataSize) {
//warning("%X at %d", data[curPos], curPos);
switch (pic_op = data[curPos++]) {
case PIC_OP_SET_COLOR:
pic_color = data[curPos++];
if (isEGA) {
pic_color = EGApalette[pic_color];
pic_color ^= pic_color << 4;
}
break;
case PIC_OP_DISABLE_VISUAL:
pic_color = 0xFF;
break;
case PIC_OP_SET_PRIORITY:
pic_priority = data[curPos++] & 0x0F;
if (isEGA) {
pic_priority = EGApriority[pic_priority];
}
break;
case PIC_OP_DISABLE_PRIORITY:
pic_priority = 255;
break;
case PIC_OP_SET_CONTROL:
pic_control = data[curPos++] & 0x0F;
break;
case PIC_OP_DISABLE_CONTROL:
pic_control = 255;
break;
case PIC_OP_SHORT_LINES: // short line
vectorGetAbsCoords(data, curPos, x, y);
while (vectorIsNonOpcode(data[curPos])) {
oldx = x; oldy = y;
vectorGetRelCoords(data, curPos, x, y);
Common::Point startPoint(oldx, oldy);
Common::Point endPoint(x, y);
_ports->offsetLine(startPoint, endPoint);
_screen->drawLine(startPoint, endPoint, pic_color, pic_priority, pic_control);
}
break;
case PIC_OP_MEDIUM_LINES: // medium line
vectorGetAbsCoords(data, curPos, x, y);
if (icemanDrawFix) {
// WORKAROUND: remove certain lines in iceman ffs. see above
if ((pic_color == 1) && (pic_priority == 14)) {
if ((y < 100) || (!(y & 1))) {
pic_color = 255;
pic_priority = 255;
}
}
}
while (vectorIsNonOpcode(data[curPos])) {
oldx = x; oldy = y;
vectorGetRelCoordsMed(data, curPos, x, y);
Common::Point startPoint(oldx, oldy);
Common::Point endPoint(x, y);
_ports->offsetLine(startPoint, endPoint);
_screen->drawLine(startPoint, endPoint, pic_color, pic_priority, pic_control);
}
break;
case PIC_OP_LONG_LINES: // long line
vectorGetAbsCoords(data, curPos, x, y);
while (vectorIsNonOpcode(data[curPos])) {
oldx = x; oldy = y;
vectorGetAbsCoords(data, curPos, x, y);
Common::Point startPoint(oldx, oldy);
Common::Point endPoint(x, y);
_ports->offsetLine(startPoint, endPoint);
_screen->drawLine(startPoint, endPoint, pic_color, pic_priority, pic_control);
}
break;
case PIC_OP_FILL: //fill
while (vectorIsNonOpcode(data[curPos])) {
vectorGetAbsCoords(data, curPos, x, y);
vectorFloodFill(x, y, pic_color, pic_priority, pic_control);
}
break;
// Pattern opcodes are handled in sierra sci1.1+ as actual NOPs and normally they definitely should not occur
// inside picture data for such games
case PIC_OP_SET_PATTERN:
if (_resourceType >= SCI_PICTURE_TYPE_SCI11) {
if (g_sci->getGameId() == GID_SQ4) {
// WORKAROUND: For SQ4 / for some pictures handle this like a terminator
// This picture includes garbage data, first a set pattern w/o parameter and then short pattern
// I guess that garbage is a left over from the sq4-floppy (sci1) to sq4-cd (sci1.1) conversion
switch (_resourceId) {
case 35:
case 381:
case 376:
return;
default:
break;
}
}
error("pic-operation set pattern inside sci1.1+ vector data");
}
pattern_Code = data[curPos++];
break;
case PIC_OP_SHORT_PATTERNS:
if (_resourceType >= SCI_PICTURE_TYPE_SCI11)
error("pic-operation short pattern inside sci1.1+ vector data");
vectorGetPatternTexture(data, curPos, pattern_Code, pattern_Texture);
vectorGetAbsCoords(data, curPos, x, y);
vectorPattern(x, y, pic_color, pic_priority, pic_control, pattern_Code, pattern_Texture);
while (vectorIsNonOpcode(data[curPos])) {
vectorGetPatternTexture(data, curPos, pattern_Code, pattern_Texture);
vectorGetRelCoords(data, curPos, x, y);
vectorPattern(x, y, pic_color, pic_priority, pic_control, pattern_Code, pattern_Texture);
}
break;
case PIC_OP_MEDIUM_PATTERNS:
if (_resourceType >= SCI_PICTURE_TYPE_SCI11)
error("pic-operation medium pattern inside sci1.1+ vector data");
vectorGetPatternTexture(data, curPos, pattern_Code, pattern_Texture);
vectorGetAbsCoords(data, curPos, x, y);
vectorPattern(x, y, pic_color, pic_priority, pic_control, pattern_Code, pattern_Texture);
while (vectorIsNonOpcode(data[curPos])) {
vectorGetPatternTexture(data, curPos, pattern_Code, pattern_Texture);
vectorGetRelCoordsMed(data, curPos, x, y);
vectorPattern(x, y, pic_color, pic_priority, pic_control, pattern_Code, pattern_Texture);
}
break;
case PIC_OP_ABSOLUTE_PATTERN:
if (_resourceType >= SCI_PICTURE_TYPE_SCI11)
error("pic-operation absolute pattern inside sci1.1+ vector data");
while (vectorIsNonOpcode(data[curPos])) {
vectorGetPatternTexture(data, curPos, pattern_Code, pattern_Texture);
vectorGetAbsCoords(data, curPos, x, y);
vectorPattern(x, y, pic_color, pic_priority, pic_control, pattern_Code, pattern_Texture);
}
break;
case PIC_OP_OPX: // Extended functions
if (isEGA) {
switch (pic_op = data[curPos++]) {
case PIC_OPX_EGA_SET_PALETTE_ENTRIES:
while (vectorIsNonOpcode(data[curPos])) {
pixel = data[curPos++];
if (pixel >= PIC_EGAPALETTE_TOTALSIZE) {
error("picture trying to write to invalid EGA-palette");
}
EGApalettes[pixel] = data[curPos++];
}
break;
case PIC_OPX_EGA_SET_PALETTE:
pixel = data[curPos++];
if (pixel >= PIC_EGAPALETTE_COUNT) {
error("picture trying to write to invalid palette %d", (int)pixel);
}
pixel *= PIC_EGAPALETTE_SIZE;
for (i = 0; i < PIC_EGAPALETTE_SIZE; i++) {
EGApalettes[pixel + i] = data[curPos++];
}
break;
case PIC_OPX_EGA_MONO0:
curPos += 41;
break;
case PIC_OPX_EGA_MONO1:
case PIC_OPX_EGA_MONO3:
curPos++;
break;
case PIC_OPX_EGA_MONO2:
case PIC_OPX_EGA_MONO4:
break;
case PIC_OPX_EGA_EMBEDDED_VIEW:
vectorGetAbsCoordsNoMirror(data, curPos, x, y);
size = READ_LE_UINT16(data + curPos); curPos += 2;
_priority = pic_priority; // set global priority so the cel gets drawn using current priority as well
drawCelData(data, _resource->size, curPos, curPos + 8, 0, x, y, 0);
curPos += size;
break;
case PIC_OPX_EGA_SET_PRIORITY_TABLE:
_ports->priorityBandsInit(data + curPos);
curPos += 14;
break;
default:
error("Unsupported sci1 extended pic-operation %X", pic_op);
}
} else {
switch (pic_op = data[curPos++]) {
case PIC_OPX_VGA_SET_PALETTE_ENTRIES:
while (vectorIsNonOpcode(data[curPos])) {
curPos++; // skip commands
}
break;
case PIC_OPX_VGA_SET_PALETTE:
if (_resMan->isAmiga32color()) {
if ((data[curPos] == 0x00) && (data[curPos + 1] == 0x01) && ((data[curPos + 32] & 0xF0) != 0xF0)) {
// Left-Over VGA palette, we simply ignore it
curPos += 256 + 4 + 1024;
} else {
// Setting half of the amiga palette
_palette->modifyAmigaPalette(&data[curPos]);
curPos += 32;
}
} else {
curPos += 256 + 4; // Skip over mapping and timestamp
for (i = 0; i < 256; i++) {
palette.colors[i].used = data[curPos++];
palette.colors[i].r = data[curPos++]; palette.colors[i].g = data[curPos++]; palette.colors[i].b = data[curPos++];
}
_palette->set(&palette, true);
}
break;
case PIC_OPX_VGA_EMBEDDED_VIEW: // draw cel
vectorGetAbsCoordsNoMirror(data, curPos, x, y);
size = READ_LE_UINT16(data + curPos); curPos += 2;
_priority = pic_priority; // set global priority so the cel gets drawn using current priority as well
drawCelData(data, _resource->size, curPos, curPos + 8, 0, x, y, 0);
curPos += size;
break;
case PIC_OPX_VGA_PRIORITY_TABLE_EQDIST:
_ports->priorityBandsInit(-1, READ_LE_UINT16(data + curPos), READ_LE_UINT16(data + curPos + 2));
curPos += 4;
break;
case PIC_OPX_VGA_PRIORITY_TABLE_EXPLICIT:
_ports->priorityBandsInit(data + curPos);
curPos += 14;
break;
default:
error("Unsupported sci1 extended pic-operation %X", pic_op);
}
}
break;
case PIC_OP_TERMINATE:
_priority = pic_priority;
// Dithering EGA pictures
if (isEGA) {
_screen->dither(_addToFlag);
}
return;
default:
error("Unsupported pic-operation %X", pic_op);
}
if ((_EGAdrawingVisualize) && (isEGA)) {
_screen->copyToScreen();
g_system->updateScreen();
g_system->delayMillis(10);
}
}
error("picture vector data without terminator");
}
bool GfxPicture::vectorIsNonOpcode(byte pixel) {
if (pixel >= PIC_OP_FIRST)
return false;
return true;
}
void GfxPicture::vectorGetAbsCoords(byte *data, int &curPos, int16 &x, int16 &y) {
byte pixel = data[curPos++];
x = data[curPos++] + ((pixel & 0xF0) << 4);
y = data[curPos++] + ((pixel & 0x0F) << 8);
if (_mirroredFlag) x = 319 - x;
}
void GfxPicture::vectorGetAbsCoordsNoMirror(byte *data, int &curPos, int16 &x, int16 &y) {
byte pixel = data[curPos++];
x = data[curPos++] + ((pixel & 0xF0) << 4);
y = data[curPos++] + ((pixel & 0x0F) << 8);
}
void GfxPicture::vectorGetRelCoords(byte *data, int &curPos, int16 &x, int16 &y) {
byte pixel = data[curPos++];
if (pixel & 0x80) {
x -= ((pixel >> 4) & 7) * (_mirroredFlag ? -1 : 1);
} else {
x += (pixel >> 4) * (_mirroredFlag ? -1 : 1);
}
if (pixel & 0x08) {
y -= (pixel & 7);
} else {
y += (pixel & 7);
}
}
void GfxPicture::vectorGetRelCoordsMed(byte *data, int &curPos, int16 &x, int16 &y) {
byte pixel = data[curPos++];
if (pixel & 0x80) {
y -= (pixel & 0x7F);
} else {
y += pixel;
}
pixel = data[curPos++];
if (pixel & 0x80) {
x -= (128 - (pixel & 0x7F)) * (_mirroredFlag ? -1 : 1);
} else {
x += pixel * (_mirroredFlag ? -1 : 1);
}
}
void GfxPicture::vectorGetPatternTexture(byte *data, int &curPos, int16 pattern_Code, int16 &pattern_Texture) {
if (pattern_Code & SCI_PATTERN_CODE_USE_TEXTURE) {
pattern_Texture = (data[curPos++] >> 1) & 0x7f;
}
}
// Do not replace w/ some generic code. This algo really needs to behave exactly as the one from sierra
void GfxPicture::vectorFloodFill(int16 x, int16 y, byte color, byte priority, byte control) {
Port *curPort = _ports->getPort();
Common::Stack<Common::Point> stack;
Common::Point p, p1;
byte screenMask = _screen->getDrawingMask(color, priority, control);
byte matchedMask, matchMask;
int16 w, e, a_set, b_set;
p.x = x + curPort->left;
p.y = y + curPort->top;
stack.push(p);
byte searchColor = _screen->getVisual(p.x, p.y);
byte searchPriority = _screen->getPriority(p.x, p.y);
byte searchControl = _screen->getControl(p.x, p.y);
// This logic was taken directly from sierra sci, floodfill will get aborted on various occations
if (screenMask & GFX_SCREEN_MASK_VISUAL) {
if ((color == _screen->getColorWhite()) || (searchColor != _screen->getColorWhite()))
return;
} else if (screenMask & GFX_SCREEN_MASK_PRIORITY) {
if ((priority == 0) || (searchPriority != 0))
return;
} else if (screenMask & GFX_SCREEN_MASK_CONTROL) {
if ((control == 0) || (searchControl != 0))
return;
}
// Now remove screens, that already got the right color/priority/control
if ((screenMask & GFX_SCREEN_MASK_VISUAL) && (searchColor == color))
screenMask ^= GFX_SCREEN_MASK_VISUAL;
if ((screenMask & GFX_SCREEN_MASK_PRIORITY) && (searchPriority == priority))
screenMask ^= GFX_SCREEN_MASK_PRIORITY;
if ((screenMask & GFX_SCREEN_MASK_CONTROL) && (searchControl == control))
screenMask ^= GFX_SCREEN_MASK_CONTROL;
// Exit, if no screens left
if (!screenMask)
return;
if (screenMask & GFX_SCREEN_MASK_VISUAL) {
matchMask = GFX_SCREEN_MASK_VISUAL;
} else if (screenMask & GFX_SCREEN_MASK_PRIORITY) {
matchMask = GFX_SCREEN_MASK_PRIORITY;
} else {
matchMask = GFX_SCREEN_MASK_CONTROL;
}
// hard borders for filling
int l = curPort->rect.left + curPort->left;
int t = curPort->rect.top + curPort->top;
int r = curPort->rect.right + curPort->left - 1;
int b = curPort->rect.bottom + curPort->top - 1;
while (stack.size()) {
p = stack.pop();
if ((matchedMask = _screen->isFillMatch(p.x, p.y, matchMask, searchColor, searchPriority, searchControl)) == 0) // already filled
continue;
_screen->putPixel(p.x, p.y, screenMask, color, priority, control);
w = p.x;
e = p.x;
// moving west and east pointers as long as there is a matching color to fill
while (w > l && (matchedMask = _screen->isFillMatch(w - 1, p.y, matchMask, searchColor, searchPriority, searchControl)))
_screen->putPixel(--w, p.y, screenMask, color, priority, control);
while (e < r && (matchedMask = _screen->isFillMatch(e + 1, p.y, matchMask, searchColor, searchPriority, searchControl)))
_screen->putPixel(++e, p.y, screenMask, color, priority, control);
// checking lines above and below for possible flood targets
a_set = b_set = 0;
while (w <= e) {
if (p.y > t && (matchedMask = _screen->isFillMatch(w, p.y - 1, matchMask, searchColor, searchPriority, searchControl))) { // one line above
if (a_set == 0) {
p1.x = w;
p1.y = p.y - 1;
stack.push(p1);
a_set = 1;
}
} else
a_set = 0;
if (p.y < b && (matchedMask = _screen->isFillMatch(w, p.y + 1, matchMask, searchColor, searchPriority, searchControl))) { // one line below
if (b_set == 0) {
p1.x = w;
p1.y = p.y + 1;
stack.push(p1);
b_set = 1;
}
} else
b_set = 0;
w++;
}
}
}
// Bitmap for drawing sierra circles
static const byte vectorPatternCircles[8][30] = {
{ 0x01 },
{ 0x72, 0x02 },
{ 0xCE, 0xF7, 0x7D, 0x0E },
{ 0x1C, 0x3E, 0x7F, 0x7F, 0x7F, 0x3E, 0x1C, 0x00 },
{ 0x38, 0xF8, 0xF3, 0xDF, 0x7F, 0xFF, 0xFD, 0xF7, 0x9F, 0x3F, 0x38 },
{ 0x70, 0xC0, 0x1F, 0xFE, 0xE3, 0x3F, 0xFF, 0xF7, 0x7F, 0xFF, 0xE7, 0x3F, 0xFE, 0xC3, 0x1F, 0xF8, 0x00 },
{ 0xF0, 0x01, 0xFF, 0xE1, 0xFF, 0xF8, 0x3F, 0xFF, 0xDF, 0xFF, 0xF7, 0xFF, 0xFD, 0x7F, 0xFF, 0x9F, 0xFF,
0xE3, 0xFF, 0xF0, 0x1F, 0xF0, 0x01 },
{ 0xE0, 0x03, 0xF8, 0x0F, 0xFC, 0x1F, 0xFE, 0x3F, 0xFE, 0x3F, 0xFF, 0x7F, 0xFF, 0x7F, 0xFF, 0x7F, 0xFF,
0x7F, 0xFF, 0x7F, 0xFE, 0x3F, 0xFE, 0x3F, 0xFC, 0x1F, 0xF8, 0x0F, 0xE0, 0x03 }
// { 0x01 };
// { 0x03, 0x03, 0x03 },
// { 0x02, 0x07, 0x07, 0x07, 0x02 },
// { 0x06, 0x06, 0x0F, 0x0F, 0x0F, 0x06, 0x06 },
// { 0x04, 0x0E, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x0E, 0x04 },
// { 0x0C, 0x1E, 0x1E, 0x1E, 0x3F, 0x3F, 0x3F, 0x1E, 0x1E, 0x1E, 0x0C },
// { 0x1C, 0x3E, 0x3E, 0x3E, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x3E, 0x3E, 0x3E, 0x1C },
// { 0x18, 0x3C, 0x7E, 0x7E, 0x7E, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7E, 0x7E, 0x7E, 0x3C, 0x18 }
};
// TODO: perhaps this is a better way to set the s_patternTextures array below?
// in that case one would need to adjust bits of secondary table. Bit 256 is ignored by original interpreter
#if 0
static const byte patternTextures[32 * 2] = {
0x04, 0x29, 0x40, 0x24, 0x09, 0x41, 0x25, 0x45,
0x41, 0x90, 0x50, 0x44, 0x48, 0x08, 0x42, 0x28,
0x89, 0x52, 0x89, 0x88, 0x10, 0x48, 0xA4, 0x08,
0x44, 0x15, 0x28, 0x24, 0x00, 0x0A, 0x24, 0x20,
// Now the table is actually duplicated, so we won't need to wrap around
0x04, 0x29, 0x40, 0x24, 0x09, 0x41, 0x25, 0x45,
0x41, 0x90, 0x50, 0x44, 0x48, 0x08, 0x42, 0x28,
0x89, 0x52, 0x89, 0x88, 0x10, 0x48, 0xA4, 0x08,
0x44, 0x15, 0x28, 0x24, 0x00, 0x0A, 0x24, 0x20,
};
#endif
// This table is bitwise upwards (from bit0 to bit7), sierras original table went down the bits (bit7 to bit0)
// this was done to simplify things, so we can just run through the table w/o worrying too much about clipping
static const bool vectorPatternTextures[32 * 8 * 2] = {
false, false, true, false, false, false, false, false, // 0x04
true, false, false, true, false, true, false, false, // 0x29
false, false, false, false, false, false, true, false, // 0x40
false, false, true, false, false, true, false, false, // 0x24
true, false, false, true, false, false, false, false, // 0x09
true, false, false, false, false, false, true, false, // 0x41
true, false, true, false, false, true, false, false, // 0x25
true, false, true, false, false, false, true, false, // 0x45
true, false, false, false, false, false, true, false, // 0x41
false, false, false, false, true, false, false, true, // 0x90
false, false, false, false, true, false, true, false, // 0x50
false, false, true, false, false, false, true, false, // 0x44
false, false, false, true, false, false, true, false, // 0x48
false, false, false, true, false, false, false, false, // 0x08
false, true, false, false, false, false, true, false, // 0x42
false, false, false, true, false, true, false, false, // 0x28
true, false, false, true, false, false, false, true, // 0x89
false, true, false, false, true, false, true, false, // 0x52
true, false, false, true, false, false, false, true, // 0x89
false, false, false, true, false, false, false, true, // 0x88
false, false, false, false, true, false, false, false, // 0x10
false, false, false, true, false, false, true, false, // 0x48
false, false, true, false, false, true, false, true, // 0xA4
false, false, false, true, false, false, false, false, // 0x08
false, false, true, false, false, false, true, false, // 0x44
true, false, true, false, true, false, false, false, // 0x15
false, false, false, true, false, true, false, false, // 0x28
false, false, true, false, false, true, false, false, // 0x24
false, false, false, false, false, false, false, false, // 0x00
false, true, false, true, false, false, false, false, // 0x0A
false, false, true, false, false, true, false, false, // 0x24
false, false, false, false, false, true, false, // 0x20 (last bit is not mentioned cause original interpreter also ignores that bit)
// Now the table is actually duplicated, so we won't need to wrap around
false, false, true, false, false, false, false, false, // 0x04
true, false, false, true, false, true, false, false, // 0x29
false, false, false, false, false, false, true, false, // 0x40
false, false, true, false, false, true, false, false, // 0x24
true, false, false, true, false, false, false, false, // 0x09
true, false, false, false, false, false, true, false, // 0x41
true, false, true, false, false, true, false, false, // 0x25
true, false, true, false, false, false, true, false, // 0x45
true, false, false, false, false, false, true, false, // 0x41
false, false, false, false, true, false, false, true, // 0x90
false, false, false, false, true, false, true, false, // 0x50
false, false, true, false, false, false, true, false, // 0x44
false, false, false, true, false, false, true, false, // 0x48
false, false, false, true, false, false, false, false, // 0x08
false, true, false, false, false, false, true, false, // 0x42
false, false, false, true, false, true, false, false, // 0x28
true, false, false, true, false, false, false, true, // 0x89
false, true, false, false, true, false, true, false, // 0x52
true, false, false, true, false, false, false, true, // 0x89
false, false, false, true, false, false, false, true, // 0x88
false, false, false, false, true, false, false, false, // 0x10
false, false, false, true, false, false, true, false, // 0x48
false, false, true, false, false, true, false, true, // 0xA4
false, false, false, true, false, false, false, false, // 0x08
false, false, true, false, false, false, true, false, // 0x44
true, false, true, false, true, false, false, false, // 0x15
false, false, false, true, false, true, false, false, // 0x28
false, false, true, false, false, true, false, false, // 0x24
false, false, false, false, false, false, false, false, // 0x00
false, true, false, true, false, false, false, false, // 0x0A
false, false, true, false, false, true, false, false, // 0x24
false, false, false, false, false, true, false, // 0x20 (last bit is not mentioned cause original interpreter also ignores that bit)
};
// Bit offsets into pattern_textures
static const byte vectorPatternTextureOffset[128] = {
0x00, 0x18, 0x30, 0xc4, 0xdc, 0x65, 0xeb, 0x48,
0x60, 0xbd, 0x89, 0x05, 0x0a, 0xf4, 0x7d, 0x7d,
0x85, 0xb0, 0x8e, 0x95, 0x1f, 0x22, 0x0d, 0xdf,
0x2a, 0x78, 0xd5, 0x73, 0x1c, 0xb4, 0x40, 0xa1,
0xb9, 0x3c, 0xca, 0x58, 0x92, 0x34, 0xcc, 0xce,
0xd7, 0x42, 0x90, 0x0f, 0x8b, 0x7f, 0x32, 0xed,
0x5c, 0x9d, 0xc8, 0x99, 0xad, 0x4e, 0x56, 0xa6,
0xf7, 0x68, 0xb7, 0x25, 0x82, 0x37, 0x3a, 0x51,
0x69, 0x26, 0x38, 0x52, 0x9e, 0x9a, 0x4f, 0xa7,
0x43, 0x10, 0x80, 0xee, 0x3d, 0x59, 0x35, 0xcf,
0x79, 0x74, 0xb5, 0xa2, 0xb1, 0x96, 0x23, 0xe0,
0xbe, 0x05, 0xf5, 0x6e, 0x19, 0xc5, 0x66, 0x49,
0xf0, 0xd1, 0x54, 0xa9, 0x70, 0x4b, 0xa4, 0xe2,
0xe6, 0xe5, 0xab, 0xe4, 0xd2, 0xaa, 0x4c, 0xe3,
0x06, 0x6f, 0xc6, 0x4a, 0xa4, 0x75, 0x97, 0xe1
};
void GfxPicture::vectorPatternBox(Common::Rect box, byte color, byte prio, byte control) {
byte flag = _screen->getDrawingMask(color, prio, control);
int y, x;
for (y = box.top; y < box.bottom; y++) {
for (x = box.left; x < box.right; x++) {
_screen->putPixel(x, y, flag, color, prio, control);
}
}
}
void GfxPicture::vectorPatternTexturedBox(Common::Rect box, byte color, byte prio, byte control, byte texture) {
byte flag = _screen->getDrawingMask(color, prio, control);
const bool *textureData = &vectorPatternTextures[vectorPatternTextureOffset[texture]];
int y, x;
for (y = box.top; y < box.bottom; y++) {
for (x = box.left; x < box.right; x++) {
if (*textureData) {
_screen->putPixel(x, y, flag, color, prio, control);
}
textureData++;
}
}
}
void GfxPicture::vectorPatternCircle(Common::Rect box, byte size, byte color, byte prio, byte control) {
byte flag = _screen->getDrawingMask(color, prio, control);
const byte *circleData = vectorPatternCircles[size];
byte bitmap = *circleData;
byte bitNo = 0;
int y, x;
for (y = box.top; y < box.bottom; y++) {
for (x = box.left; x < box.right; x++) {
if (bitmap & 1) {
_screen->putPixel(x, y, flag, color, prio, control);
}
bitNo++;
if (bitNo == 8) {
circleData++; bitmap = *circleData; bitNo = 0;
} else {
bitmap = bitmap >> 1;
}
}
}
}
void GfxPicture::vectorPatternTexturedCircle(Common::Rect box, byte size, byte color, byte prio, byte control, byte texture) {
byte flag = _screen->getDrawingMask(color, prio, control);
const byte *circleData = vectorPatternCircles[size];
byte bitmap = *circleData;
byte bitNo = 0;
const bool *textureData = &vectorPatternTextures[vectorPatternTextureOffset[texture]];
int y, x;
for (y = box.top; y < box.bottom; y++) {
for (x = box.left; x < box.right; x++) {
if (bitmap & 1) {
if (*textureData) {
_screen->putPixel(x, y, flag, color, prio, control);
}
textureData++;
}
bitNo++;
if (bitNo == 8) {
circleData++; bitmap = *circleData; bitNo = 0;
} else {
bitmap = bitmap >> 1;
}
}
}
}
void GfxPicture::vectorPattern(int16 x, int16 y, byte color, byte priority, byte control, byte code, byte texture) {
byte size = code & SCI_PATTERN_CODE_PENSIZE;
Common::Rect rect;
// We need to adjust the given coordinates, because the ones given us do not define upper left but somewhat middle
y -= size; if (y < 0) y = 0;
x -= size; if (x < 0) x = 0;
rect.top = y; rect.left = x;
rect.setHeight((size*2)+1); rect.setWidth((size*2)+2);
_ports->offsetRect(rect);
rect.clip(_screen->getWidth(), _screen->getHeight());
if (code & SCI_PATTERN_CODE_RECTANGLE) {
// Rectangle
if (code & SCI_PATTERN_CODE_USE_TEXTURE) {
vectorPatternTexturedBox(rect, color, priority, control, texture);
} else {
vectorPatternBox(rect, color, priority, control);
}
} else {
// Circle
if (code & SCI_PATTERN_CODE_USE_TEXTURE) {
vectorPatternTexturedCircle(rect, size, color, priority, control, texture);
} else {
vectorPatternCircle(rect, size, color, priority, control);
}
}
}
} // End of namespace Sci