mirror of
https://github.com/libretro/scummvm.git
synced 2025-01-06 01:31:39 +00:00
644 lines
16 KiB
C++
644 lines
16 KiB
C++
/* ScummVM - Graphic Adventure Engine
|
|
*
|
|
* ScummVM is the legal property of its developers, whose names
|
|
* are too numerous to list here. Please refer to the COPYRIGHT
|
|
* file distributed with this source distribution.
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
#include "common/scummsys.h"
|
|
#include "common/endian.h"
|
|
#include "common/util.h"
|
|
#include "scumm/imuse_digi/dimuse_codecs.h"
|
|
|
|
#include "audio/decoders/adpcm_intern.h"
|
|
|
|
namespace Scumm {
|
|
|
|
namespace BundleCodecs {
|
|
|
|
/*
|
|
* The "IMC" codec below (see cases 13 & 15 in decompressCodec) is actually a
|
|
* variant of the IMA codec, see also
|
|
* <http://www.multimedia.cx/simpleaudio.html>
|
|
*
|
|
* It is somewhat different, though: the standard ADPCM codecs use a fixed
|
|
* size for their data packets (4 bits), while the codec implemented here
|
|
* varies the size of each "packet" between 2 and 7 bits.
|
|
*/
|
|
|
|
static byte *_destImcTable = nullptr;
|
|
static uint32 *_destImcTable2 = nullptr;
|
|
|
|
// This table is the "big brother" of Audio::ADPCMStream::_stepAdjustTable.
|
|
static const byte imxOtherTable[6][64] = {
|
|
{
|
|
0xFF,
|
|
4
|
|
},
|
|
|
|
{
|
|
0xFF, 0xFF,
|
|
2, 8
|
|
},
|
|
|
|
{
|
|
0xFF, 0xFF, 0xFF, 0xFF,
|
|
1, 2, 4, 6
|
|
},
|
|
|
|
{
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
1, 2, 4, 6, 8, 12, 16, 32
|
|
},
|
|
|
|
{
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
1, 2, 4, 6, 8, 10, 12, 14,
|
|
16, 18, 20, 22, 24, 26, 28, 32
|
|
},
|
|
|
|
{
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
1, 2, 3, 4, 5, 6, 7, 8,
|
|
9, 10, 11, 12, 13, 14, 15, 16,
|
|
17, 18, 19, 20, 21, 22, 23, 24,
|
|
25, 26, 27, 28, 29, 30, 31, 32
|
|
}
|
|
};
|
|
|
|
void releaseImcTables() {
|
|
free(_destImcTable);
|
|
_destImcTable = nullptr;
|
|
free(_destImcTable2);
|
|
_destImcTable2 = nullptr;
|
|
}
|
|
|
|
void initializeImcTables() {
|
|
int pos;
|
|
|
|
if (!_destImcTable) _destImcTable = (byte *)calloc(89, sizeof(byte));
|
|
if (!_destImcTable2) _destImcTable2 = (uint32 *)calloc(89 * 64, sizeof(uint32));
|
|
|
|
for (pos = 0; pos <= 88; ++pos) {
|
|
byte put = 1;
|
|
int32 tableValue = ((Audio::Ima_ADPCMStream::_imaTable[pos] * 4) / 7) / 2;
|
|
while (tableValue != 0) {
|
|
tableValue /= 2;
|
|
put++;
|
|
}
|
|
if (put < 3) {
|
|
put = 3;
|
|
}
|
|
if (put > 8) {
|
|
put = 8;
|
|
}
|
|
_destImcTable[pos] = put - 1;
|
|
}
|
|
|
|
for (int n = 0; n < 64; n++) {
|
|
for (pos = 0; pos <= 88; ++pos) {
|
|
int32 count = 32;
|
|
int32 put = 0;
|
|
int32 tableValue = Audio::Ima_ADPCMStream::_imaTable[pos];
|
|
do {
|
|
if ((count & n) != 0) {
|
|
put += tableValue;
|
|
}
|
|
count /= 2;
|
|
tableValue /= 2;
|
|
} while (count != 0);
|
|
_destImcTable2[n + pos * 64] = put;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define NextBit \
|
|
do { \
|
|
bit = mask & 1; \
|
|
mask >>= 1; \
|
|
if (!--bitsleft) { \
|
|
mask = READ_LE_UINT16(srcptr); \
|
|
srcptr += 2; \
|
|
bitsleft = 16; \
|
|
} \
|
|
} while (0)
|
|
|
|
static int32 compDecode(byte *src, byte *dst) {
|
|
byte *result, *srcptr = src, *dstptr = dst;
|
|
int data, size, bit, bitsleft = 16, mask = READ_LE_UINT16(srcptr);
|
|
srcptr += 2;
|
|
|
|
for (;;) {
|
|
NextBit;
|
|
if (bit) {
|
|
*dstptr++ = *srcptr++;
|
|
} else {
|
|
NextBit;
|
|
if (!bit) {
|
|
NextBit;
|
|
size = bit << 1;
|
|
NextBit;
|
|
size = (size | bit) + 3;
|
|
data = *srcptr++ | 0xffffff00;
|
|
} else {
|
|
data = *srcptr++;
|
|
size = *srcptr++;
|
|
|
|
data |= 0xfffff000 + ((size & 0xf0) << 4);
|
|
size = (size & 0x0f) + 3;
|
|
|
|
if (size == 3)
|
|
if (((*srcptr++) + 1) == 1)
|
|
return dstptr - dst;
|
|
}
|
|
result = dstptr + data;
|
|
while (size--)
|
|
*dstptr++ = *result++;
|
|
}
|
|
}
|
|
}
|
|
#undef NextBit
|
|
|
|
int32 decompressADPCM(byte *compInput, byte *compOutput, int channels) {
|
|
byte *src;
|
|
|
|
// Decoder for the IMA ADPCM variants used in COMI.
|
|
// Contrary to regular IMA ADPCM, this codec uses a variable
|
|
// bitsize for the encoded data.
|
|
|
|
const int MAX_CHANNELS = 2;
|
|
int32 outputSamplesLeft;
|
|
int32 destPos;
|
|
int16 firstWord;
|
|
byte initialTablePos[MAX_CHANNELS] = {0, 0};
|
|
//int32 initialimcTableEntry[MAX_CHANNELS] = {7, 7};
|
|
int32 initialOutputWord[MAX_CHANNELS] = {0, 0};
|
|
int32 totalBitOffset, curTablePos, outputWord;
|
|
byte *dst;
|
|
int i;
|
|
|
|
// We only support mono and stereo
|
|
assert(channels == 1 || channels == 2);
|
|
|
|
src = compInput;
|
|
dst = compOutput;
|
|
outputSamplesLeft = 0x1000;
|
|
|
|
// Every data packet contains 0x2000 bytes of audio data
|
|
// when extracted. In order to encode bigger data sets,
|
|
// one has to split the data into multiple blocks.
|
|
//
|
|
// Every block starts with a 2 byte word. If that word is
|
|
// non-zero, it indicates the size of a block of raw audio
|
|
// data (not encoded) following it. That data we simply copy
|
|
// to the output buffer and then proceed by decoding the
|
|
// remaining data.
|
|
//
|
|
// If on the other hand the word is zero, then what follows
|
|
// are 7*channels bytes containing seed data for the decoder.
|
|
firstWord = READ_BE_UINT16(src);
|
|
src += 2;
|
|
if (firstWord != 0) {
|
|
// Copy raw data
|
|
memcpy(dst, src, firstWord);
|
|
dst += firstWord;
|
|
src += firstWord;
|
|
assert((firstWord & 1) == 0);
|
|
outputSamplesLeft -= firstWord / 2;
|
|
} else {
|
|
// Read the seed values for the decoder.
|
|
for (i = 0; i < channels; i++) {
|
|
initialTablePos[i] = *src;
|
|
src += 1;
|
|
//initialimcTableEntry[i] = READ_BE_UINT32(src);
|
|
src += 4;
|
|
initialOutputWord[i] = READ_BE_UINT32(src);
|
|
src += 4;
|
|
}
|
|
}
|
|
|
|
totalBitOffset = 0;
|
|
// The channels are encoded separately.
|
|
for (int chan = 0; chan < channels; chan++) {
|
|
// Read initial state (this makes it possible for the data stream
|
|
// to be split & spread across multiple data chunks.
|
|
curTablePos = initialTablePos[chan];
|
|
//imcTableEntry = initialimcTableEntry[chan];
|
|
outputWord = initialOutputWord[chan];
|
|
|
|
// We need to interleave the channels in the output; we achieve
|
|
// that by using a variables dest offset:
|
|
destPos = chan * 2;
|
|
|
|
const int bound = (channels == 1)
|
|
? outputSamplesLeft
|
|
: ((chan == 0)
|
|
? (outputSamplesLeft+1) / 2
|
|
: outputSamplesLeft / 2);
|
|
for (i = 0; i < bound; ++i) {
|
|
// Determine the size (in bits) of the next data packet
|
|
const int32 curTableEntryBitCount = _destImcTable[curTablePos];
|
|
assert(2 <= curTableEntryBitCount && curTableEntryBitCount <= 7);
|
|
|
|
// Read the next data packet
|
|
const byte *readPos = src + (totalBitOffset >> 3);
|
|
const uint16 readWord = (uint16)(READ_BE_UINT16(readPos) << (totalBitOffset & 7));
|
|
const byte packet = (byte)(readWord >> (16 - curTableEntryBitCount));
|
|
|
|
// Advance read position to the next data packet
|
|
totalBitOffset += curTableEntryBitCount;
|
|
|
|
// Decode the data packet into a delta value for the output signal.
|
|
const byte signBitMask = (1 << (curTableEntryBitCount - 1));
|
|
const byte dataBitMask = (signBitMask - 1);
|
|
const byte data = (packet & dataBitMask);
|
|
|
|
const int32 tmpA = (data << (7 - curTableEntryBitCount));
|
|
const int32 imcTableEntry = Audio::Ima_ADPCMStream::_imaTable[curTablePos] >> (curTableEntryBitCount - 1);
|
|
int32 delta = imcTableEntry + _destImcTable2[tmpA + (curTablePos * 64)];
|
|
|
|
// The topmost bit in the data packet tells is a sign bit
|
|
if ((packet & signBitMask) != 0) {
|
|
delta = -delta;
|
|
}
|
|
|
|
// Accumulate the delta onto the output data
|
|
outputWord += delta;
|
|
|
|
// Clip outputWord to 16 bit signed, and write it into the destination stream
|
|
outputWord = CLIP<int32>(outputWord, -0x8000, 0x7fff);
|
|
|
|
// This is being written as-is (LE), without concerns regarding endianness:
|
|
// this is because the internal DiMUSE mixer handles the data in LE format,
|
|
// and we'll convert data to the appropriate format using the QueuingAudioStream flags
|
|
// when flushing the final audio data to the output stream (see IMuseDigital::waveOutWrite())
|
|
WRITE_UINT16(dst + destPos, outputWord);
|
|
|
|
destPos += channels << 1;
|
|
|
|
// Adjust the curTablePos
|
|
curTablePos += (int8)imxOtherTable[curTableEntryBitCount - 2][data];
|
|
curTablePos = CLIP<int32>(curTablePos, 0, ARRAYSIZE(Audio::Ima_ADPCMStream::_imaTable) - 1);
|
|
}
|
|
}
|
|
|
|
return 0x2000;
|
|
}
|
|
|
|
int32 decompressCodec(int32 codec, byte *compInput, byte *compOutput, int32 inputSize) {
|
|
int32 outputSize;
|
|
int32 offset1, offset2, offset3, length, k, c, s, j, r, t, z;
|
|
byte *src, *t_table, *p, *ptr;
|
|
byte t_tmp1, t_tmp2;
|
|
|
|
switch (codec) {
|
|
case 0:
|
|
memcpy(compOutput, compInput, inputSize);
|
|
outputSize = inputSize;
|
|
break;
|
|
|
|
case 1:
|
|
outputSize = compDecode(compInput, compOutput);
|
|
break;
|
|
|
|
case 2:
|
|
outputSize = compDecode(compInput, compOutput);
|
|
p = compOutput;
|
|
for (z = 1; z < outputSize; z++)
|
|
p[z] += p[z - 1];
|
|
break;
|
|
|
|
case 3:
|
|
outputSize = compDecode(compInput, compOutput);
|
|
p = compOutput;
|
|
for (z = 2; z < outputSize; z++)
|
|
p[z] += p[z - 1];
|
|
for (z = 1; z < outputSize; z++)
|
|
p[z] += p[z - 1];
|
|
break;
|
|
|
|
case 4:
|
|
outputSize = compDecode(compInput, compOutput);
|
|
p = compOutput;
|
|
for (z = 2; z < outputSize; z++)
|
|
p[z] += p[z - 1];
|
|
for (z = 1; z < outputSize; z++)
|
|
p[z] += p[z - 1];
|
|
|
|
t_table = (byte *)calloc(outputSize, 1);
|
|
assert(t_table);
|
|
|
|
src = compOutput;
|
|
length = (outputSize << 3) / 12;
|
|
k = 0;
|
|
if (length > 0) {
|
|
c = -12;
|
|
s = 0;
|
|
j = 0;
|
|
do {
|
|
ptr = src + length + (k >> 1);
|
|
t_tmp2 = src[j];
|
|
if (k & 1) {
|
|
r = c >> 3;
|
|
t_table[r + 2] = ((t_tmp2 & 0x0f) << 4) | (ptr[1] >> 4);
|
|
t_table[r + 1] = (t_tmp2 & 0xf0) | (t_table[r + 1]);
|
|
} else {
|
|
r = s >> 3;
|
|
t_table[r + 0] = ((t_tmp2 & 0x0f) << 4) | (ptr[0] & 0x0f);
|
|
t_table[r + 1] = t_tmp2 >> 4;
|
|
}
|
|
s += 12;
|
|
c += 12;
|
|
k++;
|
|
j++;
|
|
} while (k < length);
|
|
}
|
|
offset1 = ((length - 1) * 3) >> 1;
|
|
t_table[offset1 + 1] = (t_table[offset1 + 1]) | (src[length - 1] & 0xf0);
|
|
memcpy(src, t_table, outputSize);
|
|
free(t_table);
|
|
break;
|
|
|
|
case 5:
|
|
outputSize = compDecode(compInput, compOutput);
|
|
p = compOutput;
|
|
for (z = 2; z < outputSize; z++)
|
|
p[z] += p[z - 1];
|
|
for (z = 1; z < outputSize; z++)
|
|
p[z] += p[z - 1];
|
|
|
|
t_table = (byte *)malloc(outputSize);
|
|
assert(t_table);
|
|
|
|
src = compOutput;
|
|
length = (outputSize << 3) / 12;
|
|
k = 1;
|
|
c = 0;
|
|
s = 12;
|
|
t_table[0] = src[length] >> 4;
|
|
t = length + k;
|
|
j = 1;
|
|
if (t > k) {
|
|
do {
|
|
t_tmp1 = *(src + length + (k >> 1));
|
|
t_tmp2 = src[j - 1];
|
|
if (k & 1) {
|
|
r = c >> 3;
|
|
t_table[r + 0] = (t_tmp2 & 0xf0) | t_table[r];
|
|
t_table[r + 1] = ((t_tmp2 & 0x0f) << 4) | (t_tmp1 & 0x0f);
|
|
} else {
|
|
r = s >> 3;
|
|
t_table[r + 0] = t_tmp2 >> 4;
|
|
t_table[r - 1] = ((t_tmp2 & 0x0f) << 4) | (t_tmp1 >> 4);
|
|
}
|
|
s += 12;
|
|
c += 12;
|
|
k++;
|
|
j++;
|
|
} while (k < t);
|
|
}
|
|
memcpy(src, t_table, outputSize);
|
|
free(t_table);
|
|
break;
|
|
|
|
case 6:
|
|
outputSize = compDecode(compInput, compOutput);
|
|
p = compOutput;
|
|
for (z = 2; z < outputSize; z++)
|
|
p[z] += p[z - 1];
|
|
for (z = 1; z < outputSize; z++)
|
|
p[z] += p[z - 1];
|
|
|
|
t_table = (byte *)malloc(outputSize);
|
|
assert(t_table);
|
|
|
|
src = compOutput;
|
|
length = (outputSize << 3) / 12;
|
|
k = 0;
|
|
c = 0;
|
|
j = 0;
|
|
s = -12;
|
|
t_table[0] = src[outputSize - 1];
|
|
t_table[outputSize - 1] = src[length - 1];
|
|
t = length - 1;
|
|
if (t > 0) {
|
|
do {
|
|
t_tmp1 = *(src + length + (k >> 1));
|
|
t_tmp2 = src[j];
|
|
if (k & 1) {
|
|
r = s >> 3;
|
|
t_table[r + 2] = (t_tmp2 & 0xf0) | t_table[r + 2];
|
|
t_table[r + 3] = ((t_tmp2 & 0x0f) << 4) | (t_tmp1 >> 4);
|
|
} else {
|
|
r = c >> 3;
|
|
t_table[r + 2] = t_tmp2 >> 4;
|
|
t_table[r + 1] = ((t_tmp2 & 0x0f) << 4) | (t_tmp1 & 0x0f);
|
|
}
|
|
s += 12;
|
|
c += 12;
|
|
k++;
|
|
j++;
|
|
} while (k < t);
|
|
}
|
|
memcpy(src, t_table, outputSize);
|
|
free(t_table);
|
|
break;
|
|
|
|
case 10:
|
|
outputSize = compDecode(compInput, compOutput);
|
|
p = compOutput;
|
|
for (z = 2; z < outputSize; z++)
|
|
p[z] += p[z - 1];
|
|
for (z = 1; z < outputSize; z++)
|
|
p[z] += p[z - 1];
|
|
|
|
t_table = (byte *)malloc(outputSize);
|
|
assert(t_table);
|
|
memcpy(t_table, p, outputSize);
|
|
|
|
offset1 = outputSize / 3;
|
|
offset2 = offset1 << 1;
|
|
offset3 = offset2;
|
|
src = compOutput;
|
|
|
|
while (offset1--) {
|
|
offset2 -= 2;
|
|
offset3--;
|
|
t_table[offset2 + 0] = src[offset1];
|
|
t_table[offset2 + 1] = src[offset3];
|
|
}
|
|
|
|
src = compOutput;
|
|
length = (outputSize << 3) / 12;
|
|
k = 0;
|
|
if (length > 0) {
|
|
c = -12;
|
|
s = 0;
|
|
do {
|
|
j = length + (k >> 1);
|
|
t_tmp1 = t_table[k];
|
|
if (k & 1) {
|
|
r = c >> 3;
|
|
t_tmp2 = t_table[j + 1];
|
|
src[r + 2] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 >> 4);
|
|
src[r + 1] = (src[r + 1]) | (t_tmp1 & 0xf0);
|
|
} else {
|
|
r = s >> 3;
|
|
t_tmp2 = t_table[j];
|
|
src[r + 0] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f);
|
|
src[r + 1] = t_tmp1 >> 4;
|
|
}
|
|
s += 12;
|
|
c += 12;
|
|
k++;
|
|
} while (k < length);
|
|
}
|
|
offset1 = ((length - 1) * 3) >> 1;
|
|
src[offset1 + 1] = (t_table[length] & 0xf0) | src[offset1 + 1];
|
|
free(t_table);
|
|
break;
|
|
|
|
case 11:
|
|
outputSize = compDecode(compInput, compOutput);
|
|
p = compOutput;
|
|
for (z = 2; z < outputSize; z++)
|
|
p[z] += p[z - 1];
|
|
for (z = 1; z < outputSize; z++)
|
|
p[z] += p[z - 1];
|
|
|
|
t_table = (byte *)malloc(outputSize);
|
|
assert(t_table);
|
|
memcpy(t_table, p, outputSize);
|
|
|
|
offset1 = outputSize / 3;
|
|
offset2 = offset1 << 1;
|
|
offset3 = offset2;
|
|
src = compOutput;
|
|
|
|
while (offset1--) {
|
|
offset2 -= 2;
|
|
offset3--;
|
|
t_table[offset2 + 0] = src[offset1];
|
|
t_table[offset2 + 1] = src[offset3];
|
|
}
|
|
|
|
src = compOutput;
|
|
length = (outputSize << 3) / 12;
|
|
k = 1;
|
|
c = 0;
|
|
s = 12;
|
|
t_tmp1 = t_table[length] >> 4;
|
|
src[0] = t_tmp1;
|
|
t = length + k;
|
|
if (t > k) {
|
|
do {
|
|
j = length + (k >> 1);
|
|
t_tmp1 = t_table[k - 1];
|
|
t_tmp2 = t_table[j];
|
|
if (k & 1) {
|
|
r = c >> 3;
|
|
src[r + 0] = (src[r]) | (t_tmp1 & 0xf0);
|
|
src[r + 1] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f);
|
|
} else {
|
|
r = s >> 3;
|
|
src[r + 0] = t_tmp1 >> 4;
|
|
src[r - 1] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 >> 4);
|
|
}
|
|
s += 12;
|
|
c += 12;
|
|
k++;
|
|
} while (k < t);
|
|
}
|
|
free(t_table);
|
|
break;
|
|
|
|
case 12:
|
|
outputSize = compDecode(compInput, compOutput);
|
|
p = compOutput;
|
|
for (z = 2; z < outputSize; z++)
|
|
p[z] += p[z - 1];
|
|
for (z = 1; z < outputSize; z++)
|
|
p[z] += p[z - 1];
|
|
|
|
t_table = (byte *)malloc(outputSize);
|
|
assert(t_table);
|
|
memcpy(t_table, p, outputSize);
|
|
|
|
offset1 = outputSize / 3;
|
|
offset2 = offset1 << 1;
|
|
offset3 = offset2;
|
|
src = compOutput;
|
|
|
|
while (offset1--) {
|
|
offset2 -= 2;
|
|
offset3--;
|
|
t_table[offset2 + 0] = src[offset1];
|
|
t_table[offset2 + 1] = src[offset3];
|
|
}
|
|
|
|
src = compOutput;
|
|
length = (outputSize << 3) / 12;
|
|
k = 0;
|
|
c = 0;
|
|
s = -12;
|
|
src[0] = t_table[outputSize - 1];
|
|
src[outputSize - 1] = t_table[length - 1];
|
|
t = length - 1;
|
|
if (t > 0) {
|
|
do {
|
|
j = length + (k >> 1);
|
|
t_tmp1 = t_table[k];
|
|
t_tmp2 = t_table[j];
|
|
if (k & 1) {
|
|
r = s >> 3;
|
|
src[r + 2] = (src[r + 2]) | (t_tmp1 & 0xf0);
|
|
src[r + 3] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 >> 4);
|
|
} else {
|
|
r = c >> 3;
|
|
src[r + 2] = t_tmp1 >> 4;
|
|
src[r + 1] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f);
|
|
}
|
|
s += 12;
|
|
c += 12;
|
|
k++;
|
|
} while (k < t);
|
|
}
|
|
free(t_table);
|
|
break;
|
|
|
|
case 13:
|
|
case 15:
|
|
outputSize = decompressADPCM(compInput, compOutput, (codec == 13) ? 1 : 2);
|
|
break;
|
|
|
|
default:
|
|
error("BundleCodecs::decompressCodec() Unknown codec %d", (int)codec);
|
|
outputSize = 0;
|
|
break;
|
|
}
|
|
|
|
return outputSize;
|
|
}
|
|
|
|
} // End of namespace BundleCodecs
|
|
|
|
} // End of namespace Scumm
|