scummvm/audio/miles_adlib.cpp
2020-03-09 16:08:19 +01:00

1283 lines
42 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "audio/miles.h"
#include "common/file.h"
#include "common/system.h"
#include "common/textconsole.h"
#include "audio/fmopl.h"
namespace Audio {
// Miles Audio AdLib/OPL3 driver
//
// TODO: currently missing: OPL3 4-op voices
//
// Special cases (great for testing):
// - sustain feature is used by Return To Zork (demo) right at the start
// - sherlock holmes 2 does lots of priority sorts right at the start of the intro
#define MILES_ADLIB_VIRTUAL_FMVOICES_COUNT_MAX 20
#define MILES_ADLIB_PHYSICAL_FMVOICES_COUNT_MAX 18
#define MILES_ADLIB_PERCUSSION_BANK 127
#define MILES_ADLIB_STEREO_PANNING_THRESHOLD_LEFT 27
#define MILES_ADLIB_STEREO_PANNING_THRESHOLD_RIGHT 100
enum kMilesAdLibUpdateFlags {
kMilesAdLibUpdateFlags_None = 0,
kMilesAdLibUpdateFlags_Reg_20 = 1 << 0,
kMilesAdLibUpdateFlags_Reg_40 = 1 << 1,
kMilesAdLibUpdateFlags_Reg_60 = 1 << 2, // register 0x6x + 0x8x
kMilesAdLibUpdateFlags_Reg_C0 = 1 << 3,
kMilesAdLibUpdateFlags_Reg_E0 = 1 << 4,
kMilesAdLibUpdateFlags_Reg_A0 = 1 << 5, // register 0xAx + 0xBx
kMilesAdLibUpdateFlags_Reg_All = 0x3F
};
uint16 milesAdLibOperator1Register[MILES_ADLIB_PHYSICAL_FMVOICES_COUNT_MAX] = {
0x0000, 0x0001, 0x0002, 0x0008, 0x0009, 0x000A, 0x0010, 0x0011, 0x0012,
0x0100, 0x0101, 0x0102, 0x0108, 0x0109, 0x010A, 0x0110, 0x0111, 0x0112
};
uint16 milesAdLibOperator2Register[MILES_ADLIB_PHYSICAL_FMVOICES_COUNT_MAX] = {
0x0003, 0x0004, 0x0005, 0x000B, 0x000C, 0x000D, 0x0013, 0x0014, 0x0015,
0x0103, 0x0104, 0x0105, 0x010B, 0x010C, 0x010D, 0x0113, 0x0114, 0x0115
};
uint16 milesAdLibChannelRegister[MILES_ADLIB_PHYSICAL_FMVOICES_COUNT_MAX] = {
0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007, 0x0008,
0x0100, 0x0101, 0x0102, 0x0103, 0x0104, 0x0105, 0x0106, 0x0107, 0x0108
};
struct InstrumentEntry {
byte bankId;
byte patchId;
int16 transposition;
byte reg20op1;
byte reg40op1;
byte reg60op1;
byte reg80op1;
byte regE0op1;
byte reg20op2;
byte reg40op2;
byte reg60op2;
byte reg80op2;
byte regE0op2;
byte regC0;
};
// hardcoded, dumped from ADLIB.MDI
uint16 milesAdLibFrequencyLookUpTable[] = {
0x02B2, 0x02B4, 0x02B7, 0x02B9, 0x02BC, 0x02BE, 0x02C1, 0x02C3, 0x02C6, 0x02C9, 0x02CB, 0x02CE,
0x02D0, 0x02D3, 0x02D6, 0x02D8, 0x02DB, 0x02DD, 0x02E0, 0x02E3, 0x02E5, 0x02E8, 0x02EB, 0x02ED,
0x02F0, 0x02F3, 0x02F6, 0x02F8, 0x02FB, 0x02FE, 0x0301, 0x0303, 0x0306, 0x0309, 0x030C, 0x030F,
0x0311, 0x0314, 0x0317, 0x031A, 0x031D, 0x0320, 0x0323, 0x0326, 0x0329, 0x032B, 0x032E, 0x0331,
0x0334, 0x0337, 0x033A, 0x033D, 0x0340, 0x0343, 0x0346, 0x0349, 0x034C, 0x034F, 0x0352, 0x0356,
0x0359, 0x035C, 0x035F, 0x0362, 0x0365, 0x0368, 0x036B, 0x036F, 0x0372, 0x0375, 0x0378, 0x037B,
0x037F, 0x0382, 0x0385, 0x0388, 0x038C, 0x038F, 0x0392, 0x0395, 0x0399, 0x039C, 0x039F, 0x03A3,
0x03A6, 0x03A9, 0x03AD, 0x03B0, 0x03B4, 0x03B7, 0x03BB, 0x03BE, 0x03C1, 0x03C5, 0x03C8, 0x03CC,
0x03CF, 0x03D3, 0x03D7, 0x03DA, 0x03DE, 0x03E1, 0x03E5, 0x03E8, 0x03EC, 0x03F0, 0x03F3, 0x03F7,
0x03FB, 0x03FE, 0xFE01, 0xFE03, 0xFE05, 0xFE07, 0xFE08, 0xFE0A, 0xFE0C, 0xFE0E, 0xFE10, 0xFE12,
0xFE14, 0xFE16, 0xFE18, 0xFE1A, 0xFE1C, 0xFE1E, 0xFE20, 0xFE21, 0xFE23, 0xFE25, 0xFE27, 0xFE29,
0xFE2B, 0xFE2D, 0xFE2F, 0xFE31, 0xFE34, 0xFE36, 0xFE38, 0xFE3A, 0xFE3C, 0xFE3E, 0xFE40, 0xFE42,
0xFE44, 0xFE46, 0xFE48, 0xFE4A, 0xFE4C, 0xFE4F, 0xFE51, 0xFE53, 0xFE55, 0xFE57, 0xFE59, 0xFE5C,
0xFE5E, 0xFE60, 0xFE62, 0xFE64, 0xFE67, 0xFE69, 0xFE6B, 0xFE6D, 0xFE6F, 0xFE72, 0xFE74, 0xFE76,
0xFE79, 0xFE7B, 0xFE7D, 0xFE7F, 0xFE82, 0xFE84, 0xFE86, 0xFE89, 0xFE8B, 0xFE8D, 0xFE90, 0xFE92,
0xFE95, 0xFE97, 0xFE99, 0xFE9C, 0xFE9E, 0xFEA1, 0xFEA3, 0xFEA5, 0xFEA8, 0xFEAA, 0xFEAD, 0xFEAF
};
// hardcoded, dumped from ADLIB.MDI
uint16 milesAdLibVolumeSensitivityTable[] = {
82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127
};
class MidiDriver_Miles_AdLib : public MidiDriver {
public:
MidiDriver_Miles_AdLib(InstrumentEntry *instrumentTablePtr, uint16 instrumentTableCount);
virtual ~MidiDriver_Miles_AdLib();
// MidiDriver
int open() override;
void close() override;
void send(uint32 b) override;
MidiChannel *allocateChannel() override { return NULL; }
MidiChannel *getPercussionChannel() override { return NULL; }
bool isOpen() const override { return _isOpen; }
uint32 getBaseTempo() override { return 1000000 / OPL::OPL::kDefaultCallbackFrequency; }
void setVolume(byte volume);
virtual uint32 property(int prop, uint32 param) override;
void setTimerCallback(void *timerParam, Common::TimerManager::TimerProc timerProc) override;
private:
bool _modeOPL3;
byte _modePhysicalFmVoicesCount;
byte _modeVirtualFmVoicesCount;
bool _modeStereo;
// Structure to hold information about current status of MIDI Channels
struct MidiChannelEntry {
byte currentPatchBank;
const InstrumentEntry *currentInstrumentPtr;
uint16 currentPitchBender;
byte currentPitchRange;
byte currentVoiceProtection;
byte currentVolume;
byte currentVolumeExpression;
byte currentPanning;
byte currentModulation;
byte currentSustain;
byte currentActiveVoicesCount;
MidiChannelEntry() : currentPatchBank(0),
currentInstrumentPtr(NULL),
currentPitchBender(MILES_PITCHBENDER_DEFAULT),
currentPitchRange(0),
currentVoiceProtection(0),
currentVolume(0), currentVolumeExpression(0),
currentPanning(0),
currentModulation(0),
currentSustain(0),
currentActiveVoicesCount(0) { }
};
// Structure to hold information about current status of virtual FM Voices
struct VirtualFmVoiceEntry {
bool inUse;
byte actualMidiChannel;
const InstrumentEntry *currentInstrumentPtr;
bool isPhysical;
byte physicalFmVoice;
uint16 currentPriority;
byte currentOriginalMidiNote;
byte currentNote;
int16 currentTransposition;
byte currentVelocity;
bool sustained;
VirtualFmVoiceEntry(): inUse(false),
actualMidiChannel(0),
currentInstrumentPtr(NULL),
isPhysical(false), physicalFmVoice(0),
currentPriority(0),
currentOriginalMidiNote(0),
currentNote(0),
currentTransposition(0),
currentVelocity(0),
sustained(false) { }
};
// Structure to hold information about current status of physical FM Voices
struct PhysicalFmVoiceEntry {
bool inUse;
byte virtualFmVoice;
byte currentB0hReg;
PhysicalFmVoiceEntry(): inUse(false),
virtualFmVoice(0),
currentB0hReg(0) { }
};
OPL::OPL *_opl;
int _masterVolume;
Common::TimerManager::TimerProc _adlibTimerProc;
void *_adlibTimerParam;
bool _isOpen;
// stores information about all MIDI channels (not the actual OPL FM voice channels!)
MidiChannelEntry _midiChannels[MILES_MIDI_CHANNEL_COUNT];
// stores information about all virtual OPL FM voices
VirtualFmVoiceEntry _virtualFmVoices[MILES_ADLIB_VIRTUAL_FMVOICES_COUNT_MAX];
// stores information about all physical OPL FM voices
PhysicalFmVoiceEntry _physicalFmVoices[MILES_ADLIB_PHYSICAL_FMVOICES_COUNT_MAX];
// holds all instruments
InstrumentEntry *_instrumentTablePtr;
uint16 _instrumentTableCount;
bool circularPhysicalAssignment;
byte circularPhysicalAssignmentFmVoice;
void onTimer();
void resetData();
void resetAdLib();
void resetAdLibOperatorRegisters(byte baseRegister, byte value);
void resetAdLibFMVoiceChannelRegisters(byte baseRegister, byte value);
void setRegister(int reg, int value);
int16 searchFreeVirtualFmVoiceChannel();
int16 searchFreePhysicalFmVoiceChannel();
void noteOn(byte midiChannel, byte note, byte velocity);
void noteOff(byte midiChannel, byte note);
void prioritySort();
void releaseFmVoice(byte virtualFmVoice);
void releaseSustain(byte midiChannel);
void updatePhysicalFmVoice(byte virtualFmVoice, bool keyOn, uint16 registerUpdateFlags);
void controlChange(byte midiChannel, byte controllerNumber, byte controllerValue);
void programChange(byte midiChannel, byte patchId);
const InstrumentEntry *searchInstrument(byte bankId, byte patchId);
void pitchBendChange(byte MIDIchannel, byte parameter1, byte parameter2);
};
MidiDriver_Miles_AdLib::MidiDriver_Miles_AdLib(InstrumentEntry *instrumentTablePtr, uint16 instrumentTableCount)
: _masterVolume(15), _opl(0),
_adlibTimerProc(0), _adlibTimerParam(0), _isOpen(false) {
_instrumentTablePtr = instrumentTablePtr;
_instrumentTableCount = instrumentTableCount;
// Set up for OPL3, we will downgrade in case we can't create OPL3 emulator
// regular AdLib (OPL2) card
_modeOPL3 = true;
_modeVirtualFmVoicesCount = 20;
_modePhysicalFmVoicesCount = 18;
_modeStereo = true;
// Older Miles Audio drivers did not do a circular assign for physical FM-voices
// Sherlock Holmes 2 used the circular assign
circularPhysicalAssignment = true;
// this way the first circular physical FM-voice search will start at FM-voice 0
circularPhysicalAssignmentFmVoice = MILES_ADLIB_PHYSICAL_FMVOICES_COUNT_MAX;
resetData();
}
MidiDriver_Miles_AdLib::~MidiDriver_Miles_AdLib() {
delete[] _instrumentTablePtr; // is created in factory MidiDriver_Miles_AdLib_create()
}
int MidiDriver_Miles_AdLib::open() {
if (_modeOPL3) {
// Try to create OPL3 first
_opl = OPL::Config::create(OPL::Config::kOpl3);
}
if (!_opl) {
// not created yet, downgrade to OPL2
_modeOPL3 = false;
_modeVirtualFmVoicesCount = 16;
_modePhysicalFmVoicesCount = 9;
_modeStereo = false;
_opl = OPL::Config::create(OPL::Config::kOpl2);
}
if (!_opl) {
// We still got nothing -> can't do anything anymore
return -1;
}
_opl->init();
_isOpen = true;
_opl->start(new Common::Functor0Mem<void, MidiDriver_Miles_AdLib>(this, &MidiDriver_Miles_AdLib::onTimer));
resetAdLib();
return 0;
}
void MidiDriver_Miles_AdLib::close() {
delete _opl;
_isOpen = false;
}
void MidiDriver_Miles_AdLib::setVolume(byte volume) {
_masterVolume = volume;
//renewNotes(-1, true);
}
void MidiDriver_Miles_AdLib::onTimer() {
if (_adlibTimerProc)
(*_adlibTimerProc)(_adlibTimerParam);
}
void MidiDriver_Miles_AdLib::resetData() {
memset(_midiChannels, 0, sizeof(_midiChannels));
memset(_virtualFmVoices, 0, sizeof(_virtualFmVoices));
memset(_physicalFmVoices, 0, sizeof(_physicalFmVoices));
for (byte midiChannel = 0; midiChannel < MILES_MIDI_CHANNEL_COUNT; midiChannel++) {
// defaults, were sent to driver during driver initialization
_midiChannels[midiChannel].currentVolume = 0x7F;
_midiChannels[midiChannel].currentPanning = 0x40; // center
_midiChannels[midiChannel].currentVolumeExpression = 127;
// Miles Audio 2: hardcoded pitch range as a global (not channel specific), set to 12
// Miles Audio 3: pitch range per MIDI channel
_midiChannels[midiChannel].currentPitchBender = MILES_PITCHBENDER_DEFAULT;
_midiChannels[midiChannel].currentPitchRange = 12;
}
}
void MidiDriver_Miles_AdLib::resetAdLib() {
if (_modeOPL3) {
setRegister(0x105, 1); // enable OPL3
setRegister(0x104, 0); // activate 18 2-operator FM-voices
}
setRegister(0x01, 0x20); // enable waveform control on both operators
setRegister(0x04, 0xE0); // Timer control
setRegister(0x08, 0); // select FM music mode
setRegister(0xBD, 0); // disable Rhythm
// reset FM voice instrument data
resetAdLibOperatorRegisters(0x20, 0);
resetAdLibOperatorRegisters(0x60, 0);
resetAdLibOperatorRegisters(0x80, 0);
resetAdLibFMVoiceChannelRegisters(0xA0, 0);
resetAdLibFMVoiceChannelRegisters(0xB0, 0);
resetAdLibFMVoiceChannelRegisters(0xC0, 0);
resetAdLibOperatorRegisters(0xE0, 0);
resetAdLibOperatorRegisters(0x40, 0x3F);
}
void MidiDriver_Miles_AdLib::resetAdLibOperatorRegisters(byte baseRegister, byte value) {
byte physicalFmVoice = 0;
for (physicalFmVoice = 0; physicalFmVoice < _modePhysicalFmVoicesCount; physicalFmVoice++) {
setRegister(baseRegister + milesAdLibOperator1Register[physicalFmVoice], value);
setRegister(baseRegister + milesAdLibOperator2Register[physicalFmVoice], value);
}
}
void MidiDriver_Miles_AdLib::resetAdLibFMVoiceChannelRegisters(byte baseRegister, byte value) {
byte physicalFmVoice = 0;
for (physicalFmVoice = 0; physicalFmVoice < _modePhysicalFmVoicesCount; physicalFmVoice++) {
setRegister(baseRegister + milesAdLibChannelRegister[physicalFmVoice], value);
}
}
// MIDI messages can be found at http://www.midi.org/techspecs/midimessages.php
void MidiDriver_Miles_AdLib::send(uint32 b) {
byte command = b & 0xf0;
byte channel = b & 0xf;
byte op1 = (b >> 8) & 0xff;
byte op2 = (b >> 16) & 0xff;
switch (command) {
case 0x80:
noteOff(channel, op1);
break;
case 0x90:
noteOn(channel, op1, op2);
break;
case 0xb0: // Control change
controlChange(channel, op1, op2);
break;
case 0xc0: // Program Change
programChange(channel, op1);
break;
case 0xa0: // Polyphonic key pressure (aftertouch)
case 0xd0: // Channel pressure (aftertouch)
// Aftertouch doesn't seem to be implemented in the Miles Audio AdLib driver
break;
case 0xe0:
pitchBendChange(channel, op1, op2);
break;
case 0xf0: // SysEx
warning("MILES-ADLIB: SysEx: %x", b);
break;
default:
warning("MILES-ADLIB: Unknown event %02x", command);
}
}
void MidiDriver_Miles_AdLib::setTimerCallback(void *timerParam, Common::TimerManager::TimerProc timerProc) {
_adlibTimerProc = timerProc;
_adlibTimerParam = timerParam;
}
int16 MidiDriver_Miles_AdLib::searchFreeVirtualFmVoiceChannel() {
for (byte virtualFmVoice = 0; virtualFmVoice < _modeVirtualFmVoicesCount; virtualFmVoice++) {
if (!_virtualFmVoices[virtualFmVoice].inUse)
return virtualFmVoice;
}
return -1;
}
int16 MidiDriver_Miles_AdLib::searchFreePhysicalFmVoiceChannel() {
if (!circularPhysicalAssignment) {
// Older assign logic
for (byte physicalFmVoice = 0; physicalFmVoice < _modePhysicalFmVoicesCount; physicalFmVoice++) {
if (!_physicalFmVoices[physicalFmVoice].inUse)
return physicalFmVoice;
}
} else {
// Newer one
// Remembers last physical FM-voice and searches from that spot
byte physicalFmVoice = circularPhysicalAssignmentFmVoice;
for (byte physicalFmVoiceCount = 0; physicalFmVoiceCount < _modePhysicalFmVoicesCount; physicalFmVoiceCount++) {
physicalFmVoice++;
if (physicalFmVoice >= _modePhysicalFmVoicesCount)
physicalFmVoice = 0;
if (!_physicalFmVoices[physicalFmVoice].inUse) {
circularPhysicalAssignmentFmVoice = physicalFmVoice;
return physicalFmVoice;
}
}
}
return -1;
}
void MidiDriver_Miles_AdLib::noteOn(byte midiChannel, byte note, byte velocity) {
const InstrumentEntry *instrumentPtr = NULL;
if (velocity == 0) {
noteOff(midiChannel, note);
return;
}
if (midiChannel == 9) {
// percussion channel
// search for instrument according to given note
instrumentPtr = searchInstrument(MILES_ADLIB_PERCUSSION_BANK, note);
} else {
// directly get instrument of channel
instrumentPtr = _midiChannels[midiChannel].currentInstrumentPtr;
}
if (!instrumentPtr) {
warning("MILES-ADLIB: noteOn: invalid instrument");
return;
}
//warning("Note On: channel %d, note %d, velocity %d, instrument %d/%d", midiChannel, note, velocity, instrumentPtr->bankId, instrumentPtr->patchId);
// look for free virtual FM voice
int16 virtualFmVoice = searchFreeVirtualFmVoiceChannel();
if (virtualFmVoice == -1) {
// Out of virtual voices, can't do anything about it
return;
}
// Scale back velocity
velocity = (velocity & 0x7F) >> 3;
velocity = milesAdLibVolumeSensitivityTable[velocity];
if (midiChannel != 9) {
_virtualFmVoices[virtualFmVoice].currentNote = note;
_virtualFmVoices[virtualFmVoice].currentTransposition = instrumentPtr->transposition;
} else {
// Percussion channel
_virtualFmVoices[virtualFmVoice].currentNote = instrumentPtr->transposition;
_virtualFmVoices[virtualFmVoice].currentTransposition = 0;
}
_virtualFmVoices[virtualFmVoice].inUse = true;
_virtualFmVoices[virtualFmVoice].actualMidiChannel = midiChannel;
_virtualFmVoices[virtualFmVoice].currentOriginalMidiNote = note;
_virtualFmVoices[virtualFmVoice].currentInstrumentPtr = instrumentPtr;
_virtualFmVoices[virtualFmVoice].currentVelocity = velocity;
_virtualFmVoices[virtualFmVoice].isPhysical = false;
_virtualFmVoices[virtualFmVoice].sustained = false;
_virtualFmVoices[virtualFmVoice].currentPriority = 32767;
int16 physicalFmVoice = searchFreePhysicalFmVoiceChannel();
if (physicalFmVoice == -1) {
// None found
// go through priorities and reshuffle voices
prioritySort();
return;
}
// Another voice active on this MIDI channel
_midiChannels[midiChannel].currentActiveVoicesCount++;
// Mark virtual FM-Voice as being connected to physical FM-Voice
_virtualFmVoices[virtualFmVoice].isPhysical = true;
_virtualFmVoices[virtualFmVoice].physicalFmVoice = physicalFmVoice;
// Mark physical FM-Voice as being connected to virtual FM-Voice
_physicalFmVoices[physicalFmVoice].inUse = true;
_physicalFmVoices[physicalFmVoice].virtualFmVoice = virtualFmVoice;
// Update the physical FM-Voice
updatePhysicalFmVoice(virtualFmVoice, true, kMilesAdLibUpdateFlags_Reg_All);
}
void MidiDriver_Miles_AdLib::noteOff(byte midiChannel, byte note) {
//warning("Note Off: channel %d, note %d", midiChannel, note);
// Search through all virtual FM-Voices for current midiChannel + note
for (byte virtualFmVoice = 0; virtualFmVoice < _modeVirtualFmVoicesCount; virtualFmVoice++) {
if (_virtualFmVoices[virtualFmVoice].inUse) {
if ((_virtualFmVoices[virtualFmVoice].actualMidiChannel == midiChannel) && (_virtualFmVoices[virtualFmVoice].currentOriginalMidiNote == note)) {
// found one
if (_midiChannels[midiChannel].currentSustain >= 64) {
_virtualFmVoices[virtualFmVoice].sustained = true;
continue;
}
//
releaseFmVoice(virtualFmVoice);
}
}
}
}
void MidiDriver_Miles_AdLib::prioritySort() {
byte virtualFmVoice = 0;
uint16 virtualPriority = 0;
uint16 virtualPriorities[MILES_ADLIB_VIRTUAL_FMVOICES_COUNT_MAX];
uint16 virtualFmVoicesCount = 0;
byte midiChannel = 0;
memset(&virtualPriorities, 0, sizeof(virtualPriorities));
//warning("prioritysort");
// First calculate priorities for all virtual FM voices, that are in use
for (virtualFmVoice = 0; virtualFmVoice < _modeVirtualFmVoicesCount; virtualFmVoice++) {
if (_virtualFmVoices[virtualFmVoice].inUse) {
virtualFmVoicesCount++;
midiChannel = _virtualFmVoices[virtualFmVoice].actualMidiChannel;
if (_midiChannels[midiChannel].currentVoiceProtection >= 64) {
// Voice protection enabled
virtualPriority = 0xFFFF;
} else {
virtualPriority = _virtualFmVoices[virtualFmVoice].currentPriority;
}
byte currentActiveVoicesCount = _midiChannels[midiChannel].currentActiveVoicesCount;
if (virtualPriority >= currentActiveVoicesCount) {
virtualPriority -= _midiChannels[midiChannel].currentActiveVoicesCount;
} else {
virtualPriority = 0; // overflow, should never happen
}
virtualPriorities[virtualFmVoice] = virtualPriority;
}
}
//
while (virtualFmVoicesCount) {
uint16 unvoicedHighestPriority = 0;
byte unvoicedHighestFmVoice = 0;
uint16 voicedLowestPriority = 65535;
byte voicedLowestFmVoice = 0;
for (virtualFmVoice = 0; virtualFmVoice < _modeVirtualFmVoicesCount; virtualFmVoice++) {
if (_virtualFmVoices[virtualFmVoice].inUse) {
virtualPriority = virtualPriorities[virtualFmVoice];
if (!_virtualFmVoices[virtualFmVoice].isPhysical) {
// currently not physical, so unvoiced
if (virtualPriority >= unvoicedHighestPriority) {
unvoicedHighestPriority = virtualPriority;
unvoicedHighestFmVoice = virtualFmVoice;
}
} else {
// currently physical, so voiced
if (virtualPriority <= voicedLowestPriority) {
voicedLowestPriority = virtualPriority;
voicedLowestFmVoice = virtualFmVoice;
}
}
}
}
if (unvoicedHighestPriority < voicedLowestPriority)
break; // We are done
if (unvoicedHighestPriority == 0)
break;
// Safety checks
assert(_virtualFmVoices[voicedLowestFmVoice].isPhysical);
assert(!_virtualFmVoices[unvoicedHighestFmVoice].isPhysical);
// Steal this physical voice
byte physicalFmVoice = _virtualFmVoices[voicedLowestFmVoice].physicalFmVoice;
//warning("MILES-ADLIB: stealing physical FM-Voice %d from virtual FM-Voice %d for virtual FM-Voice %d", physicalFmVoice, voicedLowestFmVoice, unvoicedHighestFmVoice);
//warning("priority old %d, priority new %d", unvoicedHighestPriority, voicedLowestPriority);
releaseFmVoice(voicedLowestFmVoice);
// Get some data of the unvoiced highest priority virtual FM Voice
midiChannel = _virtualFmVoices[unvoicedHighestFmVoice].actualMidiChannel;
// Another voice active on this MIDI channel
_midiChannels[midiChannel].currentActiveVoicesCount++;
// Mark virtual FM-Voice as being connected to physical FM-Voice
_virtualFmVoices[unvoicedHighestFmVoice].isPhysical = true;
_virtualFmVoices[unvoicedHighestFmVoice].physicalFmVoice = physicalFmVoice;
// Mark physical FM-Voice as being connected to virtual FM-Voice
_physicalFmVoices[physicalFmVoice].inUse = true;
_physicalFmVoices[physicalFmVoice].virtualFmVoice = unvoicedHighestFmVoice;
// Update the physical FM-Voice
updatePhysicalFmVoice(unvoicedHighestFmVoice, true, kMilesAdLibUpdateFlags_Reg_All);
virtualFmVoicesCount--;
}
}
void MidiDriver_Miles_AdLib::releaseFmVoice(byte virtualFmVoice) {
// virtual Voice not actually played? -> exit
if (!_virtualFmVoices[virtualFmVoice].isPhysical) {
_virtualFmVoices[virtualFmVoice].inUse = false;
return;
}
byte midiChannel = _virtualFmVoices[virtualFmVoice].actualMidiChannel;
byte physicalFmVoice = _virtualFmVoices[virtualFmVoice].physicalFmVoice;
// stop note from playing
updatePhysicalFmVoice(virtualFmVoice, false, kMilesAdLibUpdateFlags_Reg_A0);
// this virtual FM voice isn't physical anymore
_virtualFmVoices[virtualFmVoice].isPhysical = false;
_virtualFmVoices[virtualFmVoice].inUse = false;
// Remove physical FM-Voice from being active
_physicalFmVoices[physicalFmVoice].inUse = false;
// One less voice active on this MIDI channel
assert(_midiChannels[midiChannel].currentActiveVoicesCount);
_midiChannels[midiChannel].currentActiveVoicesCount--;
}
void MidiDriver_Miles_AdLib::releaseSustain(byte midiChannel) {
// Search through all virtual FM-Voices for currently sustained notes and call noteOff on them
for (byte virtualFmVoice = 0; virtualFmVoice < _modeVirtualFmVoicesCount; virtualFmVoice++) {
if (_virtualFmVoices[virtualFmVoice].inUse) {
if ((_virtualFmVoices[virtualFmVoice].actualMidiChannel == midiChannel) && (_virtualFmVoices[virtualFmVoice].sustained)) {
// is currently sustained
// so do a noteOff (which will check current sustain controller)
noteOff(midiChannel, _virtualFmVoices[virtualFmVoice].currentOriginalMidiNote);
}
}
}
}
void MidiDriver_Miles_AdLib::updatePhysicalFmVoice(byte virtualFmVoice, bool keyOn, uint16 registerUpdateFlags) {
byte midiChannel = _virtualFmVoices[virtualFmVoice].actualMidiChannel;
if (!_virtualFmVoices[virtualFmVoice].isPhysical) {
// virtual FM-Voice has no physical FM-Voice assigned? -> ignore
return;
}
byte physicalFmVoice = _virtualFmVoices[virtualFmVoice].physicalFmVoice;
const InstrumentEntry *instrumentPtr = _virtualFmVoices[virtualFmVoice].currentInstrumentPtr;
uint16 op1Reg = milesAdLibOperator1Register[physicalFmVoice];
uint16 op2Reg = milesAdLibOperator2Register[physicalFmVoice];
uint16 channelReg = milesAdLibChannelRegister[physicalFmVoice];
uint16 compositeVolume = 0;
if (registerUpdateFlags & kMilesAdLibUpdateFlags_Reg_40) {
// Calculate new volume
byte midiVolume = _midiChannels[midiChannel].currentVolume;
byte midiVolumeExpression = _midiChannels[midiChannel].currentVolumeExpression;
compositeVolume = midiVolume * midiVolumeExpression * 2;
compositeVolume = compositeVolume >> 8; // get upmost 8 bits
if (compositeVolume)
compositeVolume++; // round up in case result wasn't 0
compositeVolume = compositeVolume * _virtualFmVoices[virtualFmVoice].currentVelocity * 2;
compositeVolume = compositeVolume >> 8; // get upmost 8 bits
if (compositeVolume)
compositeVolume++; // round up in case result wasn't 0
}
if (registerUpdateFlags & kMilesAdLibUpdateFlags_Reg_20) {
// Amplitude Modulation / Vibrato / Envelope Generator Type / Keyboard Scaling Rate / Modulator Frequency Multiple
byte reg20op1 = instrumentPtr->reg20op1;
byte reg20op2 = instrumentPtr->reg20op2;
if (_midiChannels[midiChannel].currentModulation >= 64) {
// set bit 6 (Vibrato)
reg20op1 |= 0x40;
reg20op2 |= 0x40;
}
setRegister(0x20 + op1Reg, reg20op1);
setRegister(0x20 + op2Reg, reg20op2);
}
if (registerUpdateFlags & kMilesAdLibUpdateFlags_Reg_40) {
// Volume (Level Key Scaling / Total Level)
byte reg40op1 = instrumentPtr->reg40op1;
byte reg40op2 = instrumentPtr->reg40op2;
uint16 volumeOp1 = (~reg40op1) & 0x3F;
uint16 volumeOp2 = (~reg40op2) & 0x3F;
if (instrumentPtr->regC0 & 1) {
// operator 2 enabled
// scale volume factor
volumeOp1 = (volumeOp1 * compositeVolume) / 127;
// 2nd operator always scaled
}
volumeOp2 = (volumeOp2 * compositeVolume) / 127;
volumeOp1 = (~volumeOp1) & 0x3F; // negate it, so we get the proper value for the register
volumeOp2 = (~volumeOp2) & 0x3F; // ditto
reg40op1 = (reg40op1 & 0xC0) | volumeOp1; // keep "scaling level" and merge in our volume
reg40op2 = (reg40op2 & 0xC0) | volumeOp2;
setRegister(0x40 + op1Reg, reg40op1);
setRegister(0x40 + op2Reg, reg40op2);
}
if (registerUpdateFlags & kMilesAdLibUpdateFlags_Reg_60) {
// Attack Rate / Decay Rate
// Sustain Level / Release Rate
byte reg60op1 = instrumentPtr->reg60op1;
byte reg60op2 = instrumentPtr->reg60op2;
byte reg80op1 = instrumentPtr->reg80op1;
byte reg80op2 = instrumentPtr->reg80op2;
setRegister(0x60 + op1Reg, reg60op1);
setRegister(0x60 + op2Reg, reg60op2);
setRegister(0x80 + op1Reg, reg80op1);
setRegister(0x80 + op2Reg, reg80op2);
}
if (registerUpdateFlags & kMilesAdLibUpdateFlags_Reg_E0) {
// Waveform Select
byte regE0op1 = instrumentPtr->regE0op1;
byte regE0op2 = instrumentPtr->regE0op2;
setRegister(0xE0 + op1Reg, regE0op1);
setRegister(0xE0 + op2Reg, regE0op2);
}
if (registerUpdateFlags & kMilesAdLibUpdateFlags_Reg_C0) {
// Feedback / Algorithm
byte regC0 = instrumentPtr->regC0;
if (_modeOPL3) {
// Panning for OPL3
byte panning = _midiChannels[midiChannel].currentPanning;
if (panning <= MILES_ADLIB_STEREO_PANNING_THRESHOLD_LEFT) {
regC0 |= 0x20; // left speaker only
} else if (panning >= MILES_ADLIB_STEREO_PANNING_THRESHOLD_RIGHT) {
regC0 |= 0x10; // right speaker only
} else {
regC0 |= 0x30; // center
}
}
setRegister(0xC0 + channelReg, regC0);
}
if (registerUpdateFlags & kMilesAdLibUpdateFlags_Reg_A0) {
// Frequency / Key-On
// Octave / F-Number / Key-On
if (!keyOn) {
// turn off note
byte regB0 = _physicalFmVoices[physicalFmVoice].currentB0hReg & 0x1F; // remove bit 5 "key on"
setRegister(0xB0 + channelReg, regB0);
} else {
// turn on note, calculate frequency, octave...
int16 pitchBender = _midiChannels[midiChannel].currentPitchBender;
byte pitchRange = _midiChannels[midiChannel].currentPitchRange;
int16 currentNote = _virtualFmVoices[virtualFmVoice].currentNote;
int16 physicalNote = 0;
int16 halfTone = 0;
uint16 frequency = 0;
uint16 frequencyIdx = 0;
byte octave = 0;
pitchBender -= 0x2000;
pitchBender = pitchBender >> 5; // divide by 32
pitchBender = pitchBender * pitchRange; // pitchrange 12: now +0x0C00 to -0xC00
// difference between Miles Audio 2 + 3
// Miles Audio 2 used a pitch range of 12, which was basically hardcoded
// Miles Audio 3 used an array, which got set by control change events
currentNote += _virtualFmVoices->currentTransposition;
// Normalize note
currentNote -= 24;
do {
currentNote += 12;
} while (currentNote < 0);
currentNote += 12;
do {
currentNote -= 12;
} while (currentNote > 95);
// combine note + pitchbender, also adjust by 8 for rounding
currentNote = (currentNote << 8) + pitchBender + 8;
currentNote = currentNote >> 4; // get actual note
// Normalize
currentNote -= (12 * 16);
do {
currentNote += (12 * 16);
} while (currentNote < 0);
currentNote += (12 * 16);
do {
currentNote -= (12 * 16);
} while (currentNote > ((96 * 16) - 1));
physicalNote = currentNote >> 4;
halfTone = physicalNote % 12; // remainder of physicalNote / 12
frequencyIdx = (halfTone << 4) + (currentNote & 0x0F);
assert(frequencyIdx < sizeof(milesAdLibFrequencyLookUpTable));
frequency = milesAdLibFrequencyLookUpTable[frequencyIdx];
octave = (physicalNote / 12) - 1;
if (frequency & 0x8000)
octave++;
if (octave & 0x80) {
octave++;
frequency = frequency >> 1;
}
byte regA0 = frequency & 0xFF;
byte regB0 = ((frequency >> 8) & 0x03) | (octave << 2) | 0x20;
setRegister(0xA0 + channelReg, regA0);
setRegister(0xB0 + channelReg, regB0);
_physicalFmVoices[physicalFmVoice].currentB0hReg = regB0;
}
}
//warning("end of update voice");
}
void MidiDriver_Miles_AdLib::controlChange(byte midiChannel, byte controllerNumber, byte controllerValue) {
uint16 registerUpdateFlags = kMilesAdLibUpdateFlags_None;
switch (controllerNumber) {
case MILES_CONTROLLER_SELECT_PATCH_BANK:
//warning("patch bank channel %d, bank %x", midiChannel, controllerValue);
_midiChannels[midiChannel].currentPatchBank = controllerValue;
break;
case MILES_CONTROLLER_PROTECT_VOICE:
_midiChannels[midiChannel].currentVoiceProtection = controllerValue;
break;
case MILES_CONTROLLER_PROTECT_TIMBRE:
// It seems that this can get ignored, because we don't cache timbres at all
break;
case MILES_CONTROLLER_MODULATION:
_midiChannels[midiChannel].currentModulation = controllerValue;
registerUpdateFlags = kMilesAdLibUpdateFlags_Reg_20;
break;
case MILES_CONTROLLER_VOLUME:
_midiChannels[midiChannel].currentVolume = controllerValue;
registerUpdateFlags = kMilesAdLibUpdateFlags_Reg_40;
break;
case MILES_CONTROLLER_EXPRESSION:
_midiChannels[midiChannel].currentVolumeExpression = controllerValue;
registerUpdateFlags = kMilesAdLibUpdateFlags_Reg_40;
break;
case MILES_CONTROLLER_PANNING:
_midiChannels[midiChannel].currentPanning = controllerValue;
if (_modeStereo) {
// Update register only in case we are in stereo mode
registerUpdateFlags = kMilesAdLibUpdateFlags_Reg_C0;
}
break;
case MILES_CONTROLLER_SUSTAIN:
_midiChannels[midiChannel].currentSustain = controllerValue;
if (controllerValue < 64) {
releaseSustain(midiChannel);
}
break;
case MILES_CONTROLLER_PITCH_RANGE:
// Miles Audio 3 feature
_midiChannels[midiChannel].currentPitchRange = controllerValue;
break;
case MILES_CONTROLLER_RESET_ALL:
_midiChannels[midiChannel].currentSustain = 0;
releaseSustain(midiChannel);
_midiChannels[midiChannel].currentModulation = 0;
_midiChannels[midiChannel].currentVolumeExpression = 127;
_midiChannels[midiChannel].currentPitchBender = MILES_PITCHBENDER_DEFAULT;
registerUpdateFlags = kMilesAdLibUpdateFlags_Reg_20 | kMilesAdLibUpdateFlags_Reg_40 | kMilesAdLibUpdateFlags_Reg_A0;
break;
case MILES_CONTROLLER_ALL_NOTES_OFF:
for (byte virtualFmVoice = 0; virtualFmVoice < _modeVirtualFmVoicesCount; virtualFmVoice++) {
if (_virtualFmVoices[virtualFmVoice].inUse) {
// used
if (_virtualFmVoices[virtualFmVoice].actualMidiChannel == midiChannel) {
// by our current MIDI channel -> noteOff
noteOff(midiChannel, _virtualFmVoices[virtualFmVoice].currentNote);
}
}
}
break;
default:
//warning("MILES-ADLIB: Unsupported control change %d", controllerNumber);
break;
}
if (registerUpdateFlags) {
for (byte virtualFmVoice = 0; virtualFmVoice < _modeVirtualFmVoicesCount; virtualFmVoice++) {
if (_virtualFmVoices[virtualFmVoice].inUse) {
// used
if (_virtualFmVoices[virtualFmVoice].actualMidiChannel == midiChannel) {
// by our current MIDI channel -> update
updatePhysicalFmVoice(virtualFmVoice, true, registerUpdateFlags);
}
}
}
}
}
void MidiDriver_Miles_AdLib::programChange(byte midiChannel, byte patchId) {
const InstrumentEntry *instrumentPtr = NULL;
byte patchBank = _midiChannels[midiChannel].currentPatchBank;
//warning("patch channel %d, patch %x, bank %x", midiChannel, patchId, patchBank);
// we check, if we actually have data for the requested instrument...
instrumentPtr = searchInstrument(patchBank, patchId);
if (!instrumentPtr) {
warning("MILES-ADLIB: unknown instrument requested (%d, %d)", patchBank, patchId);
return;
}
// and remember it in that case for the current MIDI-channel
_midiChannels[midiChannel].currentInstrumentPtr = instrumentPtr;
}
const InstrumentEntry *MidiDriver_Miles_AdLib::searchInstrument(byte bankId, byte patchId) {
const InstrumentEntry *instrumentPtr = _instrumentTablePtr;
for (uint16 instrumentNr = 0; instrumentNr < _instrumentTableCount; instrumentNr++) {
if ((instrumentPtr->bankId == bankId) && (instrumentPtr->patchId == patchId)) {
return instrumentPtr;
}
instrumentPtr++;
}
return NULL;
}
void MidiDriver_Miles_AdLib::pitchBendChange(byte midiChannel, byte parameter1, byte parameter2) {
// Miles Audio actually didn't shift parameter 2 1 down in here
// which means in memory it used a 15-bit pitch bender, which also means the default was 0x4000
if ((parameter1 & 0x80) || (parameter2 & 0x80)) {
warning("MILES-ADLIB: invalid pitch bend change");
return;
}
_midiChannels[midiChannel].currentPitchBender = parameter1 | (parameter2 << 7);
for (byte virtualFmVoice = 0; virtualFmVoice < _modeVirtualFmVoicesCount; virtualFmVoice++) {
if (_virtualFmVoices[virtualFmVoice].inUse) {
// used
if (_virtualFmVoices[virtualFmVoice].actualMidiChannel == midiChannel) {
// by our current MIDI channel -> update
updatePhysicalFmVoice(virtualFmVoice, true, kMilesAdLibUpdateFlags_Reg_A0);
}
}
}
}
void MidiDriver_Miles_AdLib::setRegister(int reg, int value) {
if (!(reg & 0x100)) {
_opl->write(0x220, reg);
_opl->write(0x221, value);
//warning("OPL write %x %x (%d)", reg, value, value);
} else {
_opl->write(0x222, reg & 0xFF);
_opl->write(0x223, value);
//warning("OPL3 write %x %x (%d)", reg & 0xFF, value, value);
}
}
uint32 MidiDriver_Miles_AdLib::property(int prop, uint32 param) {
return 0;
}
MidiDriver *MidiDriver_Miles_AdLib_create(const Common::String &filenameAdLib, const Common::String &filenameOPL3, Common::SeekableReadStream *streamAdLib, Common::SeekableReadStream *streamOPL3) {
// Load adlib instrument data from file SAMPLE.AD (OPL3: SAMPLE.OPL)
Common::String timbreFilename;
Common::SeekableReadStream *timbreStream = nullptr;
bool preferOPL3 = false;
Common::File *fileStream = new Common::File();
uint32 fileSize = 0;
uint32 fileDataOffset = 0;
uint32 fileDataLeft = 0;
uint32 streamSize = 0;
byte *streamDataPtr = nullptr;
byte curBankId = 0;
byte curPatchId = 0;
InstrumentEntry *instrumentTablePtr = nullptr;
uint16 instrumentTableCount = 0;
InstrumentEntry *instrumentPtr = nullptr;
uint32 instrumentOffset = 0;
uint16 instrumentDataSize = 0;
// Logic:
// We prefer OPL3 timbre data in case OPL3 is available in ScummVM
// If it's not or OPL3 timbre data is not available, we go for AdLib timbre data
// And if OPL3 is not available in ScummVM and also AdLib timbre data is not available,
// we then still go for OPL3 timbre data.
//
// Note: for most games OPL3 timbre data + AdLib timbre data is the same.
// And at least in theory we should still be able to use OPL3 timbre data even for AdLib.
// However there is a special OPL3-specific timbre format, which is currently not supported.
// In this case the error message "unsupported instrument size" should appear. I haven't found
// a game that uses it, which is why I haven't implemented it yet.
if (OPL::Config::detect(OPL::Config::kOpl3) >= 0) {
// OPL3 available, prefer OPL3 timbre data because of this
preferOPL3 = true;
}
// Check if streams were passed to us and select one of them
if ((streamAdLib) || (streamOPL3)) {
// At least one stream was passed by caller
if (preferOPL3) {
// Prefer OPL3 timbre stream in case OPL3 is available
timbreStream = streamOPL3;
}
if (!timbreStream) {
// Otherwise prefer AdLib timbre stream first
if (streamAdLib) {
timbreStream = streamAdLib;
} else {
// If not available, use OPL3 timbre stream
if (streamOPL3) {
timbreStream = streamOPL3;
}
}
}
}
// Now check if any filename was passed to us
if ((!filenameAdLib.empty()) || (!filenameOPL3.empty())) {
// If that's the case, check if one of those exists
if (preferOPL3) {
// OPL3 available
if (!filenameOPL3.empty()) {
if (fileStream->exists(filenameOPL3)) {
// If OPL3 available, prefer OPL3 timbre file in case file exists
timbreFilename = filenameOPL3;
}
}
if (timbreFilename.empty()) {
if (!filenameAdLib.empty()) {
if (fileStream->exists(filenameAdLib)) {
// otherwise use AdLib timbre file, if it exists
timbreFilename = filenameAdLib;
}
}
}
} else {
// OPL3 not available
// Prefer the AdLib one for now
if (!filenameAdLib.empty()) {
if (fileStream->exists(filenameAdLib)) {
// if AdLib file exists, use it
timbreFilename = filenameAdLib;
}
}
if (timbreFilename.empty()) {
if (!filenameOPL3.empty()) {
if (fileStream->exists(filenameOPL3)) {
// if OPL3 file exists, use it
timbreFilename = filenameOPL3;
}
}
}
}
if (timbreFilename.empty() && (!timbreStream)) {
// If none of them exists and also no stream was passed, we can't do anything about it
if (!filenameAdLib.empty()) {
if (!filenameOPL3.empty()) {
error("MILES-ADLIB: could not open timbre file (%s or %s)", filenameAdLib.c_str(), filenameOPL3.c_str());
} else {
error("MILES-ADLIB: could not open timbre file (%s)", filenameAdLib.c_str());
}
} else {
error("MILES-ADLIB: could not open timbre file (%s)", filenameOPL3.c_str());
}
}
}
if (!timbreFilename.empty()) {
// Filename was passed to us and file exists (this is the common case for most games)
// We prefer this situation
if (!fileStream->open(timbreFilename))
error("MILES-ADLIB: could not open timbre file (%s)", timbreFilename.c_str());
streamSize = fileStream->size();
streamDataPtr = new byte[streamSize];
if (fileStream->read(streamDataPtr, streamSize) != streamSize)
error("MILES-ADLIB: error while reading timbre file (%s)", timbreFilename.c_str());
fileStream->close();
} else if (timbreStream) {
// Timbre data was passed directly (possibly read from resource file by caller)
// Currently used by "Amazon Guardians of Eden", "Simon 2" and "Return To Zork"
streamSize = timbreStream->size();
streamDataPtr = new byte[streamSize];
if (timbreStream->read(streamDataPtr, streamSize) != streamSize)
error("MILES-ADLIB: error while reading timbre stream");
} else {
error("MILES-ADLIB: timbre filenames nor timbre stream were passed");
}
delete fileStream;
// File is like this:
// [patch:BYTE] [bank:BYTE] [patchoffset:UINT32]
// ...
// until patch + bank are both 0xFF, which signals end of header
// First we check how many entries there are
fileDataOffset = 0;
fileDataLeft = streamSize;
while (1) {
if (fileDataLeft < 6)
error("MILES-ADLIB: unexpected EOF in instrument file");
curPatchId = streamDataPtr[fileDataOffset++];
curBankId = streamDataPtr[fileDataOffset++];
if ((curBankId == 0xFF) && (curPatchId == 0xFF))
break;
fileDataOffset += 4; // skip over offset
instrumentTableCount++;
}
if (instrumentTableCount == 0)
error("MILES-ADLIB: no instruments in instrument file");
// Allocate space for instruments
instrumentTablePtr = new InstrumentEntry[instrumentTableCount];
// Now actually read all entries
instrumentPtr = instrumentTablePtr;
fileDataOffset = 0;
fileDataLeft = fileSize;
while (1) {
curPatchId = streamDataPtr[fileDataOffset++];
curBankId = streamDataPtr[fileDataOffset++];
if ((curBankId == 0xFF) && (curPatchId == 0xFF))
break;
instrumentOffset = READ_LE_UINT32(streamDataPtr + fileDataOffset);
fileDataOffset += 4;
instrumentPtr->bankId = curBankId;
instrumentPtr->patchId = curPatchId;
instrumentDataSize = READ_LE_UINT16(streamDataPtr + instrumentOffset);
if (instrumentDataSize != 14)
error("MILES-ADLIB: unsupported instrument size");
instrumentPtr->transposition = (signed char)streamDataPtr[instrumentOffset + 2];
instrumentPtr->reg20op1 = streamDataPtr[instrumentOffset + 3];
instrumentPtr->reg40op1 = streamDataPtr[instrumentOffset + 4];
instrumentPtr->reg60op1 = streamDataPtr[instrumentOffset + 5];
instrumentPtr->reg80op1 = streamDataPtr[instrumentOffset + 6];
instrumentPtr->regE0op1 = streamDataPtr[instrumentOffset + 7];
instrumentPtr->regC0 = streamDataPtr[instrumentOffset + 8];
instrumentPtr->reg20op2 = streamDataPtr[instrumentOffset + 9];
instrumentPtr->reg40op2 = streamDataPtr[instrumentOffset + 10];
instrumentPtr->reg60op2 = streamDataPtr[instrumentOffset + 11];
instrumentPtr->reg80op2 = streamDataPtr[instrumentOffset + 12];
instrumentPtr->regE0op2 = streamDataPtr[instrumentOffset + 13];
// Instrument read, next instrument please
instrumentPtr++;
}
// Free instrument file/stream data
delete[] streamDataPtr;
return new MidiDriver_Miles_AdLib(instrumentTablePtr, instrumentTableCount);
}
} // End of namespace Audio