scummvm/saga/sthread.cpp
2004-06-27 21:30:33 +00:00

794 lines
19 KiB
C++

/* ScummVM - Scumm Interpreter
* Copyright (C) 2004 The ScummVM project
*
* The ReInherit Engine is (C)2000-2003 by Daniel Balsom.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* $Header$
*
*/
// Scripting module thread management component
#include "saga.h"
#include "reinherit.h"
#include "yslib.h"
#include "actor_mod.h"
#include "console_mod.h"
#include "text_mod.h"
#include "script.h"
#include "script_mod.h"
#include "sdata.h"
#include "sstack.h"
#include "sthread.h"
#include "sfuncs.h"
namespace Saga {
R_SCRIPT_THREAD *STHREAD_Create() {
YS_DL_NODE *new_node;
R_SCRIPT_THREAD *new_thread;
int result;
if (!ScriptModule.initialized) {
return NULL;
}
new_thread = (R_SCRIPT_THREAD *)calloc(1, sizeof *new_thread);
if (new_thread == NULL) {
return NULL;
}
result = SSTACK_Create(&(new_thread->stack), R_DEF_THREAD_STACKSIZE, STACK_GROW);
if (result != STACK_SUCCESS) {
return NULL;
}
new_node = ys_dll_add_head(ScriptModule.thread_list, new_thread, sizeof *new_thread);
free(new_thread);
return (R_SCRIPT_THREAD *)ys_dll_get_data(new_node);
}
int STHREAD_Destroy(R_SCRIPT_THREAD *thread) {
if (thread == NULL) {
return R_FAILURE;
}
SSTACK_Destroy(thread->stack);
return R_SUCCESS;
}
int STHREAD_ExecThreads(int msec) {
YS_DL_NODE *walk_p;
R_SCRIPT_THREAD *thread;
if (!ScriptModule.initialized) {
return R_FAILURE;
}
for (walk_p = ys_dll_head(ScriptModule.thread_list); walk_p != NULL; walk_p = ys_dll_next(walk_p)) {
thread = (R_SCRIPT_THREAD *)ys_dll_get_data(walk_p);
if (thread->executing) {
STHREAD_Run(thread, STHREAD_DEF_INSTR_COUNT, msec);
}
}
return R_SUCCESS;
}
int STHREAD_SetEntrypoint(R_SCRIPT_THREAD *thread, int ep_num) {
R_SCRIPT_BYTECODE *bytecode;
int max_entrypoint;
assert(ScriptModule.initialized);
bytecode = ScriptModule.current_script->bytecode;
max_entrypoint = bytecode->n_entrypoints;
if ((ep_num < 0) || (ep_num >= max_entrypoint)) {
return R_FAILURE;
}
thread->ep_num = ep_num;
thread->ep_offset = bytecode->entrypoints[ep_num].offset;
return R_SUCCESS;
}
int STHREAD_Execute(R_SCRIPT_THREAD *thread, int ep_num) {
assert(ScriptModule.initialized);
if ((ScriptModule.current_script == NULL) || (!ScriptModule.current_script->loaded)) {
return R_FAILURE;
}
STHREAD_SetEntrypoint(thread, ep_num);
thread->i_offset = thread->ep_offset;
thread->executing = 1;
return R_SUCCESS;
}
unsigned char *GetReadPtr(R_SCRIPT_THREAD *thread) {
return ScriptModule.current_script->bytecode->bytecode_p + thread->i_offset;
}
unsigned long GetReadOffset(const byte *read_p) {
return (unsigned long)(read_p - (unsigned char *)ScriptModule.current_script->bytecode->bytecode_p);
}
size_t GetReadLen(R_SCRIPT_THREAD *thread) {
return ScriptModule.current_script->bytecode->bytecode_len - thread->i_offset;
}
int STHREAD_HoldSem(R_SEMAPHORE *sem) {
if (sem == NULL) {
return R_FAILURE;
}
sem->hold_count++;
return R_SUCCESS;
}
int STHREAD_ReleaseSem(R_SEMAPHORE *sem) {
if (sem == NULL) {
return R_FAILURE;
}
sem->hold_count--;
if (sem->hold_count < 0) {
sem->hold_count = 0;
}
return R_SUCCESS;
}
int STHREAD_DebugStep() {
if (ScriptModule.dbg_singlestep) {
ScriptModule.dbg_dostep = 1;
}
return R_SUCCESS;
}
int STHREAD_Run(R_SCRIPT_THREAD *thread, int instr_limit, int msec) {
int instr_count;
uint32 saved_offset;
SDataWord_T param1;
SDataWord_T param2;
long iparam1;
long iparam2;
long iresult;
SDataWord_T data;
int debug_print = 0;
int n_buf;
int bitstate;
int result;
int in_char;
int i;
int unhandled = 0;
// Handle debug single-stepping
if ((thread == ScriptModule.dbg_thread) && ScriptModule.dbg_singlestep) {
if (ScriptModule.dbg_dostep) {
debug_print = 1;
thread->sleep_time = 0;
instr_limit = 1;
ScriptModule.dbg_dostep = 0;
} else {
return R_SUCCESS;
}
}
for (instr_count = 0; instr_count < instr_limit; instr_count++) {
if ((!thread->executing) || (thread->sem.hold_count)) {
break;
}
thread->sleep_time -= msec;
if (thread->sleep_time < 0) {
thread->sleep_time = 0;
}
if (thread->sleep_time) {
break;
}
saved_offset = thread->i_offset;
debug(2, "Executing thread offset: %lu", thread->i_offset);
MemoryReadStream *readS = new MemoryReadStream(GetReadPtr(thread), GetReadLen(thread));
in_char = readS->readByte();
switch (in_char) {
// Align (ALGN)
case 0x01:
break;
// STACK INSTRUCTIONS
// Push nothing (PSHN)
case 0x02:
SSTACK_PushNull(thread->stack);
break;
// Pop nothing (POPN)
case 0x03:
SSTACK_Pop(thread->stack, NULL);
break;
// Push false (PSHF)
case 0x04:
SSTACK_Push(thread->stack, 0);
break;
// Push true (PSHT)
case 0x05:
SSTACK_Push(thread->stack, 1);
break;
// Push word (PUSH)
case 0x06:
param1 = (SDataWord_T)readS->readUint16LE();
SSTACK_Push(thread->stack, param1);
break;
// Push word (PSHD) (dialogue string index)
case 0x08:
param1 = (SDataWord_T)readS->readUint16LE();
SSTACK_Push(thread->stack, param1);
break;
// DATA INSTRUCTIONS
// Test flag (TSTF)
case 0x0B:
n_buf = readS->readByte();
param1 = (SDataWord_T)readS->readUint16LE();
SDATA_GetBit(n_buf, param1, &bitstate);
SSTACK_Push(thread->stack, bitstate);
break;
// Get word (GETW)
case 0x0C:
n_buf = readS->readByte();
param1 = readS->readUint16LE();
SDATA_GetWord(n_buf, param1, &data);
SSTACK_Push(thread->stack, data);
break;
// Modify flag (MODF)
case 0x0F:
n_buf = readS->readByte();
param1 = (SDataWord_T)readS->readUint16LE();
bitstate = SDATA_ReadWordU(param1);
SSTACK_Top(thread->stack, &data);
if (bitstate) {
SDATA_SetBit(n_buf, data, 1);
} else {
SDATA_SetBit(n_buf, data, 0);
}
break;
// Put word (PUTW)
case 0x10:
n_buf = readS->readByte();
param1 = (SDataWord_T)readS->readUint16LE();
SSTACK_Top(thread->stack, &data);
SDATA_PutWord(n_buf, param1, data);
break;
// Modify flag and pop (MDFP)
case 0x13:
n_buf = readS->readByte();
param1 = (SDataWord_T)readS->readUint16LE();
SSTACK_Pop(thread->stack, &param1);
bitstate = SDATA_ReadWordU(param1);
if (bitstate) {
SDATA_SetBit(n_buf, param1, 1);
} else {
SDATA_SetBit(n_buf, param1, 0);
}
break;
// Put word and pop (PTWP)
case 0x14:
n_buf = readS->readByte();
param1 = (SDataWord_T)readS->readUint16LE();
SSTACK_Top(thread->stack, &data);
SDATA_PutWord(n_buf, param1, data);
break;
// CONTROL INSTRUCTIONS
// (GOSB): Call subscript ?
case 0x17:
{
int temp;
int temp2;
temp = readS->readByte();
temp2 = readS->readByte();
param1 = (SDataWord_T)readS->readUint16LE();
data = readS->pos();
//SSTACK_Push(thread->stack, (SDataWord_T)temp);
SSTACK_Push(thread->stack, data);
thread->i_offset = (unsigned long)param1;
}
break;
// (CALL): Call function
case 0x19:
case 0x18:
{
int n_args;
uint16 func_num;
int FIXME_SHADOWED_result;
SFunc_T sfunc;
n_args = readS->readByte();
func_num = readS->readUint16LE();
if (func_num >= R_SFUNC_NUM) {
CON_Print(S_ERROR_PREFIX "Invalid script function number: (%X)\n", func_num);
thread->executing = 0;
break;
}
sfunc = SFuncList[func_num].sfunc_fp;
if (sfunc == NULL) {
CON_Print(S_WARN_PREFIX "%X: Undefined script function number: (%X)\n",
thread->i_offset, func_num);
CON_Print(S_WARN_PREFIX "Removing %d operand(s) from stack.\n", n_args);
for (i = 0; i < n_args; i++) {
SSTACK_Pop(thread->stack, NULL);
}
} else {
FIXME_SHADOWED_result = sfunc(thread);
if (FIXME_SHADOWED_result != R_SUCCESS) {
CON_Print(S_WARN_PREFIX "%X: Script function %d failed.\n", thread->i_offset, func_num);
}
}
}
break;
// (ENTR) Enter the dragon
case 0x1A:
param1 = readS->readUint16LE();
break;
// (?) Unknown
case 0x1B:
unhandled = 1;
break;
// (EXIT) End subscript
case 0x1C:
result = SSTACK_Pop(thread->stack, &data);
if (result != STACK_SUCCESS) {
CON_Print("Script execution complete.");
thread->executing = 0;
} else {
thread->i_offset = data;
}
break;
// BRANCH INSTRUCTIONS
// (JMP): Unconditional jump
case 0x1D:
param1 = readS->readUint16LE();
thread->i_offset = (unsigned long)param1;
break;
// (JNZP): Jump if nonzero + POP
case 0x1E:
param1 = readS->readUint16LE();
SSTACK_Pop(thread->stack, &data);
if (data) {
thread->i_offset = (unsigned long)param1;
}
break;
// (JZP): Jump if zero + POP
case 0x1F:
param1 = readS->readUint16LE();
SSTACK_Pop(thread->stack, &data);
if (!data) {
thread->i_offset = (unsigned long)param1;
}
break;
// (JNZ): Jump if nonzero
case 0x20:
param1 = readS->readUint16LE();
SSTACK_Top(thread->stack, &data);
if (data) {
thread->i_offset = (unsigned long)param1;
}
break;
// (JZ): Jump if zero
case 0x21:
param1 = readS->readUint16LE();
SSTACK_Top(thread->stack, &data);
if (!data) {
thread->i_offset = (unsigned long)param1;
}
break;
// (JMPR): Relative jump
case 0x57:
// ignored?
readS->readUint16LE();
readS->readUint16LE();
iparam1 = (long)readS->readByte();
thread->i_offset += iparam1;
break;
// (SWCH): Switch
case 0x22:
{
int n_switch;
unsigned int switch_num;
unsigned int switch_jmp;
unsigned int default_jmp;
int case_found = 0;
SSTACK_Pop(thread->stack, &data);
n_switch = readS->readUint16LE();
for (i = 0; i < n_switch; i++) {
switch_num = readS->readUint16LE();
switch_jmp = readS->readUint16LE();
// Found the specified case
if (data == (SDataWord_T) switch_num) {
thread->i_offset = switch_jmp;
case_found = 1;
break;
}
}
// Jump to default case
if (!case_found) {
default_jmp = readS->readUint16LE();
thread->i_offset = default_jmp;
}
}
break;
// (RJMP): Random branch
case 0x24:
{
int n_branch;
unsigned int branch_wt;
unsigned int branch_jmp;
int rand_sel = 0;
int branch_found = 0;
// Ignored?
readS->readUint16LE();
n_branch = readS->readUint16LE();
for (i = 0; i < n_branch; i++) {
branch_wt = readS->readUint16LE();
branch_jmp = readS->readUint16LE();
if (rand_sel == i) {
thread->i_offset = branch_jmp;
branch_found = 1;
break;
}
}
if (!branch_found) {
CON_Print(S_ERROR_PREFIX "%X: Random jump target out of " "bounds.", thread->i_offset);
}
}
break;
// MISC. INSTRUCTIONS
// (NEG) Negate stack by 2's complement
case 0x25:
SSTACK_Pop(thread->stack, &data);
data = ~data;
data++;
SSTACK_Push(thread->stack, data);
break;
// (TSTZ) Test for zero
case 0x26:
SSTACK_Pop(thread->stack, &data);
data = data ? 0 : 1;
SSTACK_Push(thread->stack, data);
break;
// (NOT) Binary not
case 0x27:
SSTACK_Pop(thread->stack, &data);
data = ~data;
SSTACK_Push(thread->stack, data);
break;
// (?)
case 0x28:
unhandled = 1;
printf("??? ");
readS->readByte();
readS->readUint16LE();
break;
// (?)
case 0x29:
unhandled = 1;
printf("??? ");
readS->readByte();
readS->readUint16LE();
break;
// (?)
case 0x2A:
unhandled = 1;
printf("??? ");
readS->readByte();
readS->readUint16LE();
break;
// (?)
case 0x2B:
unhandled = 1;
printf("??? ");
readS->readByte();
readS->readUint16LE();
break;
// ARITHMETIC INSTRUCTIONS
// (ADD): Addition
case 0x2C:
SSTACK_Pop(thread->stack, &param2);
SSTACK_Pop(thread->stack, &param1);
iparam2 = (long)param2;
iparam1 = (long)param1;
iresult = iparam1 + iparam2;
SSTACK_Push(thread->stack, (SDataWord_T) iresult);
break;
// (SUB): Subtraction
case 0x2D:
SSTACK_Pop(thread->stack, &param2);
SSTACK_Pop(thread->stack, &param1);
iparam2 = (long)param2;
iparam1 = (long)param1;
iresult = iparam1 - iparam2;
SSTACK_Push(thread->stack, (SDataWord_T) iresult);
break;
// (MULT): Integer multiplication
case 0x2E:
SSTACK_Pop(thread->stack, &param2);
SSTACK_Pop(thread->stack, &param1);
iparam2 = (long)param2;
iparam1 = (long)param1;
iresult = iparam1 * iparam2;
SSTACK_Push(thread->stack, (SDataWord_T) iresult);
break;
// (DIV): Integer division
case 0x2F:
SSTACK_Pop(thread->stack, &param2);
SSTACK_Pop(thread->stack, &param1);
iparam2 = (long)param2;
iparam1 = (long)param1;
iresult = iparam1 / iparam2;
SSTACK_Push(thread->stack, (SDataWord_T) iresult);
break;
// (MOD) Modulus
case 0x30:
SSTACK_Pop(thread->stack, &param2);
SSTACK_Pop(thread->stack, &param1);
iparam2 = (long)param2;
iparam1 = (long)param1;
iresult = iparam1 % iparam2;
SSTACK_Push(thread->stack, (SDataWord_T) iresult);
break;
// (EQU) Test equality
case 0x33:
SSTACK_Pop(thread->stack, &param2);
SSTACK_Pop(thread->stack, &param1);
iparam2 = (long)param2;
iparam1 = (long)param1;
data = (iparam1 == iparam2) ? 1 : 0;
SSTACK_Push(thread->stack, data);
break;
// (NEQU) Test inequality
case 0x34:
SSTACK_Pop(thread->stack, &param2);
SSTACK_Pop(thread->stack, &param1);
iparam2 = (long)param2;
iparam1 = (long)param1;
data = (iparam1 != iparam2) ? 1 : 0;
SSTACK_Push(thread->stack, data);
break;
// (GRT) Test Greater-than
case 0x35:
SSTACK_Pop(thread->stack, &param2);
SSTACK_Pop(thread->stack, &param1);
iparam2 = (long)param2;
iparam1 = (long)param1;
data = (iparam1 > iparam2) ? 1 : 0;
SSTACK_Push(thread->stack, data);
break;
// (LST) Test Less-than
case 0x36:
SSTACK_Pop(thread->stack, &param2);
SSTACK_Pop(thread->stack, &param1);
iparam2 = (long)param2;
iparam1 = (long)param1;
data = (iparam1 < iparam2) ? 1 : 0;
SSTACK_Push(thread->stack, data);
break;
// (GRTE) Test Greater-than or Equal to
case 0x37:
SSTACK_Pop(thread->stack, &param2);
SSTACK_Pop(thread->stack, &param1);
iparam2 = (long)param2;
iparam1 = (long)param1;
data = (iparam1 >= iparam2) ? 1 : 0;
SSTACK_Push(thread->stack, data);
break;
// (LSTE) Test Less-than or Equal to
case 0x38:
SSTACK_Pop(thread->stack, &param2);
SSTACK_Pop(thread->stack, &param1);
iparam2 = (long)param2;
iparam1 = (long)param1;
data = (iparam1 <= iparam2) ? 1 : 0;
SSTACK_Push(thread->stack, data);
break;
// BITWISE INSTRUCTIONS
// (SHR): Arithmetic binary shift right
case 0x3F:
SSTACK_Pop(thread->stack, &param2);
SSTACK_Pop(thread->stack, &param1);
iparam2 = (long)param2;
// Preserve most significant bit
data = (0x01 << ((sizeof param1 * CHAR_BIT) - 1)) & param1;
for (i = 0; i < (int)iparam2; i++) {
param1 >>= 1;
param1 |= data;
}
SSTACK_Push(thread->stack, param1);
break;
// (SHL) Binary shift left
case 0x40:
SSTACK_Pop(thread->stack, &param2);
SSTACK_Pop(thread->stack, &param1);
param1 <<= param2;
SSTACK_Push(thread->stack, param1);
break;
// (AND) Binary AND
case 0x41:
SSTACK_Pop(thread->stack, &param2);
SSTACK_Pop(thread->stack, &param1);
param1 &= param2;
SSTACK_Push(thread->stack, param1);
break;
// (OR) Binary OR
case 0x42:
SSTACK_Pop(thread->stack, &param2);
SSTACK_Pop(thread->stack, &param1);
param1 |= param2;
SSTACK_Push(thread->stack, param1);
break;
// (XOR) Binary XOR
case 0x43:
SSTACK_Pop(thread->stack, &param2);
SSTACK_Pop(thread->stack, &param1);
param1 ^= param2;
SSTACK_Push(thread->stack, param1);
break;
// BOOLEAN LOGIC INSTRUCTIONS
// (LAND): Logical AND
case 0x44:
SSTACK_Pop(thread->stack, &param2);
SSTACK_Pop(thread->stack, &param1);
data = (param1 && param2) ? 1 : 0;
SSTACK_Push(thread->stack, data);
break;
// (LOR): Logical OR
case 0x45:
SSTACK_Pop(thread->stack, &param2);
SSTACK_Pop(thread->stack, &param1);
data = (param1 || param2) ? 1 : 0;
SSTACK_Push(thread->stack, data);
break;
// (LXOR): Logical XOR
case 0x46:
SSTACK_Pop(thread->stack, &param2);
SSTACK_Pop(thread->stack, &param1);
data = ((param1) ? !(param2) : !!(param2));
SSTACK_Push(thread->stack, data);
break;
// GAME INSTRUCTIONS
// (DLGP): Play Character Dialogue
case 0x53:
{
int n_voices;
int a_index;
int voice_rn;
n_voices = readS->readByte();
param1 = (SDataWord_T) readS->readUint16LE();
// ignored ?
readS->readByte();
readS->readUint16LE();
a_index = ACTOR_GetActorIndex(param1);
if (a_index < 0) {
CON_Print(S_WARN_PREFIX "%X: DLGP Actor id not found.", thread->i_offset);
}
for (i = 0; i < n_voices; i++) {
SSTACK_Pop(thread->stack, &data);
if (a_index < 0)
continue;
if (!ScriptModule.voice_lut_present) {
voice_rn = -1;
} else {
voice_rn = ScriptModule.current_script->voice->voices[data];
}
ACTOR_Speak(a_index, ScriptModule.current_script->diag-> str[data], voice_rn, &thread->sem);
}
}
break;
// (DLGS): Initialize dialogue interface
case 0x54:
break;
// (DLGX): Run dialogue interface
case 0x55:
break;
// (DLGO): Add a dialogue option to interface
case 0x56:
{
int FIXME_SHADOWED_param1;
int FIXME_SHADOWED_param2;
int FIXME_SHADOWED_param3;
printf("DLGO | ");
FIXME_SHADOWED_param1 = readS->readByte();
FIXME_SHADOWED_param2 = readS->readByte();
printf("%02X %02X ", FIXME_SHADOWED_param1, FIXME_SHADOWED_param2);
if (FIXME_SHADOWED_param2 > 0) {
FIXME_SHADOWED_param3 = readS->readUint16LE();
printf("%04X", FIXME_SHADOWED_param3);
}
}
break;
// End instruction list
default:
CON_Print(S_ERROR_PREFIX "%X: Invalid opcode encountered: " "(%X).\n", thread->i_offset, in_char);
thread->executing = 0;
break;
}
// Set instruction offset only if a previous instruction didn't branch
if (saved_offset == thread->i_offset) {
thread->i_offset = readS->pos();
}
if (unhandled) {
CON_Print(S_ERROR_PREFIX "%X: Unhandled opcode.\n", thread->i_offset);
thread->executing = 0;
}
if (thread->executing && debug_print) {
SDEBUG_PrintInstr(thread);
}
}
return R_SUCCESS;
}
} // End of namespace Saga