scummvm/engines/scumm/imuse_digi/dimuse_codecs.cpp
2014-02-18 02:39:38 +01:00

658 lines
16 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "common/scummsys.h"
#include "common/endian.h"
#include "common/util.h"
#include "scumm/imuse_digi/dimuse_codecs.h"
#include "audio/decoders/adpcm_intern.h"
namespace Scumm {
namespace BundleCodecs {
uint32 decode12BitsSample(const byte *src, byte **dst, uint32 size) {
uint32 loop_size = size / 3;
uint32 s_size = loop_size * 4;
byte *ptr = *dst = (byte *)malloc(s_size);
assert(ptr);
uint32 tmp;
while (loop_size--) {
byte v1 = *src++;
byte v2 = *src++;
byte v3 = *src++;
tmp = ((((v2 & 0x0f) << 8) | v1) << 4) - 0x8000;
WRITE_BE_UINT16(ptr, tmp); ptr += 2;
tmp = ((((v2 & 0xf0) << 4) | v3) << 4) - 0x8000;
WRITE_BE_UINT16(ptr, tmp); ptr += 2;
}
return s_size;
}
/*
* The "IMC" codec below (see cases 13 & 15 in decompressCodec) is actually a
* variant of the IMA codec, see also
* <http://www.multimedia.cx/simpleaudio.html>
*
* It is somewhat different, though: the standard ADPCM codecs use a fixed
* size for their data packets (4 bits), while the codec implemented here
* varies the size of each "packet" between 2 and 7 bits.
*/
static byte *_destImcTable = NULL;
static uint32 *_destImcTable2 = NULL;
// This table is the "big brother" of Audio::ADPCMStream::_stepAdjustTable.
static const byte imxOtherTable[6][64] = {
{
0xFF,
4
},
{
0xFF, 0xFF,
2, 8
},
{
0xFF, 0xFF, 0xFF, 0xFF,
1, 2, 4, 6
},
{
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
1, 2, 4, 6, 8, 12, 16, 32
},
{
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
1, 2, 4, 6, 8, 10, 12, 14,
16, 18, 20, 22, 24, 26, 28, 32
},
{
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32
}
};
void releaseImcTables() {
free(_destImcTable);
_destImcTable = NULL;
free(_destImcTable2);
_destImcTable2 = NULL;
}
void initializeImcTables() {
int pos;
if (!_destImcTable) _destImcTable = (byte *)calloc(89, sizeof(byte));
if (!_destImcTable2) _destImcTable2 = (uint32 *)calloc(89 * 64, sizeof(uint32));
for (pos = 0; pos <= 88; ++pos) {
byte put = 1;
int32 tableValue = ((Audio::Ima_ADPCMStream::_imaTable[pos] * 4) / 7) / 2;
while (tableValue != 0) {
tableValue /= 2;
put++;
}
if (put < 3) {
put = 3;
}
if (put > 8) {
put = 8;
}
_destImcTable[pos] = put - 1;
}
for (int n = 0; n < 64; n++) {
for (pos = 0; pos <= 88; ++pos) {
int32 count = 32;
int32 put = 0;
int32 tableValue = Audio::Ima_ADPCMStream::_imaTable[pos];
do {
if ((count & n) != 0) {
put += tableValue;
}
count /= 2;
tableValue /= 2;
} while (count != 0);
_destImcTable2[n + pos * 64] = put;
}
}
}
#define NextBit \
do { \
bit = mask & 1; \
mask >>= 1; \
if (!--bitsleft) { \
mask = READ_LE_UINT16(srcptr); \
srcptr += 2; \
bitsleft = 16; \
} \
} while (0)
static int32 compDecode(byte *src, byte *dst) {
byte *result, *srcptr = src, *dstptr = dst;
int data, size, bit, bitsleft = 16, mask = READ_LE_UINT16(srcptr);
srcptr += 2;
for (;;) {
NextBit;
if (bit) {
*dstptr++ = *srcptr++;
} else {
NextBit;
if (!bit) {
NextBit;
size = bit << 1;
NextBit;
size = (size | bit) + 3;
data = *srcptr++ | 0xffffff00;
} else {
data = *srcptr++;
size = *srcptr++;
data |= 0xfffff000 + ((size & 0xf0) << 4);
size = (size & 0x0f) + 3;
if (size == 3)
if (((*srcptr++) + 1) == 1)
return dstptr - dst;
}
result = dstptr + data;
while (size--)
*dstptr++ = *result++;
}
}
}
#undef NextBit
int32 decompressADPCM(byte *compInput, byte *compOutput, int channels) {
byte *src;
// Decoder for the the IMA ADPCM variants used in COMI.
// Contrary to regular IMA ADPCM, this codec uses a variable
// bitsize for the encoded data.
const int MAX_CHANNELS = 2;
int32 outputSamplesLeft;
int32 destPos;
int16 firstWord;
byte initialTablePos[MAX_CHANNELS] = {0, 0};
//int32 initialimcTableEntry[MAX_CHANNELS] = {7, 7};
int32 initialOutputWord[MAX_CHANNELS] = {0, 0};
int32 totalBitOffset, curTablePos, outputWord;
byte *dst;
int i;
// We only support mono and stereo
assert(channels == 1 || channels == 2);
src = compInput;
dst = compOutput;
outputSamplesLeft = 0x1000;
// Every data packet contains 0x2000 bytes of audio data
// when extracted. In order to encode bigger data sets,
// one has to split the data into multiple blocks.
//
// Every block starts with a 2 byte word. If that word is
// non-zero, it indicates the size of a block of raw audio
// data (not encoded) following it. That data we simply copy
// to the output buffer and then proceed by decoding the
// remaining data.
//
// If on the other hand the word is zero, then what follows
// are 7*channels bytes containing seed data for the decoder.
firstWord = READ_BE_UINT16(src);
src += 2;
if (firstWord != 0) {
// Copy raw data
memcpy(dst, src, firstWord);
dst += firstWord;
src += firstWord;
assert((firstWord & 1) == 0);
outputSamplesLeft -= firstWord / 2;
} else {
// Read the seed values for the decoder.
for (i = 0; i < channels; i++) {
initialTablePos[i] = *src;
src += 1;
//initialimcTableEntry[i] = READ_BE_UINT32(src);
src += 4;
initialOutputWord[i] = READ_BE_UINT32(src);
src += 4;
}
}
totalBitOffset = 0;
// The channels are encoded separately.
for (int chan = 0; chan < channels; chan++) {
// Read initial state (this makes it possible for the data stream
// to be split & spread across multiple data chunks.
curTablePos = initialTablePos[chan];
//imcTableEntry = initialimcTableEntry[chan];
outputWord = initialOutputWord[chan];
// We need to interleave the channels in the output; we achieve
// that by using a variables dest offset:
destPos = chan * 2;
const int bound = (channels == 1)
? outputSamplesLeft
: ((chan == 0)
? (outputSamplesLeft+1) / 2
: outputSamplesLeft / 2);
for (i = 0; i < bound; ++i) {
// Determine the size (in bits) of the next data packet
const int32 curTableEntryBitCount = _destImcTable[curTablePos];
assert(2 <= curTableEntryBitCount && curTableEntryBitCount <= 7);
// Read the next data packet
const byte *readPos = src + (totalBitOffset >> 3);
const uint16 readWord = (uint16)(READ_BE_UINT16(readPos) << (totalBitOffset & 7));
const byte packet = (byte)(readWord >> (16 - curTableEntryBitCount));
// Advance read position to the next data packet
totalBitOffset += curTableEntryBitCount;
// Decode the data packet into a delta value for the output signal.
const byte signBitMask = (1 << (curTableEntryBitCount - 1));
const byte dataBitMask = (signBitMask - 1);
const byte data = (packet & dataBitMask);
const int32 tmpA = (data << (7 - curTableEntryBitCount));
const int32 imcTableEntry = Audio::Ima_ADPCMStream::_imaTable[curTablePos] >> (curTableEntryBitCount - 1);
int32 delta = imcTableEntry + _destImcTable2[tmpA + (curTablePos * 64)];
// The topmost bit in the data packet tells is a sign bit
if ((packet & signBitMask) != 0) {
delta = -delta;
}
// Accumulate the delta onto the output data
outputWord += delta;
// Clip outputWord to 16 bit signed, and write it into the destination stream
outputWord = CLIP<int32>(outputWord, -0x8000, 0x7fff);
WRITE_BE_UINT16(dst + destPos, outputWord);
destPos += channels << 1;
// Adjust the curTablePos
curTablePos += (int8)imxOtherTable[curTableEntryBitCount - 2][data];
curTablePos = CLIP<int32>(curTablePos, 0, ARRAYSIZE(Audio::Ima_ADPCMStream::_imaTable) - 1);
}
}
return 0x2000;
}
int32 decompressCodec(int32 codec, byte *compInput, byte *compOutput, int32 inputSize) {
int32 outputSize;
int32 offset1, offset2, offset3, length, k, c, s, j, r, t, z;
byte *src, *t_table, *p, *ptr;
byte t_tmp1, t_tmp2;
switch (codec) {
case 0:
memcpy(compOutput, compInput, inputSize);
outputSize = inputSize;
break;
case 1:
outputSize = compDecode(compInput, compOutput);
break;
case 2:
outputSize = compDecode(compInput, compOutput);
p = compOutput;
for (z = 1; z < outputSize; z++)
p[z] += p[z - 1];
break;
case 3:
outputSize = compDecode(compInput, compOutput);
p = compOutput;
for (z = 2; z < outputSize; z++)
p[z] += p[z - 1];
for (z = 1; z < outputSize; z++)
p[z] += p[z - 1];
break;
case 4:
outputSize = compDecode(compInput, compOutput);
p = compOutput;
for (z = 2; z < outputSize; z++)
p[z] += p[z - 1];
for (z = 1; z < outputSize; z++)
p[z] += p[z - 1];
t_table = (byte *)malloc(outputSize);
assert(t_table);
src = compOutput;
length = (outputSize << 3) / 12;
k = 0;
if (length > 0) {
c = -12;
s = 0;
j = 0;
do {
ptr = src + length + (k >> 1);
t_tmp2 = src[j];
if (k & 1) {
r = c >> 3;
t_table[r + 2] = ((t_tmp2 & 0x0f) << 4) | (ptr[1] >> 4);
t_table[r + 1] = (t_tmp2 & 0xf0) | (t_table[r + 1]);
} else {
r = s >> 3;
t_table[r + 0] = ((t_tmp2 & 0x0f) << 4) | (ptr[0] & 0x0f);
t_table[r + 1] = t_tmp2 >> 4;
}
s += 12;
c += 12;
k++;
j++;
} while (k < length);
}
offset1 = ((length - 1) * 3) >> 1;
t_table[offset1 + 1] = (t_table[offset1 + 1]) | (src[length - 1] & 0xf0);
memcpy(src, t_table, outputSize);
free(t_table);
break;
case 5:
outputSize = compDecode(compInput, compOutput);
p = compOutput;
for (z = 2; z < outputSize; z++)
p[z] += p[z - 1];
for (z = 1; z < outputSize; z++)
p[z] += p[z - 1];
t_table = (byte *)malloc(outputSize);
assert(t_table);
src = compOutput;
length = (outputSize << 3) / 12;
k = 1;
c = 0;
s = 12;
t_table[0] = src[length] >> 4;
t = length + k;
j = 1;
if (t > k) {
do {
t_tmp1 = *(src + length + (k >> 1));
t_tmp2 = src[j - 1];
if (k & 1) {
r = c >> 3;
t_table[r + 0] = (t_tmp2 & 0xf0) | t_table[r];
t_table[r + 1] = ((t_tmp2 & 0x0f) << 4) | (t_tmp1 & 0x0f);
} else {
r = s >> 3;
t_table[r + 0] = t_tmp2 >> 4;
t_table[r - 1] = ((t_tmp2 & 0x0f) << 4) | (t_tmp1 >> 4);
}
s += 12;
c += 12;
k++;
j++;
} while (k < t);
}
memcpy(src, t_table, outputSize);
free(t_table);
break;
case 6:
outputSize = compDecode(compInput, compOutput);
p = compOutput;
for (z = 2; z < outputSize; z++)
p[z] += p[z - 1];
for (z = 1; z < outputSize; z++)
p[z] += p[z - 1];
t_table = (byte *)malloc(outputSize);
assert(t_table);
src = compOutput;
length = (outputSize << 3) / 12;
k = 0;
c = 0;
j = 0;
s = -12;
t_table[0] = src[outputSize - 1];
t_table[outputSize - 1] = src[length - 1];
t = length - 1;
if (t > 0) {
do {
t_tmp1 = *(src + length + (k >> 1));
t_tmp2 = src[j];
if (k & 1) {
r = s >> 3;
t_table[r + 2] = (t_tmp2 & 0xf0) | t_table[r + 2];
t_table[r + 3] = ((t_tmp2 & 0x0f) << 4) | (t_tmp1 >> 4);
} else {
r = c >> 3;
t_table[r + 2] = t_tmp2 >> 4;
t_table[r + 1] = ((t_tmp2 & 0x0f) << 4) | (t_tmp1 & 0x0f);
}
s += 12;
c += 12;
k++;
j++;
} while (k < t);
}
memcpy(src, t_table, outputSize);
free(t_table);
break;
case 10:
outputSize = compDecode(compInput, compOutput);
p = compOutput;
for (z = 2; z < outputSize; z++)
p[z] += p[z - 1];
for (z = 1; z < outputSize; z++)
p[z] += p[z - 1];
t_table = (byte *)malloc(outputSize);
assert(t_table);
memcpy(t_table, p, outputSize);
offset1 = outputSize / 3;
offset2 = offset1 << 1;
offset3 = offset2;
src = compOutput;
while (offset1--) {
offset2 -= 2;
offset3--;
t_table[offset2 + 0] = src[offset1];
t_table[offset2 + 1] = src[offset3];
}
src = compOutput;
length = (outputSize << 3) / 12;
k = 0;
if (length > 0) {
c = -12;
s = 0;
do {
j = length + (k >> 1);
t_tmp1 = t_table[k];
if (k & 1) {
r = c >> 3;
t_tmp2 = t_table[j + 1];
src[r + 2] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 >> 4);
src[r + 1] = (src[r + 1]) | (t_tmp1 & 0xf0);
} else {
r = s >> 3;
t_tmp2 = t_table[j];
src[r + 0] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f);
src[r + 1] = t_tmp1 >> 4;
}
s += 12;
c += 12;
k++;
} while (k < length);
}
offset1 = ((length - 1) * 3) >> 1;
src[offset1 + 1] = (t_table[length] & 0xf0) | src[offset1 + 1];
free(t_table);
break;
case 11:
outputSize = compDecode(compInput, compOutput);
p = compOutput;
for (z = 2; z < outputSize; z++)
p[z] += p[z - 1];
for (z = 1; z < outputSize; z++)
p[z] += p[z - 1];
t_table = (byte *)malloc(outputSize);
assert(t_table);
memcpy(t_table, p, outputSize);
offset1 = outputSize / 3;
offset2 = offset1 << 1;
offset3 = offset2;
src = compOutput;
while (offset1--) {
offset2 -= 2;
offset3--;
t_table[offset2 + 0] = src[offset1];
t_table[offset2 + 1] = src[offset3];
}
src = compOutput;
length = (outputSize << 3) / 12;
k = 1;
c = 0;
s = 12;
t_tmp1 = t_table[length] >> 4;
src[0] = t_tmp1;
t = length + k;
if (t > k) {
do {
j = length + (k >> 1);
t_tmp1 = t_table[k - 1];
t_tmp2 = t_table[j];
if (k & 1) {
r = c >> 3;
src[r + 0] = (src[r]) | (t_tmp1 & 0xf0);
src[r + 1] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f);
} else {
r = s >> 3;
src[r + 0] = t_tmp1 >> 4;
src[r - 1] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 >> 4);
}
s += 12;
c += 12;
k++;
} while (k < t);
}
free(t_table);
break;
case 12:
outputSize = compDecode(compInput, compOutput);
p = compOutput;
for (z = 2; z < outputSize; z++)
p[z] += p[z - 1];
for (z = 1; z < outputSize; z++)
p[z] += p[z - 1];
t_table = (byte *)malloc(outputSize);
assert(t_table);
memcpy(t_table, p, outputSize);
offset1 = outputSize / 3;
offset2 = offset1 << 1;
offset3 = offset2;
src = compOutput;
while (offset1--) {
offset2 -= 2;
offset3--;
t_table[offset2 + 0] = src[offset1];
t_table[offset2 + 1] = src[offset3];
}
src = compOutput;
length = (outputSize << 3) / 12;
k = 0;
c = 0;
s = -12;
src[0] = t_table[outputSize - 1];
src[outputSize - 1] = t_table[length - 1];
t = length - 1;
if (t > 0) {
do {
j = length + (k >> 1);
t_tmp1 = t_table[k];
t_tmp2 = t_table[j];
if (k & 1) {
r = s >> 3;
src[r + 2] = (src[r + 2]) | (t_tmp1 & 0xf0);
src[r + 3] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 >> 4);
} else {
r = c >> 3;
src[r + 2] = t_tmp1 >> 4;
src[r + 1] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f);
}
s += 12;
c += 12;
k++;
} while (k < t);
}
free(t_table);
break;
case 13:
case 15:
outputSize = decompressADPCM(compInput, compOutput, (codec == 13) ? 1 : 2);
break;
default:
error("BundleCodecs::decompressCodec() Unknown codec %d", (int)codec);
outputSize = 0;
break;
}
return outputSize;
}
} // End of namespace BundleCodecs
} // End of namespace Scumm