scummvm/audio/midiparser_xmidi.cpp
NMIError da64fdc3d1 MIDI: Fix MIDI parser tracker overflow
The MIDI parser tracks the number of ticks and microseconds since the start of
playback of the current track. If a track loops infinitely, the tracker
eventually overflows (after about 71 minutes). The parser would then go haywire,
sending out the MIDI events at full speed and not terminating hanging notes,
resulting in loads of polyphony overrun errors. This does not affect looping
using jumpToTick or autoLoop, because that resets the tracker.

This change fixes this for the XMIDI parser. processEvent implementations can
now set a bool flag on the event, indicating that the event has caused a loop.
The MIDI parser will then reset the ticks and microseconds on the tracker to 0,
maintaining the deltas between the previous event values and current values.
The absolute number of ticks and microseconds since track start do not seem to
be needed anywhere; only the difference with the previous event is relevant.

This should fix bugs #6275 and #4354.
2020-07-25 00:35:47 +02:00

559 lines
16 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "audio/midiparser.h"
#include "audio/mididrv.h"
#include "audio/miles.h"
#include "common/textconsole.h"
#include "common/util.h"
/**
* The XMIDI version of MidiParser.
*
* Much of this code is adapted from the XMIDI implementation from the exult
* project.
*/
class MidiParser_XMIDI : public MidiParser {
protected:
static const uint8 MAXIMUM_TRACK_BRANCHES = 128;
struct Loop {
byte *pos;
byte repeat;
};
Loop _loop[4];
int _loopCount;
/**
* The source number to use when sending MIDI messages to the driver.
* When using multiple sources, use source 0 and higher. This must be
* used when source volume or channel locking is used.
* By default this is -1, which means the parser is the only source
* of MIDI messages and multiple source functionality is disabled.
*/
int8 _source;
/**
* The sequence branches defined for each track. These point to
* positions in the MIDI data.
*/
byte *_trackBranches[MAXIMUM_TRACKS][MAXIMUM_TRACK_BRANCHES];
XMidiCallbackProc _callbackProc;
void *_callbackData;
// We need to support XMIDI TIMB for 7th guest, which uses
// Miles Audio drivers. The MT32 driver needs to get the TIMB chunk, so that it
// can install all required timbres before the song starts playing.
// This contains a pointer to _driver if it supports the required
// interface; otherwise it is null.
Audio::MidiDriver_Miles_Xmidi_Timbres *_newTimbreListDriver;
byte *_tracksTimbreList[120]; ///< Timbre-List for each track.
uint32 _tracksTimbreListSize[120]; ///< Size of the Timbre-List for each track.
protected:
uint32 readVLQ2(byte * &data);
/**
* Platform independent LE uint32 read-and-advance.
* This helper function reads Little Endian 32-bit numbers
* from a memory pointer, at the same time advancing
* the pointer.
*/
uint32 read4low(byte *&data);
void parseNextEvent(EventInfo &info) override;
virtual void resetTracking() override {
MidiParser::resetTracking();
_loopCount = -1;
}
void onTrackStart(uint8 track) override;
void sendToDriver(uint32 b) override;
void sendMetaEventToDriver(byte type, byte *data, uint16 length) override;
public:
MidiParser_XMIDI(XMidiCallbackProc proc, void *data, int8 source = -1) :
_callbackProc(proc),
_callbackData(data),
_newTimbreListDriver(0),
_source(source),
_loopCount(-1) {
memset(_loop, 0, sizeof(_loop));
memset(_trackBranches, 0, sizeof(_trackBranches));
memset(_tracksTimbreList, 0, sizeof(_tracksTimbreList));
memset(_tracksTimbreListSize, 0, sizeof(_tracksTimbreListSize));
}
~MidiParser_XMIDI() { stopPlaying(); }
void setMidiDriver(MidiDriver_BASE *driver) override;
bool loadMusic(byte *data, uint32 size) override;
bool hasJumpIndex(uint8 index) override;
bool jumpToIndex(uint8 index, bool stopNotes) override;
};
// This is a special XMIDI variable length quantity
uint32 MidiParser_XMIDI::readVLQ2(byte * &pos) {
uint32 value = 0;
while (!(pos[0] & 0x80)) {
value += *pos++;
}
return value;
}
uint32 MidiParser_XMIDI::read4low(byte *&data) {
uint32 val = READ_LE_UINT32(data);
data += 4;
return val;
}
bool MidiParser_XMIDI::hasJumpIndex(uint8 index) {
if (_activeTrack >= _numTracks)
return false;
return index < MAXIMUM_TRACK_BRANCHES && _trackBranches[_activeTrack][index] != 0;
}
bool MidiParser_XMIDI::jumpToIndex(uint8 index, bool stopNotes) {
if (_activeTrack >= _numTracks || _pause)
return false;
if (index >= MAXIMUM_TRACK_BRANCHES || _trackBranches[_activeTrack][index] == 0) {
warning("MidiParser-XMIDI: jumpToIndex called with invalid sequence branch index %x", index);
return false;
}
// Prevent concurrent execution of multiple jumps
assert(!_jumpingToTick);
_jumpingToTick = true;
if (stopNotes) {
if (!_smartJump || !_position._playPos) {
allNotesOff();
} else {
hangAllActiveNotes();
}
}
resetTracking();
_position._playPos = _trackBranches[_activeTrack][index];
parseNextEvent(_nextEvent);
_jumpingToTick = false;
return true;
}
void MidiParser_XMIDI::parseNextEvent(EventInfo &info) {
info.start = _position._playPos;
info.delta = readVLQ2(_position._playPos);
info.loop = false;
// Process the next event.
info.event = *(_position._playPos++);
switch (info.event >> 4) {
case 0x9: // Note On
info.basic.param1 = *(_position._playPos++);
info.basic.param2 = *(_position._playPos++);
info.length = readVLQ(_position._playPos);
if (info.length == 0) {
// Notes with length 0 are played with a very short duration by the AIL driver.
// However, the MidiParser will treat notes with length 0 as "active notes"; i.e.
// they will only get turned off when a corresponding Note Off event is encountered.
// Because XMIDI does not contain Note Off events, this will cause the note to hang.
// Set length to 1 to prevent this from happening.
info.length = 1;
}
if (info.basic.param2 == 0) {
info.event = info.channel() | 0x80;
info.length = 0;
}
break;
case 0xC:
case 0xD:
info.basic.param1 = *(_position._playPos++);
info.basic.param2 = 0;
break;
case 0x8:
case 0xA:
case 0xE:
info.basic.param1 = *(_position._playPos++);
info.basic.param2 = *(_position._playPos++);
break;
case 0xB:
info.basic.param1 = *(_position._playPos++);
info.basic.param2 = *(_position._playPos++);
// This isn't a full XMIDI implementation, but it should
// hopefully be "good enough" for most things.
switch (info.basic.param1) {
// Simplified XMIDI looping.
case 0x74: { // XMIDI_CONTROLLER_FOR_LOOP
byte *pos = _position._playPos;
if (_loopCount < ARRAYSIZE(_loop) - 1)
_loopCount++;
else
warning("XMIDI: Exceeding maximum loop count %d", ARRAYSIZE(_loop));
_loop[_loopCount].pos = pos;
_loop[_loopCount].repeat = info.basic.param2;
break;
}
case 0x75: // XMIDI_CONTROLLER_NEXT_BREAK
if (_loopCount >= 0) {
if (info.basic.param2 < 64) {
// End the current loop.
_loopCount--;
} else {
// Repeat 0 means "loop forever".
if (_loop[_loopCount].repeat) {
if (--_loop[_loopCount].repeat == 0) {
_loopCount--;
} else {
_position._playPos = _loop[_loopCount].pos;
info.loop = true;
}
} else {
_position._playPos = _loop[_loopCount].pos;
info.loop = true;
}
}
}
break;
case 0x77: // XMIDI_CONTROLLER_CALLBACK_TRIG
if (_callbackProc)
_callbackProc(info.basic.param2, _callbackData);
break;
case 0x78: // XMIDI_CONTROLLER_SEQ_BRANCH_INDEX
// This controller marks a branch point. It is converted
// to an entry in the RBRN header by the XMIDI conversion
// tool. For playback it is unnecessary.
break;
case 0x6e: // XMIDI_CONTROLLER_CHAN_LOCK
case 0x6f: // XMIDI_CONTROLLER_CHAN_LOCK_PROT
case 0x70: // XMIDI_CONTROLLER_VOICE_PROT
case 0x71: // XMIDI_CONTROLLER_TIMBRE_PROT
case 0x72: // XMIDI_CONTROLLER_BANK_CHANGE
// These controllers are handled in the Miles drivers
break;
case 0x73: // XMIDI_CONTROLLER_IND_CTRL_PREFIX
case 0x76: // XMIDI_CONTROLLER_CLEAR_BB_COUNT
default:
if (info.basic.param1 >= 0x73 && info.basic.param1 <= 0x76) {
warning("Unsupported XMIDI controller %d (0x%2x)",
info.basic.param1, info.basic.param1);
}
break;
}
// Should we really keep passing the XMIDI controller events to
// the MIDI driver, or should we turn them into some kind of
// NOP events? (Dummy meta events, perhaps?) Ah well, it has
// worked so far, so it shouldn't cause any damage...
break;
case 0xF: // Meta or SysEx event
switch (info.event & 0x0F) {
case 0x2: // Song Position Pointer
info.basic.param1 = *(_position._playPos++);
info.basic.param2 = *(_position._playPos++);
break;
case 0x3: // Song Select
info.basic.param1 = *(_position._playPos++);
info.basic.param2 = 0;
break;
case 0x6:
case 0x8:
case 0xA:
case 0xB:
case 0xC:
case 0xE:
info.basic.param1 = info.basic.param2 = 0;
break;
case 0x0: // SysEx
info.length = readVLQ(_position._playPos);
info.ext.data = _position._playPos;
_position._playPos += info.length;
break;
case 0xF: // META event
info.ext.type = *(_position._playPos++);
info.length = readVLQ(_position._playPos);
info.ext.data = _position._playPos;
_position._playPos += info.length;
if (info.ext.type == 0x51 && info.length == 3) {
// Tempo event. We want to make these constant 500,000.
info.ext.data[0] = 0x07;
info.ext.data[1] = 0xA1;
info.ext.data[2] = 0x20;
}
break;
default:
warning("MidiParser_XMIDI::parseNextEvent: Unsupported event code %x", info.event);
break;
}
break;
default:
break;
}
}
void MidiParser_XMIDI::setMidiDriver(MidiDriver_BASE *driver) {
MidiParser::setMidiDriver(driver);
_newTimbreListDriver = dynamic_cast<Audio::MidiDriver_Miles_Xmidi_Timbres *>(driver);
}
bool MidiParser_XMIDI::loadMusic(byte *data, uint32 size) {
uint32 i = 0;
byte *start;
uint32 len;
uint32 chunkLen;
char buf[32];
_loopCount = -1;
unloadMusic();
byte *pos = data;
if (!memcmp(pos, "FORM", 4)) {
pos += 4;
// Read length of
len = read4high(pos);
start = pos;
// XDIRless XMIDI, we can handle them here.
if (!memcmp(pos, "XMID", 4)) {
warning("XMIDI doesn't have XDIR");
pos += 4;
_numTracks = 1;
} else if (memcmp(pos, "XDIR", 4)) {
// Not an XMIDI that we recognize
warning("Expected 'XDIR' but found '%c%c%c%c'", pos[0], pos[1], pos[2], pos[3]);
return false;
} else {
// Seems Valid
pos += 4;
_numTracks = 0;
for (i = 4; i < len; i++) {
// Read 4 bytes of type
memcpy(buf, pos, 4);
pos += 4;
// Read length of chunk
chunkLen = read4high(pos);
// Add eight bytes
i += 8;
if (memcmp(buf, "INFO", 4) == 0) {
// Must be at least 2 bytes long
if (chunkLen < 2) {
warning("Invalid chunk length %d for 'INFO' block", (int)chunkLen);
return false;
}
_numTracks = (byte)read2low(pos);
if (chunkLen > 2) {
warning("Chunk length %d is greater than 2", (int)chunkLen);
//pos += chunkLen - 2;
}
break;
}
// Must align
pos += (chunkLen + 1) & ~1;
i += (chunkLen + 1) & ~1;
}
// Didn't get to fill the header
if (_numTracks == 0) {
warning("Didn't find a valid track count");
return false;
}
// Ok now to start part 2
// Goto the right place
pos = start + ((len + 1) & ~1);
if (memcmp(pos, "CAT ", 4)) {
// Not an XMID
warning("Expected 'CAT ' but found '%c%c%c%c'", pos[0], pos[1], pos[2], pos[3]);
return false;
}
pos += 4;
// Now read length of this track
len = read4high(pos);
if (memcmp(pos, "XMID", 4)) {
// Not an XMID
warning("Expected 'XMID' but found '%c%c%c%c'", pos[0], pos[1], pos[2], pos[3]);
return false;
}
pos += 4;
}
// Ok it's an XMIDI.
// We're going to identify and store the location for each track.
if (_numTracks > ARRAYSIZE(_tracks)) {
warning("Can only handle %d tracks but was handed %d", (int)ARRAYSIZE(_tracks), (int)_numTracks);
return false;
}
int tracksRead = 0;
uint32 branchOffsets[128];
memset(branchOffsets, 0, sizeof(branchOffsets));
memset(_trackBranches, 0, sizeof(_trackBranches));
memset(_tracksTimbreList, 0, sizeof(_tracksTimbreList));
memset(_tracksTimbreListSize, 0, sizeof(_tracksTimbreListSize));
while (tracksRead < _numTracks) {
if (!memcmp(pos, "FORM", 4)) {
// Skip this plus the 4 bytes after it.
pos += 8;
} else if (!memcmp(pos, "XMID", 4)) {
// Skip this.
pos += 4;
} else if (!memcmp(pos, "TIMB", 4)) {
// Custom timbres
// chunk data is as follows:
// UINT16LE timbre count (amount of custom timbres used by this track)
// BYTE patchId
// BYTE bankId
// * timbre count
pos += 4;
len = read4high(pos);
_tracksTimbreList[tracksRead] = pos; // Skip the length bytes
_tracksTimbreListSize[tracksRead] = len;
pos += (len + 1) & ~1;
} else if (!memcmp(pos, "EVNT", 4)) {
// Ahh! What we're looking for at last.
_tracks[tracksRead] = pos + 8; // Skip the EVNT and length bytes
pos += 4;
len = read4high(pos);
pos += (len + 1) & ~1;
// Calculate branch index positions using the track position we just found
for (int j = 0; j < MAXIMUM_TRACK_BRANCHES; ++j) {
if (branchOffsets[j] != 0) {
byte *branchPos = _tracks[tracksRead] + branchOffsets[j];
if (branchPos >= pos) {
warning("Invalid sequence branch position (after track end)");
branchPos = _tracks[tracksRead];
}
_trackBranches[tracksRead][j] = branchPos;
}
}
// Clear the branch offsets for the next track
memset(branchOffsets, 0, sizeof(branchOffsets));
++tracksRead;
} else if (!memcmp(pos, "RBRN", 4)) {
// optional branch point offsets
pos += 4;
len = read4high(pos);
uint16 numBranches = (len - 2) / 6;
uint16 numBranches2 = read2low(pos);
if (numBranches != numBranches2) {
warning("Number of sequence branch definitions %d does not match RBRN block length %d", numBranches2, len);
numBranches = 0;
}
for (int j = 0; j < numBranches; ++j) {
uint16 index = read2low(pos);
if (index >= MAXIMUM_TRACK_BRANCHES) {
warning("Invalid sequence branch index value %x", index);
pos += 4;
continue;
}
// This is the offset from the start of the track
branchOffsets[index] = read4low(pos);
}
} else {
warning("Hit invalid block '%c%c%c%c' while scanning for track locations", pos[0], pos[1], pos[2], pos[3]);
return false;
}
}
// If we got this far, we successfully established
// the locations for each of our tracks.
// Note that we assume the original data passed in
// will persist beyond this call, i.e. we do NOT
// copy the data to our own buffer. Take warning....
_ppqn = 60;
resetTracking();
setTempo(500000);
// Start playback of the first track.
setTrack(0);
return true;
}
return false;
}
void MidiParser_XMIDI::onTrackStart(uint8 track) {
// Load custom timbres
if (_newTimbreListDriver && _tracksTimbreListSize[track] > 0)
_newTimbreListDriver->processXMIDITimbreChunk(_tracksTimbreList[track], _tracksTimbreListSize[track]);
}
void MidiParser_XMIDI::sendToDriver(uint32 b) {
if (_source < 0) {
MidiParser::sendToDriver(b);
} else {
_driver->send(_source, b);
}
}
void MidiParser_XMIDI::sendMetaEventToDriver(byte type, byte *data, uint16 length) {
if (_source < 0) {
MidiParser::sendMetaEventToDriver(type, data, length);
} else {
_driver->metaEvent(_source, type, data, length);
}
}
void MidiParser::defaultXMidiCallback(byte eventData, void *data) {
warning("MidiParser: defaultXMidiCallback(%d)", eventData);
}
MidiParser *MidiParser::createParser_XMIDI(XMidiCallbackProc proc, void *data, int source) {
return new MidiParser_XMIDI(proc, data, source);
}