scummvm/engines/icb/graphic_prims_pc.cpp

1271 lines
34 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* Additional copyright for this file:
* Copyright (C) 1999-2000 Revolution Software Ltd.
* This code is based on source code created by Revolution Software,
* used with permission.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "engines/icb/common/px_common.h"
#include "engines/icb/global_objects.h"
#include "engines/icb/p4_generic_pc.h"
namespace ICB {
// This type is used by General_quad_draw_24_32().
typedef struct { int32 nX, nY; } Span;
// This function is used only inside this file.
static void RawSpriteDraw(uint8 *pSurfaceBitmap, uint32 nPitch, uint32 nSurfaceWidth, uint32 nSurfaceHeight, _pxSprite *pSprite, uint8 *pPalette, int32 nX, int32 nY,
uint32 *nTransparencyRef, uint8 nOpacity);
void Draw_horizontal_line(int32 xx, int32 yy, uint32 len, _rgb *pen, uint8 *ad, uint32 pitch) {
// viewport coordinates
// 640*480 screen
// 24 or 32but colour
uint32 j;
// check top and bottom
if (yy < 0)
return;
if (yy > 479)
return;
// line totaly off left
if ((int32)(xx + len) < 0)
return;
// line totally off right
if (xx > 639)
return;
// clip left
if (xx < 0) {
len -= (0 - xx); // 0 - -5 == 5 so len=len-5
xx = 0;
}
// clip right
if ((xx + len) > 639) {
len -= ((xx + len) - 639);
}
// move to y
ad += (yy * pitch);
// move to x
ad += (xx * 4);
for (j = 0; j < len; j++) {
*(ad++) = pen->blue;
*(ad++) = pen->green;
*(ad++) = pen->red;
ad++;
}
}
void Draw_vertical_line(int32 xx, int32 yy, uint32 len, _rgb *pen, uint8 *ad, uint32 pitch) {
// viewport coordinates
// 640*480 screen
// 24 or 32but colour
uint32 j;
// check left/right
if (xx < 0)
return;
if (xx > 639)
return;
// line totaly off top
if ((int32)(yy + len) < 0)
return;
// line totally off bottom
if (yy > 479)
return;
// clip top
if (yy < 0) {
len -= (0 - yy); // 0 - -5 == 5 so len=len-5
yy = 0;
}
// clip bottom
if ((yy + len) > 479) {
len -= ((yy + len) - 479);
}
// move to y
ad += (yy * pitch);
// ove to x
ad += (xx * 4);
for (j = 0; j < len; j++) {
*(ad) = pen->blue;
*(ad + 1) = pen->green;
*(ad + 2) = pen->red;
ad += pitch;
}
}
void Fill_rect(int32 x, int32 y, int32 x2, int32 y2, uint32 pen, int32 /*z*/) {
// put a filled rectangle on the screen
// backbuffer must be unlocked
LRECT blank;
// completely off screen
if ((x2 <= 0) || (x >= 640) || (y >= 480) || (y2 <= 0))
return;
// clip
if (x < 0)
x = 0;
if (x2 > 640)
x2 = 640;
if (y < 0)
y = 0;
if (y2 > 480)
y2 = 480;
// setup LRECT for bottom line of the screen
blank.left = x;
blank.right = x2;
blank.top = y;
blank.bottom = y2;
surface_manager->Blit_fillfx(working_buffer_id, &blank, pen);
}
void General_draw_line_24_32(int16 x0, int16 y0, int16 x1, int16 y1, _rgb *colour, uint8 *myScreenBuffer, uint32 pitch, int32 surface_width, int32 surface_height) {
// Uses Bressnham's incremental algorithm!
// we pass a colour
// we pass the surface base
// assume 640*480
int32 dx, dy;
int32 dxmod, dymod;
int32 ince, incne;
int32 d;
int32 x, y;
int32 addTo;
uint32 BYTEWIDE;
uint32 vram = 4;
//#define RENDERWIDE 640
//#define RENDERDEEP 480
BYTEWIDE = pitch;
// Make sure we're going from left to right
if (x1 < x0) {
x = x1;
x1 = x0;
x0 = (int16)x;
y = y1;
y1 = y0;
y0 = (int16)y;
}
dx = x1 - x0;
dy = y1 - y0;
if (dx < 0)
dxmod = -dx;
else
dxmod = dx;
if (dy < 0)
dymod = -dy;
else
dymod = dy;
if (dxmod >= dymod) {
if (dy > 0) {
d = 2 * dy - dx;
ince = 2 * dy;
incne = 2 * (dy - dx);
x = x0;
y = y0;
if ((x >= 0) && (x < surface_width) && (y >= 0) && (y < surface_height)) {
myScreenBuffer[y * BYTEWIDE + (x * vram)] = colour->blue;
myScreenBuffer[y * BYTEWIDE + (x * vram) + 1] = colour->green;
myScreenBuffer[y * BYTEWIDE + (x * vram) + 2] = colour->red;
}
while (x < x1) {
if (d <= 0) {
d += ince;
x += 1;
} else {
d += incne;
x += 1;
y += 1;
}
if ((x >= 0) && (x < surface_width) && (y >= 0) && (y < surface_height)) {
myScreenBuffer[y * BYTEWIDE + (x * vram)] = colour->blue;
myScreenBuffer[y * BYTEWIDE + (x * vram) + 1] = colour->green;
myScreenBuffer[y * BYTEWIDE + (x * vram) + 2] = colour->red;
}
}
} else {
addTo = y0;
y0 = 0;
y1 = (int16)(y1 - addTo);
y1 = (int16)-y1;
dy = y1 - y0;
d = 2 * dy - dx;
ince = 2 * dy;
incne = 2 * (dy - dx);
x = x0;
y = y0;
if ((x >= 0) && (x < surface_width) && (addTo - y >= 0) && (addTo - y < surface_height)) {
// myScreenBuffer[(addTo - y) * surface_width + x] = colour;
myScreenBuffer[(addTo - y) * BYTEWIDE + (x * vram)] = colour->blue;
myScreenBuffer[(addTo - y) * BYTEWIDE + ((x * vram) + 1)] = colour->green;
myScreenBuffer[(addTo - y) * BYTEWIDE + ((x * vram) + 2)] = colour->red;
}
while (x < x1) {
if (d <= 0) {
d += ince;
x += 1;
} else {
d += incne;
x += 1;
y += 1;
}
if ((x >= 0) && (x < surface_width) && (addTo - y >= 0) && (addTo - y < surface_height)) {
// myScreenBuffer[(addTo - y) * surface_width + x] = colour;
myScreenBuffer[(addTo - y) * BYTEWIDE + (x * vram)] = colour->blue;
myScreenBuffer[(addTo - y) * BYTEWIDE + ((x * vram) + 1)] = colour->green;
myScreenBuffer[(addTo - y) * BYTEWIDE + ((x * vram) + 2)] = colour->red;
}
}
}
} else {
// OK, y is now going to be the single increment.
// Ensure the line is going top to bottom
if (y1 < y0) {
x = x1;
x1 = x0;
x0 = (int16)x;
y = y1;
y1 = y0;
y0 = (int16)y;
}
dx = x1 - x0;
dy = y1 - y0;
if (dx > 0) {
d = 2 * dx - dy;
ince = 2 * dx;
incne = 2 * (dx - dy);
x = x0;
y = y0;
if ((x >= 0) && (x < surface_width) && (y >= 0) && (y < surface_height)) {
myScreenBuffer[y * BYTEWIDE + (x * vram)] = colour->blue;
myScreenBuffer[y * BYTEWIDE + (x * vram) + 1] = colour->green;
myScreenBuffer[y * BYTEWIDE + (x * vram) + 2] = colour->red;
}
while (y < y1) {
if (d <= 0) {
d += ince;
y += 1;
} else {
d += incne;
x += 1;
y += 1;
}
if ((x >= 0) && (x < surface_width) && (y >= 0) && (y < surface_height)) {
myScreenBuffer[y * BYTEWIDE + (x * vram)] = colour->blue;
myScreenBuffer[y * BYTEWIDE + (x * vram) + 1] = colour->green;
myScreenBuffer[y * BYTEWIDE + (x * vram) + 2] = colour->red;
}
}
} else {
addTo = x0;
x0 = 0;
x1 = (int16)(x1 - addTo);
x1 = (int16)-x1;
dx = x1 - x0;
d = 2 * dx - dy;
ince = 2 * dx;
incne = 2 * (dx - dy);
x = x0;
y = y0;
if ((addTo - x >= 0) && (addTo - x < surface_width) && (y >= 0) && (y < surface_height)) {
// myScreenBuffer[y * surface_width + addTo - x] = colour;
myScreenBuffer[y * BYTEWIDE + ((addTo - x) * vram)] = colour->blue;
myScreenBuffer[y * BYTEWIDE + (((addTo - x) * vram) + 1)] = colour->green;
myScreenBuffer[y * BYTEWIDE + (((addTo - x) * vram) + 2)] = colour->red;
}
while (y < y1) {
if (d <= 0) {
d += ince;
y += 1;
} else {
d += incne;
x += 1;
y += 1;
}
if ((addTo - x >= 0) && (addTo - x < surface_width) && (y >= 0) && (y < surface_height)) {
// myScreenBuffer[y * surface_width + addTo - x] = colour;
myScreenBuffer[y * BYTEWIDE + ((addTo - x) * vram)] = colour->blue;
myScreenBuffer[y * BYTEWIDE + (((addTo - x) * vram) + 1)] = colour->green;
myScreenBuffer[y * BYTEWIDE + (((addTo - x) * vram) + 2)] = colour->red;
}
}
}
}
}
void AdditiveGouraudLine(int16 x0, int16 y0, _rgb c0, int16 x1, int16 y1, _rgb c1, uint32 surface_id) {
// Uses Bressnham's incremental algorithm!
// We have a start colour and an end colour
int32 dx, dy;
int32 dxmod, dymod;
int32 ince, incne;
int32 d;
int32 x, y;
int32 addTo;
uint8 *surface = (uint8 *)surface_manager->Lock_surface(surface_id);
uint32 pitch = surface_manager->Get_pitch(surface_id);
int32 surface_width = surface_manager->Get_width(surface_id);
int32 surface_height = surface_manager->Get_height(surface_id);
// Make sure we're going from left to right
if (x1 < x0) {
x = x1;
x1 = x0;
x0 = (int16)x;
y = y1;
y1 = y0;
y0 = (int16)y;
_rgb tC = c1;
c1 = c0;
c0 = tC;
}
dx = x1 - x0;
dy = y1 - y0;
if (dx < 0)
dxmod = -dx;
else
dxmod = dx;
if (dy < 0)
dymod = -dy;
else
dymod = dy;
if (dxmod >= dymod) {
if (dy > 0) {
d = 2 * dy - dx;
ince = 2 * dy;
incne = 2 * (dy - dx);
x = x0;
y = y0;
uint8 r = c0.red;
uint8 g = c0.green;
uint8 b = c0.blue;
int32 dr = (dx) ? (c1.red - c0.red) / dx : 0;
int32 dg = (dx) ? (c1.green - c0.green) / dx : 0;
int32 db = (dx) ? (c1.blue - c0.blue) / dx : 0;
uint32 offset = y * pitch + (x << 2);
if ((x >= 0) && (x < surface_width) && (y >= 0) && (y < surface_height)) {
surface[offset] = ((surface[offset] + b) > 255) ? (uint8)255 : (uint8)(surface[offset] + b);
surface[offset + 1] = ((surface[offset] + g) > 255) ? (uint8)255 : (uint8)(surface[offset + 1] + g);
surface[offset + 2] = ((surface[offset] + r) > 255) ? (uint8)255 : (uint8)(surface[offset + 2] + r);
}
while (x < x1) {
r = (uint8)(r + dr);
g = (uint8)(g + dg);
b = (uint8)(b + db);
offset += 4;
x++;
if (d <= 0) {
d += ince;
} else {
d += incne;
y++;
offset += pitch;
}
if ((x >= 0) && (x < surface_width) && (y >= 0) && (y < surface_height)) {
surface[offset] = ((surface[offset] + b) > 255) ? (uint8)255 : (uint8)(surface[offset] + b);
surface[offset + 1] = ((surface[offset] + g) > 255) ? (uint8)255 : (uint8)(surface[offset + 1] + g);
surface[offset + 2] = ((surface[offset] + r) > 255) ? (uint8)255 : (uint8)(surface[offset + 2] + r);
}
}
} else {
addTo = y0;
y0 = 0;
y1 = (int16)(y1 - addTo);
y1 = (int16)-y1;
dy = y1 - y0;
d = 2 * dy - dx;
ince = 2 * dy;
incne = 2 * (dy - dx);
x = x0;
y = y0;
uint8 r = c0.red;
uint8 g = c0.green;
uint8 b = c0.blue;
int32 dr = (dx) ? (c1.red - c0.red) / dx : 0;
int32 dg = (dx) ? (c1.green - c0.green) / dx : 0;
int32 db = (dx) ? (c1.blue - c0.blue) / dx : 0;
uint32 offset = (addTo - y) * pitch + (x << 2);
if ((x >= 0) && (x < surface_width) && (addTo - y >= 0) && (addTo - y < surface_height)) {
surface[offset] = ((surface[offset] + b) > 255) ? (uint8)255 : (uint8)(surface[offset] + b);
surface[offset + 1] = ((surface[offset] + g) > 255) ? (uint8)255 : (uint8)(surface[offset + 1] + g);
surface[offset + 2] = ((surface[offset] + r) > 255) ? (uint8)255 : (uint8)(surface[offset + 2] + r);
}
while (x < x1) {
r = (uint8)(r + dr);
g = (uint8)(g + dg);
b = (uint8)(b + db);
x++;
offset += 4;
if (d <= 0) {
d += ince;
} else {
d += incne;
y++;
offset -= pitch;
}
if ((x >= 0) && (x < surface_width) && (addTo - y >= 0) && (addTo - y < surface_height)) {
surface[offset] = ((surface[offset] + b) > 255) ? (uint8)255 : (uint8)(surface[offset] + b);
surface[offset + 1] = ((surface[offset] + g) > 255) ? (uint8)255 : (uint8)(surface[offset + 1] + g);
surface[offset + 2] = ((surface[offset] + r) > 255) ? (uint8)255 : (uint8)(surface[offset + 2] + r);
}
}
}
} else {
// OK, y is now going to be the single increment.
// Ensure the line is going top to bottom
if (y1 < y0) {
x = x1;
x1 = x0;
x0 = (int16)x;
y = y1;
y1 = y0;
y0 = (int16)y;
_rgb tC = c1;
c1 = c0;
c0 = tC;
}
dx = x1 - x0;
dy = y1 - y0;
if (dx > 0) {
d = 2 * dx - dy;
ince = 2 * dx;
incne = 2 * (dx - dy);
x = x0;
y = y0;
uint8 r = c0.red;
uint8 g = c0.green;
uint8 b = c0.blue;
int32 dr = (dy) ? (c1.red - c0.red) / dy : 0;
int32 dg = (dy) ? (c1.green - c0.green) / dy : 0;
int32 db = (dy) ? (c1.blue - c0.blue) / dy : 0;
uint32 offset = y * pitch + (x << 2);
if ((x >= 0) && (x < surface_width) && (y >= 0) && (y < surface_height)) {
surface[offset] = ((surface[offset] + b) > 255) ? (uint8)255 : (uint8)(surface[offset] + b);
surface[offset + 1] = ((surface[offset] + g) > 255) ? (uint8)255 : (uint8)(surface[offset + 1] + g);
surface[offset + 2] = ((surface[offset] + r) > 255) ? (uint8)255 : (uint8)(surface[offset + 2] + r);
}
while (y < y1) {
r = (uint8)(r + dr);
g = (uint8)(g + dg);
b = (uint8)(b + db);
offset += pitch;
y++;
if (d <= 0) {
d += ince;
} else {
d += incne;
x++;
offset += 4;
}
if ((x >= 0) && (x < surface_width) && (y >= 0) && (y < surface_height)) {
surface[offset] = ((surface[offset] + b) > 255) ? (uint8)255 : (uint8)(surface[offset] + b);
surface[offset + 1] = ((surface[offset] + g) > 255) ? (uint8)255 : (uint8)(surface[offset + 1] + g);
surface[offset + 2] = ((surface[offset] + r) > 255) ? (uint8)255 : (uint8)(surface[offset + 2] + r);
}
}
} else {
addTo = x0;
x0 = 0;
x1 = (int16)(x1 - addTo);
x1 = (int16)-x1;
dx = x1 - x0;
d = 2 * dx - dy;
ince = 2 * dx;
incne = 2 * (dx - dy);
x = x0;
y = y0;
uint8 r = c0.red;
uint8 g = c0.green;
uint8 b = c0.blue;
int32 dr = (dy) ? (c1.red - c0.red) / dy : 0;
int32 dg = (dy) ? (c1.green - c0.green) / dy : 0;
int32 db = (dy) ? (c1.blue - c0.blue) / dy : 0;
uint32 offset = y * pitch + ((addTo - x) << 2);
if ((addTo - x >= 0) && (addTo - x < surface_width) && (y >= 0) && (y < surface_height)) {
surface[offset] = ((surface[offset] + b) > 255) ? (uint8)255 : (uint8)(surface[offset] + b);
surface[offset + 1] = ((surface[offset] + g) > 255) ? (uint8)255 : (uint8)(surface[offset + 1] + g);
surface[offset + 2] = ((surface[offset] + r) > 255) ? (uint8)255 : (uint8)(surface[offset + 2] + r);
}
while (y < y1) {
r = (uint8)(r + dr);
g = (uint8)(g + dg);
b = (uint8)(b + db);
offset += pitch;
y++;
if (d <= 0) {
d += ince;
} else {
d += incne;
x += 1;
offset -= 4;
}
if ((addTo - x >= 0) && (addTo - x < surface_width) && (y >= 0) && (y < surface_height)) {
surface[offset] = ((surface[offset] + b) > 255) ? (uint8)255 : (uint8)(surface[offset] + b);
surface[offset + 1] = ((surface[offset] + g) > 255) ? (uint8)255 : (uint8)(surface[offset + 1] + g);
surface[offset + 2] = ((surface[offset] + r) > 255) ? (uint8)255 : (uint8)(surface[offset + 2] + r);
}
}
}
}
surface_manager->Unlock_surface(surface_id);
}
void BlendedLine(int32 x0, int32 y0, int32 x1, int32 y1, _rgb c, uint32 surface_id) {
uint8 *surface = (uint8 *)surface_manager->Lock_surface(surface_id);
uint32 pitch = surface_manager->Get_pitch(surface_id);
int32 surface_width = surface_manager->Get_width(surface_id);
int32 surface_height = surface_manager->Get_height(surface_id);
BlendedLine(x0, y0, x1, y1, c, surface_width, surface_height, pitch, surface);
surface_manager->Unlock_surface(surface_id);
}
void BlendedLine(int32 x0, int32 y0, int32 x1, int32 y1, _rgb c, int32 surface_width, int32 surface_height, uint32 pitch, uint8 *surface) {
// Uses Bressnham's incremental algorithm!
// We have a start colour and an end colour
int32 dx, dy;
int32 dxmod, dymod;
int32 ince, incne;
int32 d;
int32 x, y;
int32 addTo;
// Make sure we're going from left to right
if (x1 < x0) {
x = x1;
x1 = x0;
x0 = (int16)x;
y = y1;
y1 = y0;
y0 = (int16)y;
}
dx = x1 - x0;
dy = y1 - y0;
if (dx < 0)
dxmod = -dx;
else
dxmod = dx;
if (dy < 0)
dymod = -dy;
else
dymod = dy;
if (dxmod >= dymod) {
if (dy > 0) {
d = 2 * dy - dx;
ince = 2 * dy;
incne = 2 * (dy - dx);
x = x0;
y = y0;
uint8 r = c.red;
uint8 g = c.green;
uint8 b = c.blue;
uint32 offset = y * pitch + (x << 2);
while (x < 0 || y < 0) {
offset += 4;
x++;
if (d <= 0) {
d += ince;
} else {
d += incne;
y++;
offset += pitch;
}
}
if (x1 >= surface_width)
x1 = surface_width - 1;
while (x < x1) {
offset += 4;
x++;
if (d <= 0) {
d += ince;
} else {
d += incne;
y++;
offset += pitch;
}
if (y < surface_height) {
surface[offset] = (uint8)((surface[offset] + b) >> 1);
surface[offset + 1] = (uint8)((surface[offset + 1] + g) >> 1);
surface[offset + 2] = (uint8)((surface[offset + 2] + r) >> 1);
}
}
} else {
addTo = y0;
y0 = 0;
y1 = (int16)(y1 - addTo);
y1 = (int16)-y1;
dy = y1 - y0;
d = 2 * dy - dx;
ince = 2 * dy;
incne = 2 * (dy - dx);
x = x0;
y = y0;
uint8 r = c.red;
uint8 g = c.green;
uint8 b = c.blue;
uint32 offset = (addTo - y) * pitch + (x << 2);
while ((x < 0) || ((addTo - y) >= surface_height)) {
x++;
offset += 4;
if (d <= 0) {
d += ince;
} else {
d += incne;
y++;
offset -= pitch;
}
}
if (x1 >= surface_width)
x1 = surface_width - 1;
while (x < x1) {
x++;
offset += 4;
if (d <= 0) {
d += ince;
} else {
d += incne;
y++;
offset -= pitch;
}
if ((addTo - y) >= 0) {
surface[offset] = (uint8)((surface[offset] + b) >> 1);
surface[offset + 1] = (uint8)((surface[offset + 1] + g) >> 1);
surface[offset + 2] = (uint8)((surface[offset + 2] + r) >> 1);
}
}
}
} else {
// OK, y is now going to be the single increment.
// Ensure the line is going top to bottom
if (y1 < y0) {
x = x1;
x1 = x0;
x0 = (int16)x;
y = y1;
y1 = y0;
y0 = (int16)y;
}
dx = x1 - x0;
dy = y1 - y0;
if (dx > 0) {
d = 2 * dx - dy;
ince = 2 * dx;
incne = 2 * (dx - dy);
x = x0;
y = y0;
uint8 r = c.red;
uint8 g = c.green;
uint8 b = c.blue;
uint32 offset = y * pitch + (x << 2);
while ((y < 0) || (x < 0)) {
offset += pitch;
++y;
if (d <= 0) {
d += ince;
} else {
d += incne;
++x;
offset += 4;
}
}
if (y1 >= surface_height)
y1 = surface_height - 1;
while (y < y1) {
offset += pitch;
++y;
if (d <= 0) {
d += ince;
} else {
d += incne;
++x;
offset += 4;
}
if (x < surface_width) {
surface[offset] = (uint8)((surface[offset] + b) >> 1);
surface[offset + 1] = (uint8)((surface[offset + 1] + g) >> 1);
surface[offset + 2] = (uint8)((surface[offset + 2] + r) >> 1);
}
}
} else {
addTo = x0;
x0 = 0;
x1 = (int16)(x1 - addTo);
x1 = (int16)-x1;
dx = x1 - x0;
d = 2 * dx - dy;
ince = 2 * dx;
incne = 2 * (dx - dy);
x = x0;
y = y0;
uint8 r = c.red;
uint8 g = c.green;
uint8 b = c.blue;
uint32 offset = y * pitch + ((addTo - x) << 2);
while ((y < 0) || (addTo - x >= surface_width)) {
offset += pitch;
++y;
if (d <= 0) {
d += ince;
} else {
d += incne;
++x;
offset -= 4;
}
}
if (y1 >= surface_height)
y1 = surface_height - 1;
while (y < y1) {
offset += pitch;
y++;
if (d <= 0) {
d += ince;
} else {
d += incne;
x += 1;
offset -= 4;
}
if ((addTo - x) >= 0) {
surface[offset] = (uint8)((surface[offset] + b) >> 1);
surface[offset + 1] = (uint8)((surface[offset + 1] + g) >> 1);
surface[offset + 2] = (uint8)((surface[offset + 2] + r) >> 1);
}
}
}
}
}
void SpriteFrameDraw(uint8 *pSurfaceBitmap, // IN: Pointer to the surface's drawing area.
uint32 nPitch, // IN: Pitch for the surface.
uint32 nSurfaceWidth, // IN: Width of the surface.
uint32 nSurfaceHeight, // IN: Height of the surface.
_pxBitmap *pBitmap, // IN: Pointer to the bitmap to render.
uint32 nFrameNumber, // IN: Frame to draw.
uint32 *pnTransparencyRef, // IN: Colour to use for transparency.
uint8 nOpacity // IN: Opacity 0-255 to draw sprite into surface.
) {
uint8 *pPalette;
_pxSprite *pSprite;
// Get to the sprite frame.
pSprite = (_pxSprite *)((byte *)pBitmap + FROM_LE_32(pBitmap->sprite_offsets[nFrameNumber]));
// Get the palette pointer.
pPalette = &pBitmap->palette[0];
// Now do the actual drawing.
RawSpriteDraw(pSurfaceBitmap, nPitch, nSurfaceWidth, nSurfaceHeight, pSprite, pPalette, pSprite->x, pSprite->y, pnTransparencyRef, nOpacity);
}
void SpriteXYFrameDraw(uint8 *pSurfaceBitmap, // IN: Pointer to the surface's drawing area.
uint32 nPitch, // IN: Pitch for the surface.
uint32 nSurfaceWidth, // IN: Width of the surface.
uint32 nSurfaceHeight, // IN: Height of the surface.
_pxBitmap *pBitmap, // IN: Pointer to the bitmap to render.
int32 nX, // IN: X-position to draw sprite at (relative to the surface).
int32 nY, // IN: Y-position to draw sprite at (relative to the surface).
uint32 nFrameNumber, // IN: Frame to draw.
bool8 bCenter, // IN: If true, centre the sprite.
uint32 *pnTransparencyRef, // IN: Colour to use for transparency.
uint8 nOpacity // IN: Opacity 0-255 to draw sprite into surface.
) {
uint8 *pPalette;
_pxSprite *pSprite;
// Get to the sprite frame.
pSprite = (_pxSprite *)((byte *)pBitmap + FROM_LE_32(pBitmap->sprite_offsets[nFrameNumber]));
// Work out a new plotting position if it is to be centred.
if (bCenter) {
nX -= (pSprite->width >> 1);
nY -= (pSprite->height >> 1);
}
// Get the palette pointer.
pPalette = &pBitmap->palette[0];
// Now do the actual drawing.
RawSpriteDraw(pSurfaceBitmap, nPitch, nSurfaceWidth, nSurfaceHeight, pSprite, pPalette, nX, nY, pnTransparencyRef, nOpacity);
}
void RawSpriteDraw(uint8 *pSurfaceBitmap, // IN: Pointer to the surface's drawing area.
uint32 nPitch, // IN: Pitch for the surface.
uint32 nSurfaceWidth, // IN: Width of surface in pixels.
uint32 nSurfaceHeight, // IN: Height of surface in pixels.
_pxSprite *pSprite, // IN: Pointer to one frame of a sprite.
uint8 *pPalette, // IN: Pointer to the palette.
int32 nX, // IN: X-position to draw sprite at (relative to the surface).
int32 nY, // IN: Y-position to draw sprite at (relative to the surface).
uint32 *pnTransparentRef, // IN: Colour to use for transparency.
uint8 nOpacity // IN: If true, pixels are blended into the surface.
) {
uint32 x, y;
uint32 *pSurfaceRowStart32;
uint8 *pSurfaceRowStart8;
uint8 *pSpriteData;
uint8 *pPaletteEntry;
int32 nSpriteTop, nSpriteLeft;
int32 nSurfaceTop, nSurfaceLeft;
uint32 nNumRowsToRender, nNumColumnsToRender;
uint32 nSurfaceSkipToNextRow, nSpriteSkipToNextRow;
uint32 nSpriteRowStart;
uint8 nExistingB, nExistingG, nExistingR;
uint8 nNewB, nNewG, nNewR;
// This used to be variable; now it's fixed.
const uint32 nBytesPerPixel = 4;
// If the start position of the sprite is below the bottom row of the surface or its end position
// is before the first row of the surface, there can be nothing to display.
if ((nY >= (int32)nSurfaceHeight) || ((nY + (int32)pSprite->height) <= 0))
return;
// Now do the same check in the horizontal direction.
if ((nX >= (int32)nSurfaceWidth) || ((nX + (int32)pSprite->width) <= 0))
return;
// First work out what proportion of the height of the sprite we have to copy allowing
// for clipping it where it overlaps the edges of the surface.
nNumRowsToRender = pSprite->height;
if (nY < 0) {
nSurfaceTop = 0;
nSpriteTop = abs(nY);
nNumRowsToRender -= nSpriteTop;
} else {
nSurfaceTop = nY;
nSpriteTop = 0;
}
if ((nY + pSprite->height) > nSurfaceHeight)
nNumRowsToRender -= ((nY + pSprite->height) - nSurfaceHeight);
// Now do the same in the horizontal direction.
nNumColumnsToRender = pSprite->width;
if (nX < 0) {
nSurfaceLeft = 0;
nSpriteLeft = abs(nX);
nNumColumnsToRender -= nSpriteLeft;
} else {
nSurfaceLeft = nX;
nSpriteLeft = 0;
}
if ((nX + pSprite->width) > nSurfaceWidth)
nNumColumnsToRender -= ((nX + pSprite->width) - nSurfaceWidth);
// Get to the sprite data.
pSpriteData = pSprite->data;
// Work out the byte in the surface to start drawing at.
pSurfaceRowStart32 = (uint32 *)(pSurfaceBitmap + (nSurfaceTop * nPitch) + (nBytesPerPixel * nSurfaceLeft));
nSurfaceSkipToNextRow = (nPitch - (nBytesPerPixel * nNumColumnsToRender)) >> 2;
// Work out the pixel to start drawing and how much we need to jump when we get to the end of a row.
nSpriteRowStart = nSpriteTop * pSprite->width + nSpriteLeft;
nSpriteSkipToNextRow = pSprite->width - nNumColumnsToRender;
// Check if transparency support is required.
if (pnTransparentRef) {
// Check if pixel blending is required.
if (nOpacity != 255) {
for (y = 0; y < nNumRowsToRender; ++y) {
// Now loop for one row of the image.
for (x = 0; x < nNumColumnsToRender; ++x) {
// Get the palette index for this pixel of the sprite.
pPaletteEntry = pPalette + (pSpriteData[nSpriteRowStart++] << 2);
// Don't print anything if the pixel is transparent.
if (*((uint32 *)pPaletteEntry) != *pnTransparentRef) {
// We are doing pixel merging.
pSurfaceRowStart8 = (uint8 *)pSurfaceRowStart32;
// Get the existing RGB in the surface.
nExistingB = *pSurfaceRowStart8;
nExistingG = *(pSurfaceRowStart8 + 1);
nExistingR = *(pSurfaceRowStart8 + 2);
// Get the new RGB.
nNewB = *pPaletteEntry;
nNewG = *(pPaletteEntry + 1);
nNewR = *(pPaletteEntry + 2);
// Merge the pixels.
nNewB = (uint8)((((nNewB - nExistingB) * nOpacity) >> 8) + nExistingB);
nNewG = (uint8)((((nNewG - nExistingG) * nOpacity) >> 8) + nExistingG);
nNewR = (uint8)((((nNewR - nExistingR) * nOpacity) >> 8) + nExistingR);
// Write the new colour back to the surface.
*pSurfaceRowStart8 = (uint8)nNewB;
*(pSurfaceRowStart8 + 1) = (uint8)nNewG;
*(pSurfaceRowStart8 + 2) = (uint8)nNewR;
}
++pSurfaceRowStart32;
}
// We have completed a row; need to jump to the start of the next one.
pSurfaceRowStart32 += nSurfaceSkipToNextRow;
nSpriteRowStart += nSpriteSkipToNextRow;
}
} else {
for (y = 0; y < nNumRowsToRender; ++y) {
// Now loop for one row of the image.
for (x = 0; x < nNumColumnsToRender; ++x) {
// Get the palette index for this pixel of the sprite.
pPaletteEntry = pPalette + (pSpriteData[nSpriteRowStart++] << 2);
// Don't print anything if the pixel is transparent.
if (*((uint32 *)pPaletteEntry) != *pnTransparentRef)
*pSurfaceRowStart32 = *((uint32 *)pPaletteEntry);
++pSurfaceRowStart32;
}
// We have completed a row; need to jump to the start of the next one.
pSurfaceRowStart32 += nSurfaceSkipToNextRow;
nSpriteRowStart += nSpriteSkipToNextRow;
}
}
} else {
// No transparency support required. Check if pixel blending is required.
if (nOpacity != 255) {
// Pixel blending required.
for (y = 0; y < nNumRowsToRender; ++y) {
// Now loop for one row of the image.
for (x = 0; x < nNumColumnsToRender; ++x) {
// Get the palette index for this pixel of the sprite.
pPaletteEntry = pPalette + (pSpriteData[nSpriteRowStart++] << 2);
// We are doing pixel merging.
pSurfaceRowStart8 = (uint8 *)pSurfaceRowStart32;
// Get the existing RGB in the surface.
nExistingB = *pSurfaceRowStart8;
nExistingG = *(pSurfaceRowStart8 + 1);
nExistingR = *(pSurfaceRowStart8 + 2);
// Get the new RGB.
nNewB = *pPaletteEntry;
nNewG = *(pPaletteEntry + 1);
nNewR = *(pPaletteEntry + 2);
// Merge the pixels.
nNewB = (uint8)((((nNewB - nExistingB) * nOpacity) >> 8) + nExistingB);
nNewG = (uint8)((((nNewG - nExistingG) * nOpacity) >> 8) + nExistingG);
nNewR = (uint8)((((nNewR - nExistingR) * nOpacity) >> 8) + nExistingR);
// Write the new colour back to the surface.
*pSurfaceRowStart8 = (uint8)nNewB;
*(pSurfaceRowStart8 + 1) = (uint8)nNewG;
*(pSurfaceRowStart8 + 2) = (uint8)nNewR;
++pSurfaceRowStart32;
}
// We have completed a row; need to jump to the start of the next one.
pSurfaceRowStart32 += nSurfaceSkipToNextRow;
nSpriteRowStart += nSpriteSkipToNextRow;
}
} else {
// No pixel blending required - just a straight opaque copy.
for (y = 0; y < nNumRowsToRender; ++y) {
// Now loop for one row of the image.
for (x = 0; x < nNumColumnsToRender; ++x) {
// Get the palette index for this pixel of the sprite.
pPaletteEntry = pPalette + (pSpriteData[nSpriteRowStart++] << 2);
// 32-bit opaque copy is a straight assignment.
*pSurfaceRowStart32++ = *((uint32 *)pPaletteEntry);
}
// We have completed a row; need to jump to the start of the next one.
pSurfaceRowStart32 += nSurfaceSkipToNextRow;
nSpriteRowStart += nSpriteSkipToNextRow;
}
}
}
}
LRECT ConvertPxBitmapRectToRECT(const _PxBitmapRect &sBitmapRect) {
LRECT sRect;
sRect.left = sBitmapRect.nX;
sRect.right = (sBitmapRect.nX + sBitmapRect.nWidth) - 1;
sRect.top = sBitmapRect.nY;
sRect.bottom = (sBitmapRect.nY + sBitmapRect.nHeight) - 1;
return sRect;
}
void General_poly_draw_24_32(_point *pVerts, int32 nNumVerts, _rgb sColour, bool8 bFill, uint8 *pSurface, int32 nPitch, int32 /*nSurfaceWidth*/, int32 /*nSurfaceHeight*/) {
int32 i, j;
int32 x, y;
int32 nTopVert, nBottomVert, nLeftVert, nRightVert;
int32 nNextVert;
int32 nTopY, nBottomY, nSlope, nSpanTopY, nSpanBottomY;
int32 nX;
int32 nCount;
PXreal fTopY, fBottomY, fSlope, fHeight, fWidth, fPrestep;
Span pSpans[SCREEN_DEPTH];
Span *pSpan;
int32 nBytesPerPixel;
uint8 *pSurfaceAddress;
nTopVert = 0;
nBottomVert = 0;
nX = 0;
// Some initialisation.
nBytesPerPixel = 4;
fTopY = 999999.0f;
fBottomY = -999999.0f;
// Find the top and bottom vertices.
for (i = 0; i < (int32)nNumVerts; ++i) {
if (pVerts[i].z < fTopY) {
fTopY = pVerts[i].z;
nTopVert = i;
}
if (pVerts[i].z > fBottomY) {
fBottomY = pVerts[i].z;
nBottomVert = i;
}
}
nTopY = (int32)ceil(fTopY);
nBottomY = (int32)ceil(fBottomY);
// Polygon has to have a height to be drawn.
if (nBottomY == nTopY)
return;
// Scan out the left edge.
pSpan = pSpans;
nLeftVert = nTopVert;
do {
nNextVert = nLeftVert - 1;
if (nNextVert < 0)
nNextVert = nNumVerts - 1;
nSpanTopY = (int32)ceil(pVerts[nLeftVert].z);
nSpanBottomY = (int32)ceil(pVerts[nNextVert].z);
if (nSpanTopY < nSpanBottomY) {
fHeight = pVerts[nNextVert].z - pVerts[nLeftVert].z;
fWidth = pVerts[nNextVert].x - pVerts[nLeftVert].x;
fSlope = fWidth / fHeight;
fPrestep = nSpanTopY - pVerts[nLeftVert].z;
nX = (int32)((pVerts[nLeftVert].x + (fSlope * fPrestep)) * 65536.0f) + ((1 << 16) - 1);
nSlope = (int32)(fSlope * 65536.0f);
for (j = nSpanTopY; j < nSpanBottomY; ++j) {
pSpan->nX = nX >> 16;
nX += nSlope;
++pSpan;
}
}
--nLeftVert;
if (nLeftVert < 0)
nLeftVert = nNumVerts - 1;
} while (nLeftVert != nBottomVert);
// Scan out the right edge
pSpan = pSpans;
nRightVert = nTopVert;
do {
nNextVert = (nRightVert + 1) % nNumVerts;
nSpanTopY = (int32)ceil(pVerts[nRightVert].z);
nSpanBottomY = (int32)ceil(pVerts[nNextVert].z);
if (nSpanTopY < nSpanBottomY) {
fHeight = pVerts[nNextVert].z - pVerts[nRightVert].z;
fWidth = pVerts[nNextVert].x - pVerts[nRightVert].x;
fSlope = fWidth / fHeight;
fPrestep = nSpanTopY - pVerts[nRightVert].z;
nX = (int32)((pVerts[nRightVert].x + (fSlope * fPrestep)) * 65536.0f) + ((1 << 16) - 1);
nSlope = (int32)(fSlope * 65536.0f);
for (j = nSpanTopY; j < nSpanBottomY; ++j) {
pSpan->nY = nX >> 16;
nX += nSlope;
++pSpan;
}
}
nRightVert = (nRightVert + 1) % nNumVerts;
} while (nRightVert != nBottomVert);
// Draw the spans
pSpan = pSpans;
// How we draw depends on the bitmap.
// Drawing in 32-bit colour depth. Fill or just outline?
if (bFill) {
// Fill the polygon (32-bit colour).
for (x = nTopY; x < nBottomY; ++x) {
// Work out the width of the line at this point in the height.
nCount = pSpan->nY - pSpan->nX;
if (nCount > 0) {
// Work out the start address of the row in our target surface.
pSurfaceAddress = pSurface + nPitch * x;
// Loop along the row.
for (y = 0; y < nCount; ++y) {
// Look up the actual colour.
*pSurfaceAddress++ = sColour.red;
*pSurfaceAddress++ = sColour.green;
*pSurfaceAddress++ = sColour.blue;
*pSurfaceAddress = 0x00;
}
}
// Move on to the next span we've stored.
++pSpan;
}
} else {
// Just draw outline (32-bit colour).
for (x = nTopY; x < nBottomY; ++x) {
// Work out the width of the line at this point in the height.
nCount = pSpan->nY - pSpan->nX;
if (nCount > 0) {
// Draw left edge.
pSurfaceAddress = pSurface + nPitch * x;
*pSurfaceAddress++ = sColour.red;
*pSurfaceAddress++ = sColour.green;
*pSurfaceAddress++ = sColour.blue;
*pSurfaceAddress = 0x00;
// Draw right edge.
pSurfaceAddress = (pSurface + nPitch * x) + ((nCount - 1) * nBytesPerPixel);
*pSurfaceAddress++ = sColour.red;
*pSurfaceAddress++ = sColour.green;
*pSurfaceAddress++ = sColour.blue;
*pSurfaceAddress = 0x00;
}
// Move on to the next span we've stored.
++pSpan;
}
}
}
} // End of namespace ICB