scummvm/graphics/tinygl/clip.cpp
2021-11-09 17:09:13 +01:00

458 lines
12 KiB
C++

/* ResidualVM - A 3D game interpreter
*
* ResidualVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the AUTHORS
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
/*
* This file is based on, or a modified version of code from TinyGL (C) 1997-1998 Fabrice Bellard,
* which is licensed under the zlib-license (see LICENSE).
* It also has modifications by the ResidualVM-team, which are covered under the GPLv2 (or later).
*/
#include "graphics/tinygl/zgl.h"
namespace TinyGL {
// fill triangle profile
// #define TINYGL_PROFILE
#define CLIP_XMIN (1 << 0)
#define CLIP_XMAX (1 << 1)
#define CLIP_YMIN (1 << 2)
#define CLIP_YMAX (1 << 3)
#define CLIP_ZMIN (1 << 4)
#define CLIP_ZMAX (1 << 5)
void gl_transform_to_viewport(GLContext *c, GLVertex *v) {
float winv;
// coordinates
winv = (float)(1.0 / v->pc.W);
v->zp.x = (int)(v->pc.X * winv * c->viewport.scale.X + c->viewport.trans.X);
v->zp.y = (int)(v->pc.Y * winv * c->viewport.scale.Y + c->viewport.trans.Y);
v->zp.z = (int)(v->pc.Z * winv * c->viewport.scale.Z + c->viewport.trans.Z);
// color
v->zp.r = (int)(v->color.X * ZB_POINT_RED_MAX);
v->zp.g = (int)(v->color.Y * ZB_POINT_GREEN_MAX);
v->zp.b = (int)(v->color.Z * ZB_POINT_BLUE_MAX);
v->zp.a = (int)(v->color.W * ZB_POINT_ALPHA_MAX);
// texture
if (c->texture_2d_enabled) {
v->zp.s = (int)(v->tex_coord.X * ZB_POINT_ST_MAX);
v->zp.t = (int)(v->tex_coord.Y * ZB_POINT_ST_MAX);
}
}
static void gl_add_select1(GLContext *c, int z1, int z2, int z3) {
int min, max;
min = max = z1;
if (z2 < min)
min = z2;
if (z3 < min)
min = z3;
if (z2 > max)
max = z2;
if (z3 > max)
max = z3;
gl_add_select(c, 0xffffffff - min, 0xffffffff - max);
}
// point
void gl_draw_point(GLContext *c, GLVertex *p0) {
if (p0->clip_code == 0) {
if (c->render_mode == TGL_SELECT) {
gl_add_select(c, p0->zp.z, p0->zp.z);
} else {
c->fb->plot(&p0->zp);
}
}
}
// line
static inline void interpolate_color(GLContext *c, GLVertex *q, GLVertex *p0, GLVertex *p1, float t) {
if (c->current_shade_model == TGL_SMOOTH)
q->color = p0->color + (p1->color - p0->color) * t;
else
q->color = p0->color;
}
static inline void interpolate(GLContext *c, GLVertex *q, GLVertex *p0, GLVertex *p1, float t) {
q->pc = p0->pc + (p1->pc - p0->pc) * t;
interpolate_color(c, q, p0, p1, t);
}
// Line Clipping
// Line Clipping algorithm from 'Computer Graphics', Principles and
// Practice
static inline int ClipLine1(float denom, float num, float *tmin, float *tmax) {
float t;
if (denom > 0) {
t = num / denom;
if (t > *tmax)
return 0;
if (t > *tmin)
*tmin = t;
} else if (denom < 0) {
t = num / denom;
if (t < *tmin)
return 0;
if (t < *tmax)
*tmax = t;
} else if (num > 0)
return 0;
return 1;
}
void gl_draw_line(GLContext *c, GLVertex *p1, GLVertex *p2) {
float dx, dy, dz, dw, x1, y1, z1, w1;
float tmin, tmax;
GLVertex q1, q2;
int cc1, cc2;
cc1 = p1->clip_code;
cc2 = p2->clip_code;
if ((cc1 | cc2) == 0) {
if (c->render_mode == TGL_SELECT) {
gl_add_select1(c, p1->zp.z, p2->zp.z, p2->zp.z);
} else {
if (c->depth_test)
c->fb->fillLineZ(&p1->zp, &p2->zp);
else
c->fb->fillLine(&p1->zp, &p2->zp);
}
} else if ((cc1 & cc2) != 0) {
return;
} else {
dx = p2->pc.X - p1->pc.X;
dy = p2->pc.Y - p1->pc.Y;
dz = p2->pc.Z - p1->pc.Z;
dw = p2->pc.W - p1->pc.W;
x1 = p1->pc.X;
y1 = p1->pc.Y;
z1 = p1->pc.Z;
w1 = p1->pc.W;
tmin = 0;
tmax = 1;
if (ClipLine1(dx + dw, -x1 - w1, &tmin, &tmax) &&
ClipLine1(-dx + dw, x1 - w1, &tmin, &tmax) &&
ClipLine1(dy + dw, -y1 - w1, &tmin, &tmax) &&
ClipLine1(-dy + dw, y1 - w1, &tmin, &tmax) &&
ClipLine1(dz + dw, -z1 - w1, &tmin, &tmax) &&
ClipLine1(-dz + dw, z1 - w1, &tmin, &tmax)) {
interpolate(c, &q1, p1, p2, tmin);
interpolate(c, &q2, p1, p2, tmax);
gl_transform_to_viewport(c, &q1);
gl_transform_to_viewport(c, &q2);
if (c->depth_test)
c->fb->fillLineZ(&q1.zp, &q2.zp);
else
c->fb->fillLine(&q1.zp, &q2.zp);
}
}
}
// triangle
// Clipping
// We clip the segment [a,b] against the 6 planes of the normal volume.
// We compute the point 'c' of intersection and the value of the parameter 't'
// of the intersection if x=a+t(b-a).
#define clip_func(name, sign, dir, dir1, dir2) \
static float name(Vector4 *c, Vector4 *a, Vector4 *b) { \
float t, dX, dY, dZ, dW, den;\
dX = (b->X - a->X); \
dY = (b->Y - a->Y); \
dZ = (b->Z - a->Z); \
dW = (b->W - a->W); \
den = -(sign d ## dir) + dW; \
if (den == 0) \
t = 0; \
else \
t = (sign a->dir - a->W) / den; \
c-> dir1 = (a->dir1 + t * d ## dir1); \
c-> dir2 = (a->dir2 + t * d ## dir2); \
c->W = (a->W + t * dW); \
c-> dir = (sign c->W); \
return t; \
}
clip_func(clip_xmin, -, X, Y, Z)
clip_func(clip_xmax, +, X, Y, Z)
clip_func(clip_ymin, -, Y, X, Z)
clip_func(clip_ymax, +, Y, X, Z)
clip_func(clip_zmin, -, Z, X, Y)
clip_func(clip_zmax, +, Z, X, Y)
float(*clip_proc[6])(Vector4 *, Vector4 *, Vector4 *) = {
clip_xmin, clip_xmax,
clip_ymin, clip_ymax,
clip_zmin, clip_zmax
};
static inline void updateTmp(GLContext *c, GLVertex *q, GLVertex *p0, GLVertex *p1, float t) {
interpolate_color(c, q, p0, p1, t);
if (c->texture_2d_enabled) {
// NOTE: This could be implemented with operator overloading,
// but i'm not 100% sure that we can completely disregard Z and W components so I'm leaving it like this for now.
q->tex_coord.X = (p0->tex_coord.X + (p1->tex_coord.X - p0->tex_coord.X) * t);
q->tex_coord.Y = (p0->tex_coord.Y + (p1->tex_coord.Y - p0->tex_coord.Y) * t);
}
q->clip_code = gl_clipcode(q->pc.X, q->pc.Y, q->pc.Z, q->pc.W);
if (q->clip_code == 0)
gl_transform_to_viewport(c, q);
}
static void gl_draw_triangle_clip(GLContext *c, GLVertex *p0, GLVertex *p1, GLVertex *p2, int clip_bit);
void gl_draw_triangle(GLContext *c, GLVertex *p0, GLVertex *p1, GLVertex *p2) {
int co, c_and, cc[3], front;
float norm;
cc[0] = p0->clip_code;
cc[1] = p1->clip_code;
cc[2] = p2->clip_code;
co = cc[0] | cc[1] | cc[2];
// we handle the non clipped case here to go faster
if (co == 0) {
norm = (float)(p1->zp.x - p0->zp.x) * (float)(p2->zp.y - p0->zp.y) -
(float)(p2->zp.x - p0->zp.x) * (float)(p1->zp.y - p0->zp.y);
if (norm == 0)
return;
front = norm < 0.0;
front = front ^ c->current_front_face;
// back face culling
if (c->cull_face_enabled) {
// most used case first */
if (c->current_cull_face == TGL_BACK) {
if (front == 0)
return;
c->draw_triangle_front(c, p0, p1, p2);
} else if (c->current_cull_face == TGL_FRONT) {
if (front != 0)
return;
c->draw_triangle_back(c, p0, p1, p2);
} else {
return;
}
} else {
// no culling
if (front) {
c->draw_triangle_front(c, p0, p1, p2);
} else {
c->draw_triangle_back(c, p0, p1, p2);
}
}
} else {
c_and = cc[0] & cc[1] & cc[2];
if (c_and == 0) {
gl_draw_triangle_clip(c, p0, p1, p2, 0);
}
}
}
static void gl_draw_triangle_clip(GLContext *c, GLVertex *p0, GLVertex *p1, GLVertex *p2, int clip_bit) {
int co, c_and, co1, cc[3], edge_flag_tmp, clip_mask;
GLVertex tmp1, tmp2, *q[3];
float tt;
cc[0] = p0->clip_code;
cc[1] = p1->clip_code;
cc[2] = p2->clip_code;
co = cc[0] | cc[1] | cc[2];
if (co == 0) {
gl_draw_triangle(c, p0, p1, p2);
} else {
c_and = cc[0] & cc[1] & cc[2];
// the triangle is completely outside
if (c_and != 0)
return;
// find the next direction to clip
while (clip_bit < 6 && (co & (1 << clip_bit)) == 0) {
clip_bit++;
}
// this test can be true only in case of rounding errors
if (clip_bit == 6) {
#if 0
printf("Error:\n");
printf("%f %f %f %f\n", p0->pc.X, p0->pc.Y, p0->pc.Z, p0->pc.W);
printf("%f %f %f %f\n", p1->pc.X, p1->pc.Y, p1->pc.Z, p1->pc.W);
printf("%f %f %f %f\n", p2->pc.X, p2->pc.Y, p2->pc.Z, p2->pc.W);
#endif
return;
}
clip_mask = 1 << clip_bit;
co1 = (cc[0] ^ cc[1] ^ cc[2]) & clip_mask;
if (co1) {
// one point outside
if (cc[0] & clip_mask) {
q[0] = p0; q[1] = p1; q[2] = p2;
} else if (cc[1] & clip_mask) {
q[0] = p1; q[1] = p2; q[2] = p0;
} else {
q[0] = p2; q[1] = p0; q[2] = p1;
}
tt = clip_proc[clip_bit](&tmp1.pc, &q[0]->pc, &q[1]->pc);
updateTmp(c, &tmp1, q[0], q[1], tt);
tt = clip_proc[clip_bit](&tmp2.pc, &q[0]->pc, &q[2]->pc);
updateTmp(c, &tmp2, q[0], q[2], tt);
tmp1.edge_flag = q[0]->edge_flag;
edge_flag_tmp = q[2]->edge_flag;
q[2]->edge_flag = 0;
gl_draw_triangle_clip(c, &tmp1, q[1], q[2], clip_bit + 1);
tmp2.edge_flag = 1;
tmp1.edge_flag = 0;
q[2]->edge_flag = edge_flag_tmp;
gl_draw_triangle_clip(c, &tmp2, &tmp1, q[2], clip_bit + 1);
} else {
// two points outside
if ((cc[0] & clip_mask) == 0) {
q[0] = p0; q[1] = p1; q[2] = p2;
} else if ((cc[1] & clip_mask) == 0) {
q[0] = p1; q[1] = p2; q[2] = p0;
} else {
q[0] = p2; q[1] = p0; q[2] = p1;
}
tt = clip_proc[clip_bit](&tmp1.pc, &q[0]->pc, &q[1]->pc);
updateTmp(c, &tmp1, q[0], q[1], tt);
tt = clip_proc[clip_bit](&tmp2.pc, &q[0]->pc, &q[2]->pc);
updateTmp(c, &tmp2, q[0], q[2], tt);
tmp1.edge_flag = 1;
tmp2.edge_flag = q[2]->edge_flag;
gl_draw_triangle_clip(c, q[0], &tmp1, &tmp2, clip_bit + 1);
}
}
}
void gl_draw_triangle_select(GLContext *c, GLVertex *p0, GLVertex *p1, GLVertex *p2) {
gl_add_select1(c, p0->zp.z, p1->zp.z, p2->zp.z);
}
#ifdef TINYGL_PROFILE
int count_triangles, count_triangles_textured, count_pixels;
#endif
void gl_draw_triangle_fill(GLContext *c, GLVertex *p0, GLVertex *p1, GLVertex *p2) {
#ifdef TINYGL_PROFILE
{
int norm;
assert(p0->zp.x >= 0 && p0->zp.x < c->fb->xsize);
assert(p0->zp.y >= 0 && p0->zp.y < c->fb->ysize);
assert(p1->zp.x >= 0 && p1->zp.x < c->fb->xsize);
assert(p1->zp.y >= 0 && p1->zp.y < c->fb->ysize);
assert(p2->zp.x >= 0 && p2->zp.x < c->fb->xsize);
assert(p2->zp.y >= 0 && p2->zp.y < c->fb->ysize);
norm = (p1->zp.x - p0->zp.x) * (p2->zp.y - p0->zp.y) -
(p2->zp.x - p0->zp.x) * (p1->zp.y - p0->zp.y);
count_pixels += abs(norm) / 2;
count_triangles++;
}
#endif
if (c->color_mask == 0) {
// FIXME: Accept more than just 0 or 1.
c->fb->fillTriangleDepthOnly(&p0->zp, &p1->zp, &p2->zp);
}
if (c->shadow_mode & 1) {
assert(c->fb->shadow_mask_buf);
c->fb->fillTriangleFlatShadowMask(&p0->zp, &p1->zp, &p2->zp);
} else if (c->shadow_mode & 2) {
assert(c->fb->shadow_mask_buf);
c->fb->fillTriangleFlatShadow(&p0->zp, &p1->zp, &p2->zp);
} else if (c->texture_2d_enabled && c->current_texture && c->current_texture->images[0].pixmap) {
#ifdef TINYGL_PROFILE
count_triangles_textured++;
#endif
c->fb->setTexture(c->current_texture->images[0].pixmap, c->texture_wrap_s, c->texture_wrap_t);
if (c->current_shade_model == TGL_SMOOTH) {
c->fb->fillTriangleTextureMappingPerspectiveSmooth(&p0->zp, &p1->zp, &p2->zp);
} else {
c->fb->fillTriangleTextureMappingPerspectiveFlat(&p0->zp, &p1->zp, &p2->zp);
}
} else if (c->current_shade_model == TGL_SMOOTH) {
c->fb->fillTriangleSmooth(&p0->zp, &p1->zp, &p2->zp);
} else {
c->fb->fillTriangleFlat(&p0->zp, &p1->zp, &p2->zp);
}
}
// Render a clipped triangle in line mode
void gl_draw_triangle_line(GLContext *c, GLVertex *p0, GLVertex *p1, GLVertex *p2) {
if (c->depth_test) {
if (p0->edge_flag)
c->fb->fillLineZ(&p0->zp, &p1->zp);
if (p1->edge_flag)
c->fb->fillLineZ(&p1->zp, &p2->zp);
if (p2->edge_flag)
c->fb->fillLineZ(&p2->zp, &p0->zp);
} else {
if (p0->edge_flag)
c->fb->fillLine(&p0->zp, &p1->zp);
if (p1->edge_flag)
c->fb->fillLine(&p1->zp, &p2->zp);
if (p2->edge_flag)
c->fb->fillLine(&p2->zp, &p0->zp);
}
}
// Render a clipped triangle in point mode
void gl_draw_triangle_point(GLContext *c, GLVertex *p0, GLVertex *p1, GLVertex *p2) {
if (p0->edge_flag)
c->fb->plot(&p0->zp);
if (p1->edge_flag)
c->fb->plot(&p1->zp);
if (p2->edge_flag)
c->fb->plot(&p2->zp);
}
} // end of namespace TinyGL