mirror of
https://github.com/libretro/scummvm.git
synced 2024-12-29 13:16:18 +00:00
8cdee5a931
svn-id: r21500
664 lines
16 KiB
C++
664 lines
16 KiB
C++
/* ScummVM - Scumm Interpreter
|
|
* Copyright (C) 2001-2006 The ScummVM project
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* $URL$
|
|
* $Id$
|
|
*/
|
|
|
|
#include "common/stdafx.h"
|
|
#include "common/scummsys.h"
|
|
#include "common/endian.h"
|
|
#include "common/util.h"
|
|
|
|
namespace Scumm {
|
|
|
|
namespace BundleCodecs {
|
|
|
|
uint32 decode12BitsSample(const byte *src, byte **dst, uint32 size) {
|
|
uint32 loop_size = size / 3;
|
|
uint32 s_size = loop_size * 4;
|
|
byte *ptr = *dst = (byte *)malloc(s_size);
|
|
assert(ptr);
|
|
|
|
uint32 tmp;
|
|
while (loop_size--) {
|
|
byte v1 = *src++;
|
|
byte v2 = *src++;
|
|
byte v3 = *src++;
|
|
tmp = ((((v2 & 0x0f) << 8) | v1) << 4) - 0x8000;
|
|
WRITE_BE_UINT16(ptr, tmp); ptr += 2;
|
|
tmp = ((((v2 & 0xf0) << 4) | v3) << 4) - 0x8000;
|
|
WRITE_BE_UINT16(ptr, tmp); ptr += 2;
|
|
}
|
|
return s_size;
|
|
}
|
|
|
|
/*
|
|
* The "IMC" codec below (see cases 13 & 15 in decompressCodec) is actually a
|
|
* variant of the IMA codec, see also
|
|
* <http://www.multimedia.cx/simpleaudio.html>
|
|
*
|
|
* It is somewhat different, though: the standard ADPCM codecs use a fixed
|
|
* size for their data packets (4 bits), while the codec implemented here
|
|
* varies the size of each "packet" between 2 and 7 bits.
|
|
*/
|
|
|
|
static byte _imcTableEntryBitCount[89];
|
|
|
|
#ifdef PALMOS_68K
|
|
static const int16 *imcTable;
|
|
#else
|
|
static const int16 imcTable[89] = {
|
|
7, 8, 9, 10, 11, 12, 13, 14,
|
|
16, 17, 19, 21, 23, 25, 28, 31,
|
|
34, 37, 41, 45, 50, 55, 60, 66,
|
|
73, 80, 88, 97, 107, 118, 130, 143,
|
|
157, 173, 190, 209, 230, 253, 279, 307,
|
|
337, 371, 408, 449, 494, 544, 598, 658,
|
|
724, 796, 876, 963, 1060, 1166, 1282, 1411,
|
|
1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024,
|
|
3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484,
|
|
7132, 7845, 8630, 9493,10442,11487,12635,13899,
|
|
15289,16818,18500,20350,22385,24623,27086,29794,
|
|
32767
|
|
};
|
|
#endif
|
|
|
|
static const byte imxOtherTable[6][64] = {
|
|
{
|
|
0xFF,
|
|
4
|
|
},
|
|
|
|
{
|
|
0xFF, 0xFF,
|
|
2, 8
|
|
},
|
|
|
|
{
|
|
0xFF, 0xFF, 0xFF, 0xFF,
|
|
1, 2, 4, 6
|
|
},
|
|
|
|
{
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
1, 2, 4, 6, 8, 12, 16, 32
|
|
},
|
|
|
|
{
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
1, 2, 4, 6, 8, 10, 12, 14,
|
|
16, 18, 20, 22, 24, 26, 28, 32
|
|
},
|
|
|
|
{
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
1, 2, 3, 4, 5, 6, 7, 8,
|
|
9, 10, 11, 12, 13, 14, 15, 16,
|
|
17, 18, 19, 20, 21, 22, 23, 24,
|
|
25, 26, 27, 28, 29, 30, 31, 32
|
|
}
|
|
};
|
|
|
|
void initializeImcTables() {
|
|
int pos;
|
|
|
|
for (pos = 0; pos < ARRAYSIZE(imcTable); ++pos) {
|
|
byte put = 0;
|
|
int32 tableValue = ((imcTable[pos] * 4) / 7) / 2;
|
|
while (tableValue != 0) {
|
|
tableValue /= 2;
|
|
put++;
|
|
}
|
|
if (put < 2) {
|
|
put = 2;
|
|
}
|
|
if (put > 7) {
|
|
put = 7;
|
|
}
|
|
_imcTableEntryBitCount[pos] = put;
|
|
}
|
|
}
|
|
|
|
#define NextBit \
|
|
do { \
|
|
bit = mask & 1; \
|
|
mask >>= 1; \
|
|
if (!--bitsleft) { \
|
|
mask = READ_LE_UINT16(srcptr); \
|
|
srcptr += 2; \
|
|
bitsleft = 16; \
|
|
} \
|
|
} while (0)
|
|
|
|
static int32 compDecode(byte *src, byte *dst) {
|
|
byte *result, *srcptr = src, *dstptr = dst;
|
|
int data, size, bit, bitsleft = 16, mask = READ_LE_UINT16(srcptr);
|
|
srcptr += 2;
|
|
|
|
for (;;) {
|
|
NextBit;
|
|
if (bit) {
|
|
*dstptr++ = *srcptr++;
|
|
} else {
|
|
NextBit;
|
|
if (!bit) {
|
|
NextBit;
|
|
size = bit << 1;
|
|
NextBit;
|
|
size = (size | bit) + 3;
|
|
data = *srcptr++ | 0xffffff00;
|
|
} else {
|
|
data = *srcptr++;
|
|
size = *srcptr++;
|
|
|
|
data |= 0xfffff000 + ((size & 0xf0) << 4);
|
|
size = (size & 0x0f) + 3;
|
|
|
|
if (size == 3)
|
|
if (((*srcptr++) + 1) == 1)
|
|
return dstptr - dst;
|
|
}
|
|
result = dstptr + data;
|
|
while (size--)
|
|
*dstptr++ = *result++;
|
|
}
|
|
}
|
|
}
|
|
#undef NextBit
|
|
|
|
int32 decompressCodec(int32 codec, byte *comp_input, byte *comp_output, int32 input_size) {
|
|
int32 output_size, channels;
|
|
int32 offset1, offset2, offset3, length, k, c, s, j, r, t, z;
|
|
byte *src, *t_table, *p, *ptr;
|
|
byte t_tmp1, t_tmp2;
|
|
|
|
switch (codec) {
|
|
case 0:
|
|
memcpy(comp_output, comp_input, input_size);
|
|
output_size = input_size;
|
|
break;
|
|
|
|
case 1:
|
|
output_size = compDecode(comp_input, comp_output);
|
|
break;
|
|
|
|
case 2:
|
|
output_size = compDecode(comp_input, comp_output);
|
|
p = comp_output;
|
|
for (z = 1; z < output_size; z++)
|
|
p[z] += p[z - 1];
|
|
break;
|
|
|
|
case 3:
|
|
output_size = compDecode(comp_input, comp_output);
|
|
p = comp_output;
|
|
for (z = 2; z < output_size; z++)
|
|
p[z] += p[z - 1];
|
|
for (z = 1; z < output_size; z++)
|
|
p[z] += p[z - 1];
|
|
break;
|
|
|
|
case 4:
|
|
output_size = compDecode(comp_input, comp_output);
|
|
p = comp_output;
|
|
for (z = 2; z < output_size; z++)
|
|
p[z] += p[z - 1];
|
|
for (z = 1; z < output_size; z++)
|
|
p[z] += p[z - 1];
|
|
|
|
t_table = (byte *)malloc(output_size);
|
|
assert(t_table);
|
|
|
|
src = comp_output;
|
|
length = (output_size << 3) / 12;
|
|
k = 0;
|
|
if (length > 0) {
|
|
c = -12;
|
|
s = 0;
|
|
j = 0;
|
|
do {
|
|
ptr = src + length + (k >> 1);
|
|
t_tmp2 = src[j];
|
|
if (k & 1) {
|
|
r = c >> 3;
|
|
t_table[r + 2] = ((t_tmp2 & 0x0f) << 4) | (ptr[1] >> 4);
|
|
t_table[r + 1] = (t_tmp2 & 0xf0) | (t_table[r + 1]);
|
|
} else {
|
|
r = s >> 3;
|
|
t_table[r + 0] = ((t_tmp2 & 0x0f) << 4) | (ptr[0] & 0x0f);
|
|
t_table[r + 1] = t_tmp2 >> 4;
|
|
}
|
|
s += 12;
|
|
c += 12;
|
|
k++;
|
|
j++;
|
|
} while (k < length);
|
|
}
|
|
offset1 = ((length - 1) * 3) >> 1;
|
|
t_table[offset1 + 1] = (t_table[offset1 + 1]) | (src[length - 1] & 0xf0);
|
|
memcpy(src, t_table, output_size);
|
|
free(t_table);
|
|
break;
|
|
|
|
case 5:
|
|
output_size = compDecode(comp_input, comp_output);
|
|
p = comp_output;
|
|
for (z = 2; z < output_size; z++)
|
|
p[z] += p[z - 1];
|
|
for (z = 1; z < output_size; z++)
|
|
p[z] += p[z - 1];
|
|
|
|
t_table = (byte *)malloc(output_size);
|
|
assert(t_table);
|
|
|
|
src = comp_output;
|
|
length = (output_size << 3) / 12;
|
|
k = 1;
|
|
c = 0;
|
|
s = 12;
|
|
t_table[0] = src[length] >> 4;
|
|
t = length + k;
|
|
j = 1;
|
|
if (t > k) {
|
|
do {
|
|
t_tmp1 = *(src + length + (k >> 1));
|
|
t_tmp2 = src[j - 1];
|
|
if (k & 1) {
|
|
r = c >> 3;
|
|
t_table[r + 0] = (t_tmp2 & 0xf0) | t_table[r];
|
|
t_table[r + 1] = ((t_tmp2 & 0x0f) << 4) | (t_tmp1 & 0x0f);
|
|
} else {
|
|
r = s >> 3;
|
|
t_table[r + 0] = t_tmp2 >> 4;
|
|
t_table[r - 1] = ((t_tmp2 & 0x0f) << 4) | (t_tmp1 >> 4);
|
|
}
|
|
s += 12;
|
|
c += 12;
|
|
k++;
|
|
j++;
|
|
} while (k < t);
|
|
}
|
|
memcpy(src, t_table, output_size);
|
|
free(t_table);
|
|
break;
|
|
|
|
case 6:
|
|
output_size = compDecode(comp_input, comp_output);
|
|
p = comp_output;
|
|
for (z = 2; z < output_size; z++)
|
|
p[z] += p[z - 1];
|
|
for (z = 1; z < output_size; z++)
|
|
p[z] += p[z - 1];
|
|
|
|
t_table = (byte *)malloc(output_size);
|
|
assert(t_table);
|
|
|
|
src = comp_output;
|
|
length = (output_size << 3) / 12;
|
|
k = 0;
|
|
c = 0;
|
|
j = 0;
|
|
s = -12;
|
|
t_table[0] = src[output_size - 1];
|
|
t_table[output_size - 1] = src[length - 1];
|
|
t = length - 1;
|
|
if (t > 0) {
|
|
do {
|
|
t_tmp1 = *(src + length + (k >> 1));
|
|
t_tmp2 = src[j];
|
|
if (k & 1) {
|
|
r = s >> 3;
|
|
t_table[r + 2] = (t_tmp2 & 0xf0) | t_table[r + 2];
|
|
t_table[r + 3] = ((t_tmp2 & 0x0f) << 4) | (t_tmp1 >> 4);
|
|
} else {
|
|
r = c >> 3;
|
|
t_table[r + 2] = t_tmp2 >> 4;
|
|
t_table[r + 1] = ((t_tmp2 & 0x0f) << 4) | (t_tmp1 & 0x0f);
|
|
}
|
|
s += 12;
|
|
c += 12;
|
|
k++;
|
|
j++;
|
|
} while (k < t);
|
|
}
|
|
memcpy(src, t_table, output_size);
|
|
free(t_table);
|
|
break;
|
|
|
|
case 10:
|
|
output_size = compDecode(comp_input, comp_output);
|
|
p = comp_output;
|
|
for (z = 2; z < output_size; z++)
|
|
p[z] += p[z - 1];
|
|
for (z = 1; z < output_size; z++)
|
|
p[z] += p[z - 1];
|
|
|
|
t_table = (byte *)malloc(output_size);
|
|
assert(t_table);
|
|
memcpy(t_table, p, output_size);
|
|
|
|
offset1 = output_size / 3;
|
|
offset2 = offset1 << 1;
|
|
offset3 = offset2;
|
|
src = comp_output;
|
|
|
|
while (offset1--) {
|
|
offset2 -= 2;
|
|
offset3--;
|
|
t_table[offset2 + 0] = src[offset1];
|
|
t_table[offset2 + 1] = src[offset3];
|
|
}
|
|
|
|
src = comp_output;
|
|
length = (output_size << 3) / 12;
|
|
k = 0;
|
|
if (length > 0) {
|
|
c = -12;
|
|
s = 0;
|
|
do {
|
|
j = length + (k >> 1);
|
|
t_tmp1 = t_table[k];
|
|
if (k & 1) {
|
|
r = c >> 3;
|
|
t_tmp2 = t_table[j + 1];
|
|
src[r + 2] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 >> 4);
|
|
src[r + 1] = (src[r + 1]) | (t_tmp1 & 0xf0);
|
|
} else {
|
|
r = s >> 3;
|
|
t_tmp2 = t_table[j];
|
|
src[r + 0] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f);
|
|
src[r + 1] = t_tmp1 >> 4;
|
|
}
|
|
s += 12;
|
|
c += 12;
|
|
k++;
|
|
} while (k < length);
|
|
}
|
|
offset1 = ((length - 1) * 3) >> 1;
|
|
src[offset1 + 1] = (t_table[length] & 0xf0) | src[offset1 + 1];
|
|
free(t_table);
|
|
break;
|
|
|
|
case 11:
|
|
output_size = compDecode(comp_input, comp_output);
|
|
p = comp_output;
|
|
for (z = 2; z < output_size; z++)
|
|
p[z] += p[z - 1];
|
|
for (z = 1; z < output_size; z++)
|
|
p[z] += p[z - 1];
|
|
|
|
t_table = (byte *)malloc(output_size);
|
|
assert(t_table);
|
|
memcpy(t_table, p, output_size);
|
|
|
|
offset1 = output_size / 3;
|
|
offset2 = offset1 << 1;
|
|
offset3 = offset2;
|
|
src = comp_output;
|
|
|
|
while (offset1--) {
|
|
offset2 -= 2;
|
|
offset3--;
|
|
t_table[offset2 + 0] = src[offset1];
|
|
t_table[offset2 + 1] = src[offset3];
|
|
}
|
|
|
|
src = comp_output;
|
|
length = (output_size << 3) / 12;
|
|
k = 1;
|
|
c = 0;
|
|
s = 12;
|
|
t_tmp1 = t_table[length] >> 4;
|
|
src[0] = t_tmp1;
|
|
t = length + k;
|
|
if (t > k) {
|
|
do {
|
|
j = length + (k >> 1);
|
|
t_tmp1 = t_table[k - 1];
|
|
t_tmp2 = t_table[j];
|
|
if (k & 1) {
|
|
r = c >> 3;
|
|
src[r + 0] = (src[r]) | (t_tmp1 & 0xf0);
|
|
src[r + 1] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f);
|
|
} else {
|
|
r = s >> 3;
|
|
src[r + 0] = t_tmp1 >> 4;
|
|
src[r - 1] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 >> 4);
|
|
}
|
|
s += 12;
|
|
c += 12;
|
|
k++;
|
|
} while (k < t);
|
|
}
|
|
free(t_table);
|
|
break;
|
|
|
|
case 12:
|
|
output_size = compDecode(comp_input, comp_output);
|
|
p = comp_output;
|
|
for (z = 2; z < output_size; z++)
|
|
p[z] += p[z - 1];
|
|
for (z = 1; z < output_size; z++)
|
|
p[z] += p[z - 1];
|
|
|
|
t_table = (byte *)malloc(output_size);
|
|
assert(t_table);
|
|
memcpy(t_table, p, output_size);
|
|
|
|
offset1 = output_size / 3;
|
|
offset2 = offset1 << 1;
|
|
offset3 = offset2;
|
|
src = comp_output;
|
|
|
|
while (offset1--) {
|
|
offset2 -= 2;
|
|
offset3--;
|
|
t_table[offset2 + 0] = src[offset1];
|
|
t_table[offset2 + 1] = src[offset3];
|
|
}
|
|
|
|
src = comp_output;
|
|
length = (output_size << 3) / 12;
|
|
k = 0;
|
|
c = 0;
|
|
s = -12;
|
|
src[0] = t_table[output_size - 1];
|
|
src[output_size - 1] = t_table[length - 1];
|
|
t = length - 1;
|
|
if (t > 0) {
|
|
do {
|
|
j = length + (k >> 1);
|
|
t_tmp1 = t_table[k];
|
|
t_tmp2 = t_table[j];
|
|
if (k & 1) {
|
|
r = s >> 3;
|
|
src[r + 2] = (src[r + 2]) | (t_tmp1 & 0xf0);
|
|
src[r + 3] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 >> 4);
|
|
} else {
|
|
r = c >> 3;
|
|
src[r + 2] = t_tmp1 >> 4;
|
|
src[r + 1] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f);
|
|
}
|
|
s += 12;
|
|
c += 12;
|
|
k++;
|
|
} while (k < t);
|
|
}
|
|
free(t_table);
|
|
break;
|
|
|
|
case 13:
|
|
case 15:
|
|
if (codec == 13) {
|
|
channels = 1;
|
|
} else {
|
|
channels = 2;
|
|
}
|
|
|
|
{
|
|
// Decoder for the the IMA ADPCM variants used in COMI.
|
|
// Contrary to regular IMA ADPCM, this codec uses a variable
|
|
// bitsize for the encoded data.
|
|
|
|
const int MAX_CHANNELS = 2;
|
|
int32 outputSamplesLeft;
|
|
int32 destPos;
|
|
int16 firstWord;
|
|
byte initialTablePos[MAX_CHANNELS] = {0, 0};
|
|
int32 initialimcTableEntry[MAX_CHANNELS] = {7, 7};
|
|
int32 initialOutputWord[MAX_CHANNELS] = {0, 0};
|
|
int32 totalBitOffset, curTablePos, outputWord;
|
|
byte *dst;
|
|
int i;
|
|
|
|
// We only support mono and stereo
|
|
assert(channels == 1 || channels == 2);
|
|
|
|
src = comp_input;
|
|
dst = comp_output;
|
|
output_size = 0x2000;
|
|
outputSamplesLeft = 0x1000;
|
|
|
|
// Every data packet contains 0x2000 bytes of audio data
|
|
// when extracted. In order to encode bigger data sets,
|
|
// one has to split the data into multiple blocks.
|
|
//
|
|
// Every block starts with a 2 byte word. If that word is
|
|
// non-zero, it indicates the size of a block of raw audio
|
|
// data (not encoded) following it. That data we simply copy
|
|
// to the output buffer and the proceed by decoding the
|
|
// remaining data.
|
|
//
|
|
// If on the other hand the word is zero, then what follows
|
|
// are 7*channels bytes containing seed data for the decoder.
|
|
firstWord = READ_BE_UINT16(src);
|
|
src += 2;
|
|
if (firstWord != 0) {
|
|
// Copy raw data
|
|
memcpy(dst, src, firstWord);
|
|
dst += firstWord;
|
|
src += firstWord;
|
|
assert((firstWord & 1) == 0);
|
|
outputSamplesLeft -= firstWord / 2;
|
|
} else {
|
|
// Read the seed values for the decoder.
|
|
for (i = 0; i < channels; i++) {
|
|
initialTablePos[i] = *src;
|
|
src += 1;
|
|
initialimcTableEntry[i] = READ_BE_UINT32(src);
|
|
src += 4;
|
|
initialOutputWord[i] = READ_BE_UINT32(src);
|
|
src += 4;
|
|
}
|
|
}
|
|
|
|
totalBitOffset = 0;
|
|
// The channels are encoded separately.
|
|
for (int chan = 0; chan < channels; chan++) {
|
|
// Read initial state (this makes it possible for the data stream
|
|
// to be split & spread across multiple data chunks.
|
|
curTablePos = initialTablePos[chan];
|
|
//imcTableEntry = initialimcTableEntry[chan];
|
|
outputWord = initialOutputWord[chan];
|
|
|
|
// We need to interleave the channels in the output; we achieve
|
|
// that by using a variables dest offset:
|
|
destPos = chan * 2;
|
|
|
|
const int bound = (channels == 1)
|
|
? outputSamplesLeft
|
|
: ((chan == 0)
|
|
? (outputSamplesLeft+1) / 2
|
|
: outputSamplesLeft / 2);
|
|
for (i = 0; i < bound; ++i) {
|
|
// Determine the size (in bits) of the next data packet
|
|
const int32 curTableEntryBitCount = _imcTableEntryBitCount[curTablePos];
|
|
assert(2 <= curTableEntryBitCount && curTableEntryBitCount <= 7);
|
|
|
|
// Read the next data packet
|
|
const byte *readPos = src + (totalBitOffset >> 3);
|
|
const uint16 readWord = (uint16)(READ_BE_UINT16(readPos) << (totalBitOffset & 7));
|
|
const byte packet = (byte)(readWord >> (16 - curTableEntryBitCount));
|
|
|
|
// Advance read position to the next data packet
|
|
totalBitOffset += curTableEntryBitCount;
|
|
|
|
// Decode the data packet into a delta value for the output signal.
|
|
const byte signBitMask = (1 << (curTableEntryBitCount - 1));
|
|
const byte dataBitMask = (signBitMask - 1);
|
|
const byte data = (packet & dataBitMask);
|
|
|
|
int32 delta = imcTable[curTablePos] * (2 * data + 1) >> (curTableEntryBitCount - 1);
|
|
|
|
// The topmost bit in the data packet tells is a sign bit
|
|
if ((packet & signBitMask) != 0) {
|
|
delta = -delta;
|
|
}
|
|
|
|
// Accumulate the delta onto the output data
|
|
outputWord += delta;
|
|
|
|
// Clip outputWord to 16 bit signed, and write it into the destination stream
|
|
if (outputWord > 0x7fff)
|
|
outputWord = 0x7fff;
|
|
if (outputWord < -0x8000)
|
|
outputWord = -0x8000;
|
|
WRITE_BE_UINT16(dst + destPos, outputWord);
|
|
destPos += channels << 1;
|
|
|
|
// Adjust the curTablePos
|
|
curTablePos += (int8)imxOtherTable[curTableEntryBitCount - 2][data];
|
|
if (curTablePos < 0)
|
|
curTablePos = 0;
|
|
else if (curTablePos >= ARRAYSIZE(imcTable))
|
|
curTablePos = ARRAYSIZE(imcTable) - 1;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
error("BundleCodecs::decompressCodec() Unknown codec %d!", (int)codec);
|
|
output_size = 0;
|
|
break;
|
|
}
|
|
|
|
return output_size;
|
|
}
|
|
|
|
} // End of namespace BundleCodecs
|
|
|
|
} // End of namespace Scumm
|
|
|
|
#ifdef PALMOS_68K
|
|
#include "scumm_globals.h"
|
|
|
|
_GINIT(DimuseCodecs)
|
|
_GSETPTR(Scumm::BundleCodecs::imcTable, GBVARS_IMCTABLE_INDEX, int16, GBVARS_SCUMM)
|
|
_GEND
|
|
|
|
_GRELEASE(DimuseCodecs)
|
|
_GRELEASEPTR(GBVARS_IMCTABLE_INDEX, GBVARS_SCUMM)
|
|
_GEND
|
|
|
|
#endif
|