2003-04-07 16:04:30 +00:00

929 lines
23 KiB
C++

/* ScummVM - Scumm Interpreter
* Copyright (C) 2002-2003 The ScummVM project
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* $Header$
*/
#include "stdafx.h"
#include "scumm.h"
#include "scummsys.h"
#include "bundle.h"
#include "file.h"
const int16 imcTable[] = {
0x0007, 0x0008, 0x0009, 0x000A, 0x000B, 0x000C, 0x000D, 0x000E, 0x0010, 0x0011,
0x0013, 0x0015, 0x0017, 0x0019, 0x001C, 0x001F, 0x0022, 0x0025, 0x0029, 0x002D,
0x0032, 0x0037, 0x003C, 0x0042, 0x0049, 0x0050, 0x0058, 0x0061, 0x006B, 0x0076,
0x0082, 0x008F, 0x009D, 0x00AD, 0x00BE, 0x00D1, 0x00E6, 0x00FD, 0x0117, 0x0133,
0x0151, 0x0173, 0x0198, 0x01C1, 0x01EE, 0x0220, 0x0256, 0x0292, 0x02D4, 0x031C,
0x036C, 0x03C3, 0x0424, 0x048E, 0x0502, 0x0583, 0x0610, 0x06AB, 0x0756, 0x0812,
0x08E0, 0x09C3, 0x0ABD, 0x0BD0, 0x0CFF, 0x0E4C, 0x0FBA, 0x114C, 0x1307, 0x14EE,
0x1706, 0x1954, 0x1BDC, 0x1EA5, 0x21B6, 0x2515, 0x28CA, 0x2CDF, 0x315B, 0x364B,
0x3BB9, 0x41B2, 0x4844, 0x4F7E, 0x5771, 0x602F, 0x69CE, 0x7462, 0x7FFF
};
const byte imxOtherTable[6][128] = {
{
0xFF, 0x04, 0xFF, 0x04
},
{
0xFF, 0xFF, 0x02, 0x08, 0xFF, 0xFF, 0x02, 0x08
},
{
0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x04, 0x06,
0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x04, 0x06
},
{
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x01, 0x02, 0x04, 0x06, 0x08, 0x0C, 0x10, 0x20,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x01, 0x02, 0x04, 0x06, 0x08, 0x0C, 0x10, 0x20
},
{
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x01, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E,
0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x20,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x01, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E,
0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x20
},
{
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,
0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,
0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20
}
};
const byte imxShortTable[] = {
0, 0, 1, 3, 7, 15, 31, 63
};
Bundle::Bundle() {
_lastSong = -1;
_initializedImcTables = false;
_bundleVoiceTable = NULL;
_bundleMusicTable = NULL;
}
Bundle::~Bundle() {
if (_bundleVoiceTable)
free(_bundleVoiceTable);
if (_bundleMusicTable)
free(_bundleMusicTable);
}
void Bundle::initializeImcTables() {
if (_initializedImcTables == true)
return;
int32 destTablePos = 0;
int32 imcTable1Pos = 0;
do {
byte put = 1;
int32 tableValue = ((imcTable[imcTable1Pos] << 2) / 7) >> 1;
if (tableValue != 0) {
do {
tableValue >>= 1;
put++;
} while (tableValue != 0);
}
if (put < 3) {
put = 3;
}
if (put > 8) {
put = 8;
}
put--;
_destImcTable[destTablePos] = put;
destTablePos++;
} while (++imcTable1Pos <= 88);
_destImcTable[89] = 0;
for (int n = 0; n < 64; n++) {
imcTable1Pos = 0;
destTablePos = n;
do {
int32 count = 32;
int32 put = 0;
int32 tableValue = imcTable[imcTable1Pos];
do {
if ((count & n) != 0) {
put += tableValue;
}
count >>= 1;
tableValue >>= 1;
} while (count != 0);
_destImcTable2[destTablePos] = put;
destTablePos += 64;
} while (++imcTable1Pos <= 88);
}
_initializedImcTables = true;
}
bool Bundle::openVoiceFile(const char *filename, const char *directory) {
int32 tag, offset;
initializeImcTables();
if (_voiceFile.isOpen() == true)
return true;
if (_voiceFile.open(filename, directory) == false) {
warning("Bundle: Can't open voice bundle file: %s", filename);
return false;
}
tag = _voiceFile.readUint32BE();
offset = _voiceFile.readUint32BE();
_numVoiceFiles = _voiceFile.readUint32BE();
_bundleVoiceTable = (BundleAudioTable *) malloc(_numVoiceFiles * sizeof(BundleAudioTable));
_voiceFile.seek(offset, SEEK_SET);
for (int32 i = 0; i < _numVoiceFiles; i++) {
char name[13], c;
int32 z = 0;
int32 z2;
for (z2 = 0; z2 < 8; z2++)
if ((c = _voiceFile.readByte()) != 0)
name[z++] = c;
name[z++] = '.';
for (z2 = 0; z2 < 4; z2++)
if ((c = _voiceFile.readByte()) != 0)
name[z++] = c;
name[z] = '\0';
strcpy(_bundleVoiceTable[i].filename, name);
_bundleVoiceTable[i].offset = _voiceFile.readUint32BE();
_bundleVoiceTable[i].size = _voiceFile.readUint32BE();
}
return true;
}
bool Bundle::openMusicFile(const char *filename, const char *directory) {
int32 tag, offset;
initializeImcTables();
if (_musicFile.isOpen() == true)
return true;
if (_musicFile.open(filename, directory) == false) {
warning("Bundle: Can't open music bundle file: %s", filename);
return false;
}
tag = _musicFile.readUint32BE();
offset = _musicFile.readUint32BE();
_numMusicFiles = _musicFile.readUint32BE();
_bundleMusicTable = (BundleAudioTable *) malloc(_numMusicFiles * sizeof(BundleAudioTable));
_musicFile.seek(offset, SEEK_SET);
for (int32 i = 0; i < _numMusicFiles; i++) {
char name[13], c;
int z = 0;
int z2;
for (z2 = 0; z2 < 8; z2++)
if ((c = _musicFile.readByte()) != 0)
name[z++] = c;
name[z++] = '.';
for (z2 = 0; z2 < 4; z2++)
if ((c = _musicFile.readByte()) != 0)
name[z++] = c;
name[z] = '\0';
strcpy(_bundleMusicTable[i].filename, name);
_bundleMusicTable[i].offset = _musicFile.readUint32BE();
_bundleMusicTable[i].size = _musicFile.readUint32BE();
}
return true;
}
int32 Bundle::decompressVoiceSampleByIndex(int32 index, byte **comp_final) {
int32 i, tag, num, final_size, output_size;
byte *comp_input, *comp_output;
if (_voiceFile.isOpen() == false) {
warning("Bundle: voice file is not open!");
return 0;
}
_voiceFile.seek(_bundleVoiceTable[index].offset, SEEK_SET);
tag = _voiceFile.readUint32BE();
num = _voiceFile.readUint32BE();
_voiceFile.readUint32BE();
_voiceFile.readUint32BE();
if (tag != MKID_BE('COMP')) {
warning("Bundle: Compressed sound %d invalid (%c%c%c%c)", index, tag >> 24, tag >> 16, tag >> 8, tag);
return 0;
}
if (_compVoiceTable)
free(_compVoiceTable);
_compVoiceTable = (CompTable *)malloc(sizeof(CompTable) * num);
for (i = 0; i < num; i++) {
_compVoiceTable[i].offset = _voiceFile.readUint32BE();
_compVoiceTable[i].size = _voiceFile.readUint32BE();
_compVoiceTable[i].codec = _voiceFile.readUint32BE();
_voiceFile.readUint32BE();
}
final_size = 0;
comp_output = (byte *)malloc(0x2000);
*comp_final = (byte *)malloc(0x2000 * num);
for (i = 0; i < num; i++) {
// CMI hack: one more zero byte at the end of input buffer
comp_input = (byte *)malloc(_compVoiceTable[i].size + 1);
comp_input[_compVoiceTable[i].size] = 0;
_voiceFile.seek(_bundleVoiceTable[index].offset + _compVoiceTable[i].offset, SEEK_SET);
_voiceFile.read(comp_input, _compVoiceTable[i].size);
output_size = decompressCodec(_compVoiceTable[i].codec, comp_input, comp_output, _compVoiceTable[i].size);
assert(output_size <= 0x2000);
memcpy(*comp_final + final_size, comp_output, output_size);
final_size += output_size;
free(comp_input);
}
free(comp_output);
return final_size;
}
int32 Bundle::decompressMusicSampleByIndex(int32 index, int32 number, byte *comp_final) {
int32 i = 0;
int tag, num, final_size;
byte *comp_input;
if (_musicFile.isOpen() == false) {
warning("Bundle: music file is not open!");
return 0;
}
if (_lastSong != index) {
_musicFile.seek(_bundleMusicTable[index].offset, SEEK_SET);
tag = _musicFile.readUint32BE();
num = _musicFile.readUint32BE();
_musicFile.readUint32BE();
_musicFile.readUint32BE();
if (tag != MKID_BE('COMP')) {
warning("Bundle: Compressed sound %d invalid (%c%c%c%c)", index, tag >> 24, tag >> 16, tag >> 8, tag);
return 0;
}
if (_compMusicTable)
free(_compMusicTable);
_compMusicTable = (CompTable *)malloc(sizeof(CompTable) * num);
for (i = 0; i < num; i++) {
_compMusicTable[i].offset = _musicFile.readUint32BE();
_compMusicTable[i].size = _musicFile.readUint32BE();
_compMusicTable[i].codec = _musicFile.readUint32BE();
_musicFile.readUint32BE();
}
_lastSong = index;
}
// CMI hack: one more zero byte at the end of input buffer
comp_input = (byte *)malloc(_compMusicTable[number].size + 1);
comp_input[_compMusicTable[number].size] = 0;
_musicFile.seek(_bundleMusicTable[index].offset + _compMusicTable[number].offset, SEEK_SET);
_musicFile.read(comp_input, _compMusicTable[number].size);
final_size = decompressCodec(_compMusicTable[number].codec, comp_input, comp_final, _compMusicTable[number].size);
free(comp_input);
return final_size;
}
int32 Bundle::decompressVoiceSampleByName(char *name, byte **comp_final) {
int32 final_size = 0, i;
if (_voiceFile.isOpen() == false) {
warning("Bundle: voice file is not open!");
return 0;
}
for (i = 0; i < _numVoiceFiles; i++) {
if (!scumm_stricmp(name, _bundleVoiceTable[i].filename)) {
final_size = decompressVoiceSampleByIndex(i, comp_final);
return final_size;
}
}
debug(2, "Failed finding voice %s", name);
return final_size;
}
int32 Bundle::decompressMusicSampleByName(char *name, int32 number, byte *comp_final) {
int32 final_size = 0, i;
if (!name) {
warning("Bundle: decompressMusicSampleByName called with no name!");
return 0;
}
if (_musicFile.isOpen() == false) {
warning("Bundle: music file is not open!");
return 0;
}
for (i = 0; i < _numMusicFiles; i++) {
if (!scumm_stricmp(name, _bundleMusicTable[i].filename)) {
final_size = decompressMusicSampleByIndex(i, number, comp_final);
return final_size;
}
}
warning("Couldn't find sample %s", name);
return final_size;
}
int32 Bundle::getNumberOfMusicSamplesByIndex(int32 index) {
if (_musicFile.isOpen() == false) {
warning("Bundle: music file is not open!");
return 0;
}
_musicFile.seek(_bundleMusicTable[index].offset, SEEK_SET);
_musicFile.readUint32BE();
return _musicFile.readUint32BE();
}
int32 Bundle::getNumberOfMusicSamplesByName(char *name) {
int32 number = 0, i;
if (_musicFile.isOpen() == false) {
warning("Bundle: music file is not open!");
return 0;
}
for (i = 0; i < _numMusicFiles; i++) {
if (!scumm_stricmp(name, _bundleMusicTable[i].filename)) {
number = getNumberOfMusicSamplesByIndex(i);
return number;
}
}
warning("Couldn't find numsample %s\n", name);
return number;
}
#define NextBit bit = mask & 1; mask >>= 1; \
if (!--bitsleft) { \
mask = READ_LE_UINT16(srcptr); \
srcptr += 2; \
bitsleft = 16; \
}
int32 Bundle::compDecode(byte *src, byte *dst) {
byte *result, *srcptr = src, *dstptr = dst;
int data, size, bit, bitsleft = 16, mask = READ_LE_UINT16(srcptr);
srcptr += 2;
while (1) {
NextBit if (bit) {
*dstptr++ = *srcptr++;
} else {
NextBit if (!bit) {
NextBit size = bit << 1;
NextBit size = (size | bit) + 3;
data = *srcptr++ | 0xffffff00;
} else {
data = *srcptr++;
size = *srcptr++;
data |= 0xfffff000 + ((size & 0xf0) << 4);
size = (size & 0x0f) + 3;
if (size == 3)
if (((*srcptr++) + 1) == 1)
return dstptr - dst;
}
result = dstptr + data;
while (size--)
*dstptr++ = *result++;
}
}
}
#undef NextBit
int32 Bundle::decompressCodec(int32 codec, byte *comp_input, byte *comp_output, int32 input_size) {
int32 output_size, channels;
int32 offset1, offset2, offset3, length, k, c, s, j, r, t, z;
byte *src, *t_table, *p, *ptr;
byte t_tmp1, t_tmp2;
switch (codec) {
case 0:
memcpy(comp_output, comp_input, input_size);
output_size = input_size;
break;
case 1:
output_size = compDecode(comp_input, comp_output);
break;
case 2:
output_size = compDecode(comp_input, comp_output);
p = comp_output;
for (z = 1; z < output_size; z++)
p[z] += p[z - 1];
break;
case 3:
output_size = compDecode(comp_input, comp_output);
p = comp_output;
for (z = 2; z < output_size; z++)
p[z] += p[z - 1];
for (z = 1; z < output_size; z++)
p[z] += p[z - 1];
break;
case 4:
output_size = compDecode(comp_input, comp_output);
p = comp_output;
for (z = 2; z < output_size; z++)
p[z] += p[z - 1];
for (z = 1; z < output_size; z++)
p[z] += p[z - 1];
t_table = (byte *)malloc(output_size);
memset(t_table, 0, output_size);
src = comp_output;
length = (output_size * 8) / 12;
k = 0;
if (length > 0) {
c = -12;
s = 0;
j = 0;
do {
ptr = src + length + (k >> 1);
if (k & 1) {
r = c >> 3;
t_table[r + 2] = ((src[j] & 0x0f) << 4) | (ptr[1] >> 4);
t_table[r + 1] = (src[j] & 0xf0) | (t_table[r + 1]);
} else {
r = s >> 3;
t_table[r + 0] = ((src[j] & 0x0f) << 4) | (ptr[0] & 0x0f);
t_table[r + 1] = src[j] >> 4;
}
s += 12;
c += 12;
k++;
j++;
} while (k < length);
}
offset1 = ((length - 1) * 3) / 2;
t_table[offset1 + 1] = (t_table[offset1 + 1]) | (src[length - 1] & 0xf0);
memcpy(src, t_table, output_size);
free(t_table);
break;
case 5:
output_size = compDecode(comp_input, comp_output);
p = comp_output;
for (z = 2; z < output_size; z++)
p[z] += p[z - 1];
for (z = 1; z < output_size; z++)
p[z] += p[z - 1];
t_table = (byte *)malloc(output_size);
memset(t_table, 0, output_size);
src = comp_output;
length = (output_size * 8) / 12;
k = 1;
c = 0;
s = 12;
t_table[0] = src[length] / 16;
t = length + k;
j = 1;
if (t > k) {
do {
ptr = src + length + (k >> 1);
if (k & 1) {
r = c >> 3;
t_table[r + 0] = (src[j - 1] & 0xf0) | t_table[r];
t_table[r + 1] = ((src[j - 1] & 0x0f) << 4) | (ptr[0] & 0x0f);
} else {
r = s >> 3;
t_table[r + 0] = src[j - 1] >> 4;
t_table[r - 1] = ((src[j - 1] & 0x0f) << 4) | (ptr[0] >> 4);
}
s += 12;
c += 12;
k++;
j++;
} while (k < t);
}
memcpy(src, t_table, output_size);
free(t_table);
break;
case 6:
output_size = compDecode(comp_input, comp_output);
p = comp_output;
for (z = 2; z < output_size; z++)
p[z] += p[z - 1];
for (z = 1; z < output_size; z++)
p[z] += p[z - 1];
t_table = (byte *)malloc(output_size);
memset(t_table, 0, output_size);
src = comp_output;
length = (output_size * 8) / 12;
k = 0;
c = 0;
j = 0;
s = -12;
t_table[0] = src[output_size - 1];
t_table[output_size - 1] = src[length - 1];
t = length - 1;
if (t > 0) {
do {
ptr = src + length + (k >> 1);
if (k & 1) {
r = s >> 3;
t_table[r + 2] = (src[j] & 0xf0) | *(t_table + r + 2);
t_table[r + 3] = ((src[j] & 0x0f) << 4) | (ptr[0] >> 4);
} else {
r = c >> 3;
t_table[r + 2] = src[j] >> 4;
t_table[r + 1] = ((src[j] & 0x0f) << 4) | (ptr[0] & 0x0f);
}
s += 12;
c += 12;
k++;
j++;
} while (k < t);
}
memcpy(src, t_table, output_size);
free(t_table);
break;
case 10:
output_size = compDecode(comp_input, comp_output);
p = comp_output;
for (z = 2; z < output_size; z++)
p[z] += p[z - 1];
for (z = 1; z < output_size; z++)
p[z] += p[z - 1];
t_table = (byte *)malloc(output_size);
memcpy(t_table, p, output_size);
offset1 = output_size / 3;
offset2 = offset1 * 2;
offset3 = offset2;
src = comp_output;
do {
if (offset1 == 0)
break;
offset1--;
offset2 -= 2;
offset3--;
t_table[offset2 + 0] = src[offset1];
t_table[offset2 + 1] = src[offset3];
} while (1);
src = comp_output;
length = (output_size * 8) / 12;
k = 0;
if (length > 0) {
c = -12;
s = 0;
do {
j = length + (k >> 1);
if (k & 1) {
r = c >> 3;
t_tmp1 = t_table[k];
t_tmp2 = t_table[j + 1];
src[r + 2] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 >> 4);
src[r + 1] = (src[r + 1]) | (t_tmp1 & 0xf0);
} else {
r = s >> 3;
t_tmp1 = t_table[k];
t_tmp2 = t_table[j];
src[r + 0] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f);
src[r + 1] = t_tmp1 >> 4;
}
s += 12;
c += 12;
k++;
} while (k < length);
}
offset1 = ((length - 1) * 3) / 2;
src[offset1 + 1] = (t_table[length] & 0xf0) | src[offset1 + 1];
free(t_table);
break;
case 11:
output_size = compDecode(comp_input, comp_output);
p = comp_output;
for (z = 2; z < output_size; z++)
p[z] += p[z - 1];
for (z = 1; z < output_size; z++)
p[z] += p[z - 1];
t_table = (byte *)malloc(output_size);
memcpy(t_table, p, output_size);
offset1 = output_size / 3;
offset2 = offset1 * 2;
offset3 = offset2;
src = comp_output;
do {
if (offset1 == 0)
break;
offset1--;
offset2 -= 2;
offset3--;
t_table[offset2 + 0] = src[offset1];
t_table[offset2 + 1] = src[offset3];
} while (1);
src = comp_output;
length = (output_size * 8) / 12;
k = 1;
c = 0;
s = 12;
t_tmp1 = t_table[length] / 16;
src[0] = t_tmp1;
t = length + k;
if (t > k) {
do {
j = length + (k / 2);
if (k & 1) {
r = c >> 3;
t_tmp1 = t_table[k - 1];
t_tmp2 = t_table[j];
src[r + 0] = (src[r]) | (t_tmp1 & 0xf0);
src[r + 1] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f);
} else {
r = s >> 3;
t_tmp1 = t_table[k - 1];
t_tmp2 = t_table[j];
src[r + 0] = t_tmp1 >> 4;
src[r - 1] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 >> 4);
}
s += 12;
c += 12;
k++;
} while (k < t);
}
free(t_table);
break;
case 12:
output_size = compDecode(comp_input, comp_output);
p = comp_output;
for (z = 2; z < output_size; z++)
p[z] += p[z - 1];
for (z = 1; z < output_size; z++)
p[z] += p[z - 1];
t_table = (byte *)malloc(output_size);
memcpy(t_table, p, output_size);
offset1 = output_size / 3;
offset2 = offset1 * 2;
offset3 = offset2;
src = comp_output;
do {
if (offset1 == 0)
break;
offset1--;
offset2 -= 2;
offset3--;
t_table[offset2 + 0] = src[offset1];
t_table[offset2 + 1] = src[offset3];
} while (1);
src = comp_output;
length = (output_size * 8) / 12;
k = 0;
c = 0;
s = -12;
src[0] = t_table[output_size - 1];
src[output_size - 1] = t_table[length - 1];
t = length - 1;
if (t > 0) {
do {
j = length + (k >> 1);
if (k & 1) {
r = s >> 3;
t_tmp1 = t_table[k];
t_tmp2 = t_table[j];
src[r + 2] = (src[r + 2]) | (t_tmp1 & 0xf0);
src[r + 3] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 >> 4);
} else {
r = c >> 3;
t_tmp1 = t_table[k];
t_tmp2 = t_table[j];
src[r + 2] = t_tmp1 >> 4;
src[r + 1] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f);
}
s += 12;
c += 12;
k++;
} while (k < t);
}
free(t_table);
break;
case 13:
case 15:
if (codec == 13) {
channels = 1;
} else {
channels = 2;
}
{
const int MAX_CHANNELS = 2;
int32 left, startPos, origLeft, curTableEntry, destPos, esiReg;
int16 firstWord;
byte sByte[MAX_CHANNELS] = {0, 0};
int32 sDWord1[MAX_CHANNELS] = {0, 0};
int32 sDWord2[MAX_CHANNELS] = {0, 0};
int32 tableEntrySum, imcTableEntry, curTablePos, outputWord, adder;
byte decompTable, otherTablePos, bitMask;
byte *readPos, *dst;
uint16 readWord;
assert(0 <= channels && channels <= MAX_CHANNELS);
src = comp_input;
dst = comp_output;
if (channels == 2) {
output_size = left = 0x2000;
} else {
left = 0x1000;
output_size = 0x2000;
}
firstWord = READ_BE_UINT16(src);
src += 2;
if (firstWord != 0) {
memcpy(dst, src, firstWord);
dst += firstWord;
src += firstWord;
startPos = 0;
if (channels == 2) {
left = 0x2000 - firstWord;
output_size = left;
} else {
left = 0x1000 - (firstWord >> 1);
output_size = left << 1;
}
} else {
startPos = 1;
for (int i = 0; i < channels; i++) {
sByte[i] = *(src++);
sDWord1[i] = READ_BE_UINT32(src);
src += 4;
sDWord2[i] = READ_BE_UINT32(src);
src += 4;
}
}
origLeft = left >> (channels - 1);
tableEntrySum = 0;
for (int l = 0; l < channels; l++) {
if (startPos != 0) {
curTablePos = sByte[l];
imcTableEntry = sDWord1[l];
outputWord = sDWord2[l];
} else {
curTablePos = 0;
imcTableEntry = 7;
outputWord = 0;
}
left = origLeft;
destPos = l * 2;
if (channels == 2) {
if (l == 0)
left++;
left >>= 1;
}
while (left--) {
curTableEntry = _destImcTable[curTablePos];
decompTable = curTableEntry - 2;
bitMask = 2 << decompTable;
readPos = src + (tableEntrySum >> 3);
// FIXME - it seems the decoder often reads exactly one byte too
// far - that is, it reads 2 bytes at once, and the second byte
// is just outside the buffer. However, it seems of these two bytes,
// only the upper one is actually used, so this should be fine.
// Still, I put this error message into place. If somebody one day
// encounters a situation where the second byte would be used, too,
// then this would indicate there is a bug in the decoder...
if (readPos + 1 >= comp_input + input_size) {
// OK an overflow... if it is more than one byte or if we
// need more than 8 bit of data -> error
if (readPos + 1 > comp_input + input_size ||
curTableEntry + (tableEntrySum & 7) > 8) {
error("decompressCodec: input buffer overflow: %d bytes over (we need %d bits of data)",
(int)((readPos+1) - (comp_input+input_size))+1,
curTableEntry + (tableEntrySum & 7)
);
}
}
readWord = (uint16)(READ_BE_UINT16(readPos) << (tableEntrySum & 7));
otherTablePos = (byte)(readWord >> (16 - curTableEntry));
tableEntrySum += curTableEntry;
esiReg = ((imxShortTable[curTableEntry] & otherTablePos)
<< (7 - curTableEntry)) + (curTablePos << 6);
imcTableEntry >>= (curTableEntry - 1);
adder = imcTableEntry + _destImcTable2[esiReg];
if ((otherTablePos & bitMask) != 0) {
adder = -adder;
}
outputWord += adder;
// Clip outputWord to 16 bit signed, and write it into the destination stream
if (outputWord > 0x7fff)
outputWord = 0x7fff;
if (outputWord < -0x8000)
outputWord = -0x8000;
dst[destPos] = ((int16)outputWord) >> 8;
dst[destPos + 1] = (byte)(outputWord);
// Adjust the curTablePos / imcTableEntry
assert(decompTable < 6);
curTablePos += (signed char)imxOtherTable[decompTable][otherTablePos];
if (curTablePos > 88)
curTablePos = 88;
if (curTablePos < 0)
curTablePos = 0;
imcTableEntry = imcTable[curTablePos];
destPos += channels << 1;
}
}
}
break;
default:
warning("Bundle: Unknown codec %d!", (int)codec);
output_size = 0;
break;
}
return output_size;
}