scummvm/engines/mads/palette.cpp
2015-05-31 09:21:23 +02:00

923 lines
24 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "common/scummsys.h"
#include "engines/util.h"
#include "graphics/palette.h"
#include "mads/mads.h"
#include "mads/msurface.h"
#include "mads/staticres.h"
namespace MADS {
#define VGA_COLOR_TRANS(x) ((x) * 255 / 63)
void RGB6::load(Common::SeekableReadStream *f) {
r = VGA_COLOR_TRANS(f->readByte());
g = VGA_COLOR_TRANS(f->readByte());
b = VGA_COLOR_TRANS(f->readByte());
_palIndex = f->readByte();
_u2 = f->readByte();
_flags = f->readByte();
}
/*------------------------------------------------------------------------*/
PaletteUsage::PaletteUsage(MADSEngine *vm) {
_vm = vm;
_data = nullptr;
}
void PaletteUsage::load(Common::Array<UsageEntry> *data) {
_data = data;
}
void PaletteUsage::getKeyEntries(Common::Array<RGB6> &palette) {
_data->clear();
for (uint i = 0; i < palette.size(); ++i) {
byte *uPtr = &palette[i]._flags;
if ((*uPtr & 0x10) && _data->size() < 3) {
_data->push_back(UsageEntry(i));
}
}
}
static bool sortHelper(const PaletteUsage::UsageEntry &ue1, const PaletteUsage::UsageEntry &ue2) {
return ue1._sortValue < ue2._sortValue;
}
void PaletteUsage::prioritize(Common::Array<RGB6> &palette) {
for (uint i = 0; i < _data->size(); ++i) {
RGB6 &palEntry = palette[(*_data)[i]._palIndex];
(*_data)[i]._sortValue = _vm->_palette->rgbMerge(palEntry);
}
Common::sort(_data->begin(), _data->end(), sortHelper);
}
static bool rangeSorter(const PaletteUsage::UsageRange &ur1, const PaletteUsage::UsageRange &ur2) {
return ur1._v2 < ur2._v2;
}
int PaletteUsage::process(Common::Array<RGB6> &palette, uint flags) {
int palLow;
int palHigh = (flags & 0x800) ? 0x100 : 0xFC;
int palIdx;
PaletteUsage tempUsage(_vm);
Common::Array<UsageEntry> tempUsageData;
tempUsage.load(&tempUsageData);
if (flags & 0x4000) {
palLow = 0;
palIdx = palHigh;
} else {
palLow = _vm->_palette->_lowRange;
if ((PALETTE_COUNT - _vm->_palette->_highRange) > palHigh) {
palIdx = palHigh;
} else {
palIdx = PALETTE_COUNT - _vm->_palette->_highRange;
}
}
int rgbIndex = _vm->_palette->_rgbList.scan();
uint32 rgbMask = 1 << rgbIndex;
bool noUsageFlag = flags & 0x8000;
bool hasUsage = _data != nullptr;
bool flag1 = false;
if (hasUsage) {
if (noUsageFlag || _data->size() == 0)
hasUsage = false;
if (noUsageFlag && _data->size() > 0)
flag1 = true;
}
if (hasUsage) {
tempUsage.getKeyEntries(palette);
tempUsage.prioritize(palette);
}
int freeIndex;
int palCount = getGamePalFreeIndex(&freeIndex);
Common::Array<UsageRange> palRange;
for (uint palIndex = 0; palIndex < palette.size(); ++palIndex) {
byte pal2 = palIndex;
byte pal1 = 0;
if (!(palette[palIndex]._flags & 0x80)) {
pal1 = 0x40;
}
if (palette[palIndex]._flags & 0x60) {
pal1 |= 0x20;
}
palRange.push_back(UsageRange(pal1, pal2));
}
Common::sort(palRange.begin(), palRange.end(), rangeSorter);
int var3A = (flags & 0x4000) ? 0xffff : 0xfffe;
for (uint palIndex = 0; palIndex < palette.size(); ++palIndex) {
bool changed = false;
int newPalIndex = 0xFF;
int v1 = palRange[palIndex]._v2;
if (palette[v1]._flags & 8) {
changed = true;
newPalIndex = 0xFD;
}
if (hasUsage && palette[v1]._flags & 0x10) {
for (uint usageIndex = 0; usageIndex < tempUsage._data->size() && !changed; ++usageIndex) {
if ((*tempUsage._data)[usageIndex]._palIndex == palIndex) {
changed = true;
int dataIndex = MIN(usageIndex, _data->size() - 1);
newPalIndex = (*_data)[dataIndex]._palIndex;
}
}
}
if (flag1 && palette[palIndex]._flags & 0x10) {
for (uint usageIndex = 0; usageIndex < _data->size() && !changed; ++usageIndex) {
if ((*_data)[usageIndex]._palIndex == palIndex) {
changed = true;
newPalIndex = 0xF0 + usageIndex;
// Copy data into the high end of the main palette
RGB6 &pSrc = palette[palIndex];
byte *pDest = &_vm->_palette->_mainPalette[newPalIndex * 3];
pDest[0] = pSrc.r;
pDest[1] = pSrc.g;
pDest[2] = pSrc.b;
}
}
}
if (!changed && !noUsageFlag) {
int bestHash = (palette[palIndex]._flags & 0x20) ||
(((flags & 0x2000) || (palette[palIndex]._flags & 0x40)) &&
((flags & 0x1000) || (palCount == 0))) ? 0x7fff : 1;
int var36 = (palette[palIndex]._flags & 0x80) ? 0 : 2;
for (int idx = palLow; idx < palIdx; ++idx) {
uint32 v = _vm->_palette->_palFlags[idx];
if ((v & var3A) && !(v & var36)) {
int hash;
if (bestHash > 1) {
hash = rgbFactor(&_vm->_palette->_mainPalette[idx * 3], palette[palIndex]);
} else if (_vm->_palette->_mainPalette[idx * 3] != palette[palIndex].r ||
_vm->_palette->_mainPalette[idx * 3 + 1] != palette[palIndex].g ||
_vm->_palette->_mainPalette[idx * 3 + 2] != palette[palIndex].b) {
hash = 1;
} else {
hash = 0;
}
if (bestHash > hash) {
changed = true;
newPalIndex = idx;
bestHash = hash;
}
}
}
}
if (!changed && (!(flags & 0x1000) || (!(palette[palIndex]._flags & 0x60) && !(flags & 0x2000)))) {
for (int idx = freeIndex; idx < palIdx && !changed; ++idx) {
if (!_vm->_palette->_palFlags[idx]) {
--palCount;
++freeIndex;
changed = true;
newPalIndex = idx;
RGB6 &pSrc = palette[palIndex];
byte *pDest = &_vm->_palette->_mainPalette[idx * 3];
pDest[0] = pSrc.r;
pDest[1] = pSrc.g;
pDest[2] = pSrc.b;
}
}
}
// TODO: Not sure if it's valid or not for changed flag to ever be false.
// In at least scene 318, when the doctor knocks you with the blackjack,
// the changed flag can be false
//assert(changed);
// CHECKME: When pressing on F1 in the first screen, newPalIndex is set to 0xFF at this point
// which is a valid value for the index. Maybe a better check would be "< 256" ?
//assert(newPalIndex != -1);
int var52 = (noUsageFlag && palette[palIndex]._u2) ? 2 : 0;
_vm->_palette->_palFlags[newPalIndex] |= var52 | rgbMask;
palette[palIndex]._palIndex = newPalIndex;
}
_vm->_palette->_rgbList[rgbIndex] = true;
return rgbIndex;
}
void PaletteUsage::transform(Common::Array<RGB6> &palette) {
if (!empty()) {
for (uint i = 0; i < _data->size(); ++i) {
int palIndex = (*_data)[i]._palIndex;
(*_data)[i]._palIndex = palette[palIndex]._palIndex;
}
}
}
void PaletteUsage::updateUsage(Common::Array<int> &usageList, int sceneUsageIndex) {
uint32 mask1 = 0xFFFFFFFF;
uint32 mask2 = 0;
for (uint idx = 0; idx < usageList.size(); ++idx) {
uint32 bitMask = 1 << usageList[idx];
mask1 ^= bitMask;
mask2 |= bitMask;
_vm->_palette->_rgbList[usageList[idx]] = false;
}
uint32 mask3 = 1 << sceneUsageIndex;
for (uint idx = 0; idx < PALETTE_COUNT; ++idx) {
uint32 mask = mask2 & _vm->_palette->_palFlags[idx];
if (mask) {
_vm->_palette->_palFlags[idx] = (_vm->_palette->_palFlags[idx] &
mask1) | mask3;
}
}
_vm->_palette->_rgbList[sceneUsageIndex] = true;
}
void PaletteUsage::resetPalFlags(int idx) {
if (idx >= 0 && idx < 32) {
uint32 rgbMask = ~(1 << idx);
uint32 *flagP = _vm->_palette->_palFlags;
for (int i = 0; i < 256; ++i, ++flagP) {
*flagP &= rgbMask;
if (*flagP == 2)
*flagP = 0;
}
_vm->_palette->_rgbList[idx] = false;
}
}
int PaletteUsage::getGamePalFreeIndex(int *palIndex) {
*palIndex = -1;
int count = 0;
for (int i = 0; i < PALETTE_COUNT; ++i) {
if (!_vm->_palette->_palFlags[i]) {
++count;
if (*palIndex < 0)
*palIndex = i;
}
}
return count;
}
int PaletteUsage::rgbFactor(byte *palEntry, RGB6 &pal6) {
int total = 0;
total += (palEntry[0] - pal6.r) * (palEntry[0] - pal6.r);
total += (palEntry[1] - pal6.g) * (palEntry[1] - pal6.g);
total += (palEntry[2] - pal6.b) * (palEntry[2] - pal6.b);
return total;
}
int PaletteUsage::checkRGB(const byte *rgb, int palStart, bool flag, int *palIndex) {
Palette &palette = *_vm->_palette;
bool match = false;
int result;
if (palStart >= 0) {
result = palStart;
} else {
result = -1;
for (int i = 0; i < palette._highRange; ++i) {
if (!palette._rgbList[i]) {
result = i;
break;
}
}
}
if (result >= 0) {
int mask = 1 << result;
byte *palP = &palette._mainPalette[0];
uint32 *flagsP = &palette._palFlags[0];
for (; flagsP < &palette._palFlags[PALETTE_COUNT]; ++flagsP, ++result) {
if ((!(*flagsP & 1) || flag) && !(*flagsP & 2)) {
if (!memcmp(palP, rgb, 3)) {
*flagsP |= mask;
if (palIndex)
*palIndex = result;
match = true;
break;
}
}
}
if (!match) {
palP = &palette._mainPalette[0];
flagsP = &palette._palFlags[0];
for (int i = 0; i < PALETTE_COUNT; ++i, palP += 3, ++flagsP) {
if (!*flagsP) {
Common::copy(rgb, rgb + 3, palP);
*flagsP |= mask;
if (palIndex)
*palIndex = i;
match = true;
break;
}
}
}
}
assert(match);
return result;
}
/*------------------------------------------------------------------------*/
void RGBList::clear() {
for (int i = 0; i < 32; i++)
_data[i] = false;
}
void RGBList::reset() {
for (int i = 2; i < 32; i++)
_data[i] = false;
}
int RGBList::scan() {
for (int i = 0; i < 32; ++i) {
if (!_data[i])
return i;
}
error("RGBList was full");
}
void RGBList::copy(RGBList &src) {
Common::copy(&src._data[0], &src._data[32], &_data[0]);
}
/*------------------------------------------------------------------------*/
Fader::Fader(MADSEngine *vm)
: _vm(vm) {
_colorFlags[0] = _colorFlags[1] = _colorFlags[2] = true;
_colorFlags[3] = false;
_colorValues[0] = _colorValues[1] = 0;
_colorValues[2] = _colorValues[3] = 0;
// TODO: It would be better if the fader routines could be refactored
// to work directly with 8-bit RGB values rather than 6-bit RGB values
Common::fill(&_rgb64Map[0], &_rgb64Map[PALETTE_COUNT], 0);
for (int i = 0; i < 64; ++i)
_rgb64Map[VGA_COLOR_TRANS(i)] = i;
byte v = 0;
for (int i = 0; i < PALETTE_COUNT; ++i) {
if (_rgb64Map[i])
v = _rgb64Map[i];
else
_rgb64Map[i] = v;
}
}
void Fader::setPalette(const byte *colors, uint start, uint num) {
g_system->getPaletteManager()->setPalette(colors, start, num);
}
void Fader::grabPalette(byte *colors, uint start, uint num) {
g_system->getPaletteManager()->grabPalette(colors, start, num);
}
void Fader::getFullPalette(byte palette[PALETTE_SIZE]) {
grabPalette(&palette[0], 0, PALETTE_COUNT);
}
void Fader::setFullPalette(byte palette[PALETTE_SIZE]) {
setPalette(&palette[0], 0, PALETTE_COUNT);
}
void Fader::fadeOut(byte palette[PALETTE_SIZE], byte *paletteMap,
int baseColor, int numColors, int baseGrey, int numGreys,
int tickDelay, int steps) {
GreyEntry map[PALETTE_COUNT];
int intensity;
byte palIndex[PALETTE_COUNT][3];
int8 signs[PALETTE_COUNT][3];
mapToGreyRamp(palette, baseColor, numColors, baseGrey, numGreys, map);
for (int palCtr = baseColor; palCtr < (baseColor + numColors); ++palCtr) {
int index = palCtr - baseColor;
for (int colorCtr = 0; colorCtr < 3; ++colorCtr) {
if (_colorFlags[colorCtr]) {
int shiftSign = _colorValues[colorCtr];
if (shiftSign >= 0) {
intensity = map[index]._intensity << shiftSign;
} else {
intensity = map[index]._intensity >> ABS(shiftSign);
}
} else {
intensity = _colorValues[colorCtr];
}
int diff = intensity - _rgb64Map[palette[palCtr * 3 + colorCtr]];
palIndex[palCtr][colorCtr] = (byte)ABS(diff);
signs[palCtr][colorCtr] = (diff == 0) ? 0 : (diff < 0 ? -1 : 1);
}
}
for (int stepCtr = 0; stepCtr < steps; ++stepCtr) {
for (int palCtr = baseColor; palCtr < (baseColor + numColors); ++palCtr) {
int index = palCtr - baseColor;
for (int colorCtr = 0; colorCtr < 3; ++colorCtr) {
map[index]._accum[colorCtr] += palIndex[palCtr][colorCtr];
while (map[index]._accum[colorCtr] >= steps) {
map[index]._accum[colorCtr] -= steps;
byte rgb63 = _rgb64Map[palette[palCtr * 3 + colorCtr]] +
signs[palCtr][colorCtr];
palette[palCtr * 3 + colorCtr] = VGA_COLOR_TRANS(rgb63);
}
}
}
setFullPalette(palette);
_vm->_events->waitForNextFrame();
}
if (paletteMap != nullptr) {
for (int palCtr = 0; palCtr < numColors; palCtr++) {
paletteMap[palCtr] = map[palCtr]._mapColor;
}
}
}
void Fader::fadeIn(byte palette[PALETTE_SIZE], byte destPalette[PALETTE_SIZE],
int baseColor, int numColors, int baseGrey, int numGreys,
int tickDelay, int steps) {
GreyEntry map[PALETTE_COUNT];
byte tempPal[PALETTE_SIZE];
int8 signs[PALETTE_COUNT][3];
byte palIndex[PALETTE_COUNT][3];
int intensity;
Common::copy(destPalette, destPalette + PALETTE_SIZE, tempPal);
mapToGreyRamp(tempPal, baseColor, numColors, baseGrey, numGreys, map);
for (int palCtr = baseColor; palCtr < (baseColor + numColors); ++palCtr) {
int index = palCtr - baseColor;
for (int colorCtr = 0; colorCtr < 3; ++colorCtr) {
if (_colorFlags[colorCtr]) {
int shiftSign = _colorValues[colorCtr];
if (shiftSign >= 0)
intensity = map[index]._intensity << shiftSign;
else
intensity = map[index]._intensity >> abs(shiftSign);
} else
intensity = _colorValues[colorCtr];
int diff = _rgb64Map[destPalette[palCtr * 3 + colorCtr]] - intensity;
palIndex[palCtr][colorCtr] = (byte)ABS(diff);
signs[palCtr][colorCtr] = (diff == 0) ? 0 : (diff < 0 ? -1 : 1);
map[index]._accum[colorCtr] = 0;
}
}
for (int stepCtr = 0; stepCtr < steps; ++stepCtr) {
for (int palCtr = baseColor; palCtr < (baseColor + numColors); ++palCtr) {
int index = palCtr - baseColor;
for (int colorCtr = 0; colorCtr < 3; ++colorCtr) {
map[index]._accum[colorCtr] += palIndex[palCtr][colorCtr];
while (map[index]._accum[colorCtr] >= steps) {
map[index]._accum[colorCtr] -= steps;
byte rgb63 = _rgb64Map[palette[palCtr * 3 + colorCtr]] +
signs[palCtr][colorCtr];
palette[palCtr * 3 + colorCtr] = VGA_COLOR_TRANS(rgb63);
}
}
}
setFullPalette(palette);
_vm->_events->waitForNextFrame();
}
}
void Fader::mapToGreyRamp(byte palette[PALETTE_SIZE], int baseColor, int numColors,
int baseGrey, int numGreys, GreyEntry *map) {
byte greyList[PALETTE_COUNT];
byte greyMapping[PALETTE_COUNT];
byte greyTable[64];
byte greyIntensity[64];
int intensity, shiftSign;
getGreyValues(palette, greyList, baseColor, numColors);
greyPopularity(greyList, greyTable, numColors);
for (int idx = 0; idx < numColors; ++idx) {
greyMapping[idx] = idx;
Common::fill(&map[idx]._accum[0], &map[idx]._accum[3], 0);
}
for (int idx = 0; idx < PALETTE_COUNT; ++idx) {
map[idx]._mapColor = (byte)idx;
}
// Sort the mapping lists
insertionSort(numColors, greyList, greyMapping);
// Initialize state variables
int greySum = 0;
int greyScan = 0;
int greyMark = 0;
int greyColors = 0;
int greyAccum = 0;
int firstColor = 0;
for (int greyCtr = 0; greyCtr < 64; ++greyCtr) {
for (int idx = 0; idx < greyTable[greyCtr]; ++idx) {
greySum += greyList[greyScan++];
++greyColors;
greyAccum += numGreys;
while (greyAccum >= numColors) {
greyAccum -= numColors;
if (greyColors > 0) {
greyIntensity[greyMark] = (byte)(greySum / greyColors);
}
for (int rescan = firstColor; rescan < greyScan; ++rescan) {
map[greyMapping[rescan]]._intensity = greyIntensity[greyMark];
map[greyMapping[rescan]]._mapColor = (byte)(greyMark + baseGrey);
}
firstColor = greyScan;
greySum = 0;
greyColors = 0;
++greyMark;
}
}
}
// Set the palette range of greyscale values to be used
byte *palP = &palette[baseGrey * 3];
for (int greys = 0; greys < numGreys; ++greys) {
for (int color = 0; color < 3; ++color) {
if (_colorFlags[color]) {
shiftSign = (byte)_colorValues[color];
if (shiftSign >= 0) {
intensity = greyIntensity[greys] << shiftSign;
} else {
intensity = greyIntensity[greys] >> abs(shiftSign);
}
} else {
intensity = _colorValues[color];
}
*palP++ = VGA_COLOR_TRANS(intensity);
}
}
}
void Fader::getGreyValues(const byte palette[PALETTE_SIZE],
byte greyList[PALETTE_COUNT], int baseColor, int numColors) {
const byte *palP = &palette[baseColor * 3];
for (int i = 0; i < numColors; ++i, palP += 3) {
int v = rgbMerge(palP[0], palP[1], palP[2]);
greyList[i] = v >> 7;
}
}
void Fader::greyPopularity(const byte greyList[PALETTE_COUNT],
byte greyTable[64], int numColors) {
Common::fill(&greyTable[0], &greyTable[64], 0);
for (int i = 0; i < numColors; ++i) {
int idx = greyList[i];
++greyTable[idx];
}
}
void Fader::insertionSort(int size, byte *id, byte *value) {
bool restartFlag;
int endIndex = size - 1;
do {
restartFlag = false;
if (endIndex <= 0)
break;
for (int arrIndex = 0; arrIndex < endIndex && !restartFlag; ++arrIndex) {
byte *idP = id + arrIndex;
byte *valueP = value + arrIndex;
// Check whether the next index is out of order with the one following it
if (*idP > *(idP + 1)) {
// Found an incorrect ordering
restartFlag = true;
// Save id/value at current index
byte savedId = *idP;
byte savedValue = *valueP;
int moveCount = size - arrIndex - 1;
if (moveCount > 0) {
Common::copy(idP + 1, idP + moveCount + 2, idP);
Common::copy(valueP + 1, valueP + moveCount + 2, valueP);
}
// Scan for insert spot
int idx = 0;
if (endIndex > 0) {
bool breakFlag = false;
for (; idx <= endIndex && !breakFlag; ++idx) {
breakFlag = savedId < id[idx];
}
}
// Set up an insert point for entry
moveCount = size - idx - 1;
if (moveCount > 0) {
Common::copy_backward(id + idx, id + idx + moveCount, id + idx + moveCount + 1);
Common::copy_backward(value + idx, value + idx + moveCount, value + idx + moveCount + 1);
}
// Set shifted values at the new position
id[idx] = savedId;
value[idx] = savedValue;
}
}
} while (restartFlag);
}
int Fader::rgbMerge(RGB6 &palEntry) {
return rgbMerge(palEntry.r, palEntry.g, palEntry.b);
}
int Fader::rgbMerge(byte r, byte g, byte b) {
return _rgb64Map[r] * 38 + _rgb64Map[g] * 76 + _rgb64Map[b] * 14;
}
/*------------------------------------------------------------------------*/
Palette::Palette(MADSEngine *vm) : Fader(vm), _paletteUsage(vm) {
_lockFl = false;
_lowRange = 0;
_highRange = 0;
Common::fill(&_mainPalette[0], &_mainPalette[PALETTE_SIZE], 0);
Common::fill(&_palFlags[0], &_palFlags[PALETTE_COUNT], 0);
}
void Palette::setEntry(byte palIndex, byte r, byte g, byte b) {
_mainPalette[palIndex * 3] = VGA_COLOR_TRANS(r);
_mainPalette[palIndex * 3 + 1] = VGA_COLOR_TRANS(g);
_mainPalette[palIndex * 3 + 2] = VGA_COLOR_TRANS(b);
setPalette((const byte *)&_mainPalette[palIndex * 3], palIndex, 1);
}
uint8 Palette::palIndexFromRgb(byte r, byte g, byte b, byte *paletteData) {
byte index = 0;
int32 minDist = 0x7fffffff;
byte palData[PALETTE_SIZE];
if (paletteData == NULL) {
g_system->getPaletteManager()->grabPalette(palData, 0, PALETTE_COUNT);
paletteData = &palData[0];
}
for (int palIndex = 0; palIndex < PALETTE_COUNT; ++palIndex) {
int Rdiff = r - paletteData[palIndex * 3];
int Gdiff = g - paletteData[palIndex * 3 + 1];
int Bdiff = b - paletteData[palIndex * 3 + 2];
if (Rdiff * Rdiff + Gdiff * Gdiff + Bdiff * Bdiff < minDist) {
minDist = Rdiff * Rdiff + Gdiff * Gdiff + Bdiff * Bdiff;
index = (uint8)palIndex;
}
}
return (uint8)index;
}
void Palette::setGradient(byte *palette, int start, int count, int rgbValue1, int rgbValue2) {
int rgbCurrent = rgbValue2;
int rgbDiff = -(rgbValue2 - rgbValue1);
if (count > 0) {
byte *pDest = palette + start * 3;
int endVal = count - 1;
int numLeft = count;
int rgbCtr = 0;
do {
pDest[0] = pDest[1] = pDest[2] = rgbCurrent;
if (numLeft > 1) {
rgbCtr += rgbDiff;
if (rgbCtr >= endVal) {
do {
++rgbCurrent;
rgbCtr += 1 - numLeft;
} while (rgbCtr >= endVal);
}
}
pDest += 3;
} while (--numLeft > 0);
}
}
void Palette::setSystemPalette() {
byte palData[4 * 3];
palData[0 * 3] = palData[0 * 3 + 1] = palData[0 * 3 + 2] = 0;
palData[1 * 3] = palData[1 * 3 + 1] = palData[1 * 3 + 2] = 0x54;
palData[2 * 3] = palData[2 * 3 + 1] = palData[2 * 3 + 2] = 0xb4;
palData[3 * 3] = palData[3 * 3 + 1] = palData[3 * 3 + 2] = 0xff;
setPalette(palData, 0, 4);
}
void Palette::resetGamePalette(int lowRange, int highRange) {
Common::fill((byte *)&_palFlags[0], (byte *)&_palFlags[PALETTE_COUNT], 0);
initVGAPalette(_mainPalette);
// Reserve the start of the palette for things like on-screen text
if (lowRange) {
Common::fill(&_palFlags[0], &_palFlags[lowRange], 1);
}
// Reserve the high end of the palette for dialog display
if (highRange) {
Common::fill(&_palFlags[256 - highRange], &_palFlags[256], 1);
}
_rgbList.clear();
_rgbList[0] = _rgbList[1] = true;
_lockFl = false;
_lowRange = lowRange;
_highRange = highRange;
}
void Palette::initPalette() {
uint32 palMask = 1;
if (_vm->_game->_player._spritesLoaded && _vm->_game->_player._numSprites) {
for (int idx = 0; idx < _vm->_game->_player._numSprites; ++idx) {
SpriteAsset *asset = _vm->_game->_scene._sprites[
_vm->_game->_player._spritesStart + idx];
uint32 mask = 1;
if (asset->_usageIndex)
mask <<= asset->_usageIndex;
palMask = mask;
}
}
for (int idx = 0; idx < PALETTE_COUNT; ++idx)
_palFlags[idx] = palMask;
_lockFl = false;
_rgbList.reset();
}
void Palette::initVGAPalette(byte *palette) {
byte *destP = palette;
for (int palIndex = 0; palIndex < 16; ++palIndex) {
for (int byteCtr = 2; byteCtr >= 0; --byteCtr)
*destP++ = ((DEFAULT_VGA_LOW_PALETTE[palIndex] >> (8 * byteCtr)) & 0xff) >> 2;
}
destP = &palette[0xF0 * 3];
for (int palIndex = 0; palIndex < 16; ++palIndex) {
for (int byteCtr = 2; byteCtr >= 0; --byteCtr)
*destP++ = ((DEFAULT_VGA_HIGH_PALETTE[palIndex] >> (8 * byteCtr)) & 0xff) >> 2;
}
}
void Palette::setLowRange() {
_mainPalette[0] = _mainPalette[1] = _mainPalette[2] = VGA_COLOR_TRANS(0);
_mainPalette[3] = _mainPalette[4] = _mainPalette[5] = VGA_COLOR_TRANS(0x15);
_mainPalette[6] = _mainPalette[7] = _mainPalette[8] = VGA_COLOR_TRANS(0x2A);
_mainPalette[9] = _mainPalette[10] = _mainPalette[11] = VGA_COLOR_TRANS(0x3F);
_vm->_palette->setPalette(_mainPalette, 0, 4);
}
void Palette::setColorFlags(byte r, byte g, byte b) {
_colorFlags[0] = r;
_colorFlags[1] = g;
_colorFlags[2] = b;
}
void Palette::setColorValues(byte r, byte g, byte b) {
_colorValues[0] = r;
_colorValues[1] = g;
_colorValues[2] = b;
}
void Palette::lock() {
if (_rgbList[31] && !_lockFl)
error("Palette Lock - Unexpected values");
_lockFl = true;
_rgbList[31] = true;
for (int i = 0; i < 256; i++) {
if (_palFlags[i])
_palFlags[i] |= 0x80000000;
}
}
void Palette::unlock() {
if (!_lockFl)
return;
for (int i = 0; i < 256; i++)
_palFlags[i] &= 0x7FFFFFFF;
_rgbList[31] = false;
_lockFl = false;
}
void Palette::refreshSceneColors() {
int val = 18;
if (_vm->_game->_scene._cyclingActive)
val += _vm->_game->_scene._totalCycleColors;
setPalette(_mainPalette + (val * 3), val, 256 - val);
}
int Palette::closestColor(const byte *matchColor, const byte *refPalette,
int paletteInc, int count) {
int bestColor = 0;
int bestDistance = 0x7fff;
for (int idx = 0; idx < count; ++idx) {
// Figure out figure for 'distance' between two colors
int distance = 0;
for (int rgbIdx = 0; rgbIdx < RGB_SIZE; ++rgbIdx) {
int diff = refPalette[rgbIdx] - matchColor[rgbIdx];
distance += diff * diff;
}
// If the given color is a closer match to our color, store the index
if (distance <= bestDistance) {
bestDistance = distance;
bestColor = idx;
}
refPalette += paletteInc;
}
return bestColor;
}
} // End of namespace MADS