scummvm/engines/agi/sound.cpp
2009-07-14 23:03:40 +00:00

1323 lines
41 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* $URL$
* $Id$
*
*/
#include "common/md5.h"
#include "common/config-manager.h"
#include "common/fs.h"
#include "common/algorithm.h"
#include "sound/mixer.h"
#include "agi/agi.h"
#include "agi/sound.h"
namespace Agi {
#define USE_INTERPOLATION
static bool g_useChorus = true;
//
// TODO: add support for variable sampling rate in the output device
//
AgiSound *AgiSound::createFromRawResource(uint8 *data, uint32 len, int resnum, SoundMgr &manager) {
if (data == NULL || len < 2) // Check for too small resource or no resource at all
return NULL;
uint16 type = READ_LE_UINT16(data);
switch (type) { // Create a sound object based on the type
case AGI_SOUND_SAMPLE:
return new IIgsSample(data, len, resnum, manager);
case AGI_SOUND_MIDI:
return new IIgsMidi (data, len, resnum, manager);
case AGI_SOUND_4CHN:
return new PCjrSound (data, len, resnum, manager);
}
warning("Sound resource (%d) has unknown type (0x%04x). Not using the sound", resnum, type);
return NULL;
}
IIgsMidi::IIgsMidi(uint8 *data, uint32 len, int resnum, SoundMgr &manager) : AgiSound(manager) {
_data = data; // Save the resource pointer
_ptr = _data + 2; // Set current position to just after the header
_len = len; // Save the resource's length
_type = READ_LE_UINT16(data); // Read sound resource's type
_midiTicks = _soundBufTicks = 0;
_isValid = (_type == AGI_SOUND_MIDI) && (_data != NULL) && (_len >= 2);
if (!_isValid) // Check for errors
warning("Error creating Apple IIGS midi sound from resource %d (Type %d, length %d)", resnum, _type, len);
}
PCjrSound::PCjrSound(uint8 *data, uint32 len, int resnum, SoundMgr &manager) : AgiSound(manager) {
_data = data; // Save the resource pointer
_len = len; // Save the resource's length
_type = READ_LE_UINT16(data); // Read sound resource's type
_isValid = (_type == AGI_SOUND_4CHN) && (_data != NULL) && (_len >= 2);
if (!_isValid) // Check for errors
warning("Error creating PCjr 4-channel sound from resource %d (Type %d, length %d)", resnum, _type, len);
}
const uint8 *PCjrSound::getVoicePointer(uint voiceNum) {
assert(voiceNum < 4);
uint16 voiceStartOffset = READ_LE_UINT16(_data + voiceNum * 2);
return _data + voiceStartOffset;
}
IIgsSample::IIgsSample(uint8 *data, uint32 len, int resnum, SoundMgr &manager) : AgiSound(manager) {
Common::MemoryReadStream stream(data, len, true);
// Check that the header was read ok and that it's of the correct type
if (_header.read(stream) && _header.type == AGI_SOUND_SAMPLE) { // An Apple IIGS AGI sample resource
uint32 sampleStartPos = stream.pos();
uint32 tailLen = stream.size() - sampleStartPos;
if (tailLen < _header.sampleSize) { // Check if there's no room for the sample data in the stream
// Apple IIGS Manhunter I: Sound resource 16 has only 16074 bytes
// of sample data although header says it should have 16384 bytes.
warning("Apple IIGS sample (%d) too short (%d bytes. Should be %d bytes). Using the part that's left",
resnum, tailLen, _header.sampleSize);
_header.sampleSize = (uint16) tailLen; // Use the part that's left
}
if (_header.pitch > 0x7F) { // Check if the pitch is invalid
warning("Apple IIGS sample (%d) has too high pitch (0x%02x)", resnum, _header.pitch);
_header.pitch &= 0x7F; // Apple IIGS AGI probably did it this way too
}
// Finalize the header info using the 8-bit unsigned sample data
_header.finalize(stream);
// Convert sample data from 8-bit unsigned to 8-bit signed format
stream.seek(sampleStartPos);
_sample = new int8[_header.sampleSize];
if (_sample != NULL)
_isValid = SoundMgr::convertWave(stream, _sample, _header.sampleSize);
}
if (!_isValid) // Check for errors
warning("Error creating Apple IIGS sample from resource %d (Type %d, length %d)", resnum, _header.type, len);
}
/** Reads an Apple IIGS envelope from then given stream. */
bool IIgsEnvelope::read(Common::SeekableReadStream &stream) {
for (int segNum = 0; segNum < ENVELOPE_SEGMENT_COUNT; segNum++) {
seg[segNum].bp = stream.readByte();
seg[segNum].inc = stream.readUint16LE();
}
return !(stream.eos() || stream.err());
}
/** Reads an Apple IIGS wave information structure from the given stream. */
bool IIgsWaveInfo::read(Common::SeekableReadStream &stream, bool ignoreAddr) {
top = stream.readByte();
addr = stream.readByte() * 256;
size = (1 << (stream.readByte() & 7)) * 256;
// Read packed mode byte and parse it into parts
byte packedModeByte = stream.readByte();
channel = (packedModeByte >> 4) & 1; // Bit 4
mode = (packedModeByte >> 1) & 3; // Bits 1-2
halt = (packedModeByte & 1) != 0; // Bit 0 (Converted to boolean)
relPitch = stream.readSint16LE();
// Zero the wave address if we want to ignore the wave address info
if (ignoreAddr)
addr = 0;
return !(stream.eos() || stream.err());
}
bool IIgsWaveInfo::finalize(Common::SeekableReadStream &uint8Wave) {
uint32 startPos = uint8Wave.pos(); // Save stream's starting position
uint8Wave.seek(addr, SEEK_CUR); // Seek to wave's address
// Calculate the true sample size (A zero ends the sample prematurely)
uint trueSize = size; // Set a default value for the result
for (uint i = 0; i < size; i++) {
if (uint8Wave.readByte() == 0) {
trueSize = i;
// A zero in the sample stream turns off looping
// (At least that's what MESS 0.117 and KEGS32 0.91 seem to do)
if (mode == OSC_MODE_LOOP)
mode = OSC_MODE_ONESHOT;
break;
}
}
size = trueSize; // Set the true sample size
uint8Wave.seek(startPos); // Seek back to the stream's starting position
return true;
}
bool IIgsOscillator::finalize(Common::SeekableReadStream &uint8Wave) {
for (uint i = 0; i < WAVES_PER_OSCILLATOR; i++)
if (!waves[i].finalize(uint8Wave))
return false;
return true;
}
bool IIgsOscillatorList::read(Common::SeekableReadStream &stream, uint oscillatorCount, bool ignoreAddr) {
// First read the A waves and then the B waves for the oscillators
for (uint waveNum = 0; waveNum < WAVES_PER_OSCILLATOR; waveNum++)
for (uint oscNum = 0; oscNum < oscillatorCount; oscNum++)
if (!osc[oscNum].waves[waveNum].read(stream, ignoreAddr))
return false;
count = oscillatorCount; // Set the oscillator count
return true;
}
bool IIgsOscillatorList::finalize(Common::SeekableReadStream &uint8Wave) {
for (uint i = 0; i < count; i++)
if (!osc[i].finalize(uint8Wave))
return false;
return true;
}
bool IIgsInstrumentHeader::read(Common::SeekableReadStream &stream, bool ignoreAddr) {
env.read(stream);
relseg = stream.readByte();
/*byte priority =*/ stream.readByte(); // Not needed? 32 in all tested data.
bendrange = stream.readByte();
vibdepth = stream.readByte();
vibspeed = stream.readByte();
/*byte spare =*/ stream.readByte(); // Not needed? 0 in all tested data.
byte wac = stream.readByte(); // Read A wave count
byte wbc = stream.readByte(); // Read B wave count
oscList.read(stream, wac, ignoreAddr); // Read the oscillators
return (wac == wbc) && !(stream.eos() || stream.err()); // A and B wave counts must match
}
bool IIgsInstrumentHeader::finalize(Common::SeekableReadStream &uint8Wave) {
return oscList.finalize(uint8Wave);
}
bool IIgsSampleHeader::read(Common::SeekableReadStream &stream) {
type = stream.readUint16LE();
pitch = stream.readByte();
unknownByte_Ofs3 = stream.readByte();
volume = stream.readByte();
unknownByte_Ofs5 = stream.readByte();
instrumentSize = stream.readUint16LE();
sampleSize = stream.readUint16LE();
// Read the instrument header *ignoring* its wave address info
return instrument.read(stream, true);
}
bool IIgsSampleHeader::finalize(Common::SeekableReadStream &uint8Wave) {
return instrument.finalize(uint8Wave);
}
/** Older Apple IIGS AGI MIDI program change to instrument number mapping. */
static const MidiProgramChangeMapping progToInstMappingV1 = {
{19, 20, 22, 23, 21, 24, 5, 5, 5, 5,
6, 7, 10, 9, 11, 9, 15, 8, 5, 5,
17, 16, 18, 12, 14, 5, 5, 5, 5, 5,
0, 1, 2, 9, 3, 4, 15, 2, 2, 2,
25, 13, 13, 25},
5
};
/** Newer Apple IIGS AGI MIDI program change to instrument number mapping. */
static const MidiProgramChangeMapping progToInstMappingV2 = {
{21, 22, 24, 25, 23, 26, 6, 6, 6, 6,
7, 9, 12, 8, 13, 11, 17, 10, 6, 6,
19, 18, 20, 14, 16, 6, 6, 6, 6, 6,
0, 1, 2, 4, 3, 5, 17, 2, 2, 2,
27, 15, 15, 27},
6
};
/** Older Apple IIGS AGI instrument set. Used only by Space Quest I (AGI v1.002). */
static const InstrumentSetInfo instSetV1 = {
1192, 26, "7ee16bbc135171ffd6b9120cc7ff1af2", "edd3bf8905d9c238e02832b732fb2e18", progToInstMappingV1
};
/** Newer Apple IIGS AGI instrument set (AGI v1.003+). Used by all others than Space Quest I. */
static const InstrumentSetInfo instSetV2 = {
1292, 28, "b7d428955bb90721996de1cbca25e768", "c05fb0b0e11deefab58bc68fbd2a3d07", progToInstMappingV2
};
/** Information about different Apple IIGS AGI executables. */
static const IIgsExeInfo IIgsExeInfos[] = {
{GID_SQ1, "SQ", 0x1002, 138496, 0x80AD, instSetV1},
{GID_LSL1, "LL", 0x1003, 141003, 0x844E, instSetV2},
{GID_AGIDEMO, "DEMO", 0x1005, 141884, 0x8469, instSetV2},
{GID_KQ1, "KQ", 0x1006, 141894, 0x8469, instSetV2},
{GID_PQ1, "PQ", 0x1007, 141882, 0x8469, instSetV2},
{GID_MIXEDUP, "MG", 0x1013, 142552, 0x84B7, instSetV2},
{GID_KQ2, "KQ2", 0x1013, 143775, 0x84B7, instSetV2},
{GID_KQ3, "KQ3", 0x1014, 144312, 0x84B7, instSetV2},
{GID_SQ2, "SQ2", 0x1014, 107882, 0x6563, instSetV2},
{GID_MH1, "MH", 0x2004, 147678, 0x8979, instSetV2},
{GID_KQ4, "KQ4", 0x2006, 147652, 0x8979, instSetV2},
{GID_BC, "BC", 0x3001, 148192, 0x8979, instSetV2},
{GID_GOLDRUSH, "GR", 0x3003, 148268, 0x8979, instSetV2}
};
static const int16 waveformRamp[WAVEFORM_SIZE] = {
0, 8, 16, 24, 32, 40, 48, 56,
64, 72, 80, 88, 96, 104, 112, 120,
128, 136, 144, 152, 160, 168, 176, 184,
192, 200, 208, 216, 224, 232, 240, 255,
0, -248, -240, -232, -224, -216, -208, -200,
-192, -184, -176, -168, -160, -152, -144, -136,
-128, -120, -112, -104, -96, -88, -80, -72,
-64, -56, -48, -40, -32, -24, -16, -8 // Ramp up
};
static const int16 waveformSquare[WAVEFORM_SIZE] = {
255, 230, 220, 220, 220, 220, 220, 220,
220, 220, 220, 220, 220, 220, 220, 220,
220, 220, 220, 220, 220, 220, 220, 220,
220, 220, 220, 220, 220, 220, 220, 110,
-255, -230, -220, -220, -220, -220, -220, -220,
-220, -220, -220, -220, -220, -220, -220, -220,
-220, -220, -220, -220, -220, -220, -220, -220,
-220, -220, -220, -110, 0, 0, 0, 0 // Square
};
static const int16 waveformMac[WAVEFORM_SIZE] = {
45, 110, 135, 161, 167, 173, 175, 176,
156, 137, 123, 110, 91, 72, 35, -2,
-60, -118, -142, -165, -170, -176, -177, -179,
-177, -176, -164, -152, -117, -82, -17, 47,
92, 137, 151, 166, 170, 173, 171, 169,
151, 133, 116, 100, 72, 43, -7, -57,
-99, -141, -156, -170, -174, -177, -178, -179,
-175, -172, -165, -159, -137, -114, -67, -19
};
static const uint16 period[] = {
1024, 1085, 1149, 1218, 1290, 1367,
1448, 1534, 1625, 1722, 1825, 1933
};
#if 0
static int noteToPeriod(int note) {
return 10 * (period[note % 12] >> (note / 12 - 3));
}
#endif
void SoundMgr::unloadSound(int resnum) {
if (_vm->_game.dirSound[resnum].flags & RES_LOADED) {
if (_vm->_game.sounds[resnum]->isPlaying()) {
_vm->_game.sounds[resnum]->stop();
}
// Release the sound resource's data
delete _vm->_game.sounds[resnum];
_vm->_game.sounds[resnum] = NULL;
_vm->_game.dirSound[resnum].flags &= ~RES_LOADED;
}
}
void SoundMgr::startSound(int resnum, int flag) {
int i;
AgiSoundType type;
if (_vm->_game.sounds[resnum] != NULL && _vm->_game.sounds[resnum]->isPlaying())
return;
stopSound();
if (_vm->_game.sounds[resnum] == NULL) // Is this needed at all?
return;
type = (AgiSoundType)_vm->_game.sounds[resnum]->type();
if (type != AGI_SOUND_SAMPLE && type != AGI_SOUND_MIDI && type != AGI_SOUND_4CHN)
return;
_vm->_game.sounds[resnum]->play();
_playingSound = resnum;
debugC(3, kDebugLevelSound, "startSound(resnum = %d, flag = %d) type = %d", resnum, flag, type);
switch (type) {
case AGI_SOUND_SAMPLE: {
IIgsSample *sampleRes = (IIgsSample *) _vm->_game.sounds[_playingSound];
_gsSound.playSampleSound(sampleRes->getHeader(), sampleRes->getSample());
break;
}
case AGI_SOUND_MIDI:
((IIgsMidi *) _vm->_game.sounds[_playingSound])->rewind();
break;
case AGI_SOUND_4CHN:
PCjrSound *pcjrSound = (PCjrSound *) _vm->_game.sounds[resnum];
// Initialize channel info
for (i = 0; i < NUM_CHANNELS; i++) {
_chn[i].type = type;
_chn[i].flags = AGI_SOUND_LOOP;
if (_env) {
_chn[i].flags |= AGI_SOUND_ENVELOPE;
_chn[i].adsr = AGI_SOUND_ENV_ATTACK;
}
_chn[i].ins = _waveform;
_chn[i].size = WAVEFORM_SIZE;
_chn[i].ptr = pcjrSound->getVoicePointer(i % 4);
_chn[i].timer = 0;
_chn[i].vol = 0;
_chn[i].end = 0;
}
break;
}
memset(_sndBuffer, 0, BUFFER_SIZE << 1);
_endflag = flag;
// Nat Budin reports that the flag should be reset when sound starts
_vm->setflag(_endflag, false);
}
void SoundMgr::stopSound() {
int i;
debugC(3, kDebugLevelSound, "stopSound() --> %d", _playingSound);
_endflag = -1;
if (_vm->_soundemu != SOUND_EMU_APPLE2GS) {
for (i = 0; i < NUM_CHANNELS; i++)
stopNote(i);
}
if (_playingSound != -1) {
if (_vm->_game.sounds[_playingSound]) // sanity checking
_vm->_game.sounds[_playingSound]->stop();
if (_vm->_soundemu == SOUND_EMU_APPLE2GS) {
_gsSound.stopSounds();
}
_playingSound = -1;
}
}
void IIgsSoundMgr::stopSounds() {
// Stops all sounds on all MIDI channels
for (iterator iter = _midiChannels.begin(); iter != _midiChannels.end(); iter++)
iter->stopSounds();
}
bool IIgsSoundMgr::playSampleSound(const IIgsSampleHeader &sampleHeader, const int8 *sample) {
stopSounds();
IIgsMidiChannel &channel = _midiChannels[kSfxMidiChannel];
channel.setInstrument(&sampleHeader.instrument, sample);
channel.setVolume(sampleHeader.volume);
channel.noteOn(sampleHeader.pitch, 64); // Use default velocity (i.e. 64)
return true;
}
void IIgsMidiChannel::stopSounds() {
// Stops all sounds on this single MIDI channel
for (iterator iter = _gsChannels.begin(); iter != _gsChannels.end(); iter++)
iter->stop();
_gsChannels.clear();
}
int SoundMgr::initSound() {
int r = -1;
memset(_sndBuffer, 0, BUFFER_SIZE << 1);
_env = false;
switch (_vm->_soundemu) {
case SOUND_EMU_NONE:
_waveform = waveformRamp;
_env = true;
break;
case SOUND_EMU_AMIGA:
case SOUND_EMU_PC:
_waveform = waveformSquare;
break;
case SOUND_EMU_MAC:
_waveform = waveformMac;
break;
case SOUND_EMU_APPLE2GS:
_disabledMidi = !loadInstruments();
break;
case SOUND_EMU_COCO3:
break;
}
report("Initializing sound:\n");
report("sound: envelopes ");
if (_env) {
report("enabled (decay=%d, sustain=%d)\n", ENV_DECAY, ENV_SUSTAIN);
} else {
report("disabled\n");
}
_mixer->playInputStream(Audio::Mixer::kMusicSoundType, &_soundHandle, this, -1, Audio::Mixer::kMaxChannelVolume, 0, false, true);
return r;
}
void SoundMgr::deinitSound() {
debugC(3, kDebugLevelSound, "()");
_mixer->stopHandle(_soundHandle);
}
void SoundMgr::stopNote(int i) {
_chn[i].adsr = AGI_SOUND_ENV_RELEASE;
if (g_useChorus) {
// Stop chorus ;)
if (_chn[i].type == AGI_SOUND_4CHN &&
_vm->_soundemu == SOUND_EMU_NONE && i < 3) {
stopNote(i + 4);
}
}
}
void SoundMgr::playNote(int i, int freq, int vol) {
if (!_vm->getflag(fSoundOn))
vol = 0;
else if (vol && _vm->_soundemu == SOUND_EMU_PC)
vol = 160;
_chn[i].phase = 0;
_chn[i].freq = freq;
_chn[i].vol = vol;
_chn[i].env = 0x10000;
_chn[i].adsr = AGI_SOUND_ENV_ATTACK;
if (g_useChorus) {
// Add chorus ;)
if (_chn[i].type == AGI_SOUND_4CHN &&
_vm->_soundemu == SOUND_EMU_NONE && i < 3) {
int newfreq = freq * 1007 / 1000;
if (freq == newfreq)
newfreq++;
playNote(i + 4, newfreq, vol * 2 / 3);
}
}
}
void SoundMgr::playMidiSound() {
if (_disabledMidi)
return;
const uint8 *p;
uint8 parm1, parm2;
static uint8 cmd, ch;
if (_playingSound == -1 || _vm->_game.sounds[_playingSound] == NULL) {
warning("Error playing Apple IIGS MIDI sound resource");
_playing = false;
return;
}
IIgsMidi *midiObj = (IIgsMidi *) _vm->_game.sounds[_playingSound];
_playing = true;
p = midiObj->getPtr();
midiObj->_soundBufTicks++;
while (true) {
uint8 readByte = *p;
// Check for end of MIDI sequence marker (Can also be here before delta-time)
if (readByte == MIDI_BYTE_STOP_SEQUENCE) {
debugC(3, kDebugLevelSound, "End of MIDI sequence (Before reading delta-time)");
_playing = false;
midiObj->rewind();
return;
} else if (readByte == MIDI_BYTE_TIMER_SYNC) {
debugC(3, kDebugLevelSound, "Timer sync");
p++; // Jump over the timer sync byte as it's not needed
continue;
}
uint8 deltaTime = readByte;
if (midiObj->_midiTicks + deltaTime > midiObj->_soundBufTicks) {
break;
}
midiObj->_midiTicks += deltaTime;
p++; // Jump over the delta-time byte as it was already taken care of
// Check for end of MIDI sequence marker (This time it after reading delta-time)
if (*p == MIDI_BYTE_STOP_SEQUENCE) {
debugC(3, kDebugLevelSound, "End of MIDI sequence (After reading delta-time)");
_playing = false;
midiObj->rewind();
return;
}
// Separate byte into command and channel if it's a command byte.
// Otherwise use running status (i.e. previously set command and channel).
if (*p & 0x80) {
cmd = *p++;
ch = cmd & 0x0f;
cmd >>= 4;
}
switch (cmd) {
case MIDI_CMD_NOTE_OFF:
parm1 = *p++;
parm2 = *p++;
_gsSound.midiNoteOff(ch, parm1, parm2);
break;
case MIDI_CMD_NOTE_ON:
parm1 = *p++;
parm2 = *p++;
_gsSound.midiNoteOn(ch, parm1, parm2);
break;
case MIDI_CMD_CONTROLLER:
parm1 = *p++;
parm2 = *p++;
_gsSound.midiController(ch, parm1, parm2);
break;
case MIDI_CMD_PROGRAM_CHANGE:
parm1 = *p++;
_gsSound.midiProgramChange(ch, parm1);
break;
case MIDI_CMD_PITCH_WHEEL:
parm1 = *p++;
parm2 = *p++;
uint16 wheelPos = ((parm2 & 0x7F) << 7) | (parm1 & 0x7F); // 14-bit value
_gsSound.midiPitchWheel(wheelPos);
break;
}
}
midiObj->setPtr(p);
}
void IIgsSoundMgr::midiNoteOff(uint8 channel, uint8 note, uint8 velocity) {
_midiChannels[channel].noteOff(note, velocity);
debugC(3, kDebugLevelSound, "note off, channel %02x, note %02x, velocity %02x", channel, note, velocity);
}
void IIgsSoundMgr::midiNoteOn(uint8 channel, uint8 note, uint8 velocity) {
_midiChannels[channel].noteOn(note, velocity);
debugC(3, kDebugLevelSound, "note on, channel %02x, note %02x, velocity %02x", channel, note, velocity);
}
// TODO: Check if controllers behave differently on different MIDI channels
// TODO: Doublecheck what other controllers than the volume controller do
void IIgsSoundMgr::midiController(uint8 channel, uint8 controller, uint8 value) {
IIgsMidiChannel &midiChannel = _midiChannels[channel];
// The tested Apple IIGS AGI MIDI resources only used
// controllers 0 (Bank select?), 7 (Volume) and 64 (Sustain On/Off).
// Controller 0's parameter was in range 94-127,
// controller 7's parameter was in range 0-127 and
// controller 64's parameter was always 0 (i.e. sustain off).
bool unimplemented = false;
switch (controller) {
case 7: // Volume
midiChannel.setVolume(value);
break;
default:
unimplemented = true;
break;
}
debugC(3, kDebugLevelSound, "controller %02x, ch %02x, val %02x%s", controller, channel, value, unimplemented ? " (Unimplemented)" : "");
}
void IIgsSoundMgr::midiProgramChange(uint8 channel, uint8 program) {
_midiChannels[channel].setInstrument(getInstrument(program), _wave.begin());
debugC(3, kDebugLevelSound, "program change %02x, channel %02x", program, channel);
}
void IIgsSoundMgr::midiPitchWheel(uint8 wheelPos) {
// In all the tested Apple IIGS AGI MIDI resources
// pitch wheel commands always used 0x2000 (Center position).
// Therefore it should be quite safe to ignore this command.
debugC(3, kDebugLevelSound, "pitch wheel position %04x (Unimplemented)", wheelPos);
}
IIgsSoundMgr::IIgsSoundMgr() {
_midiChannels.resize(16); // Set the amount of available MIDI channels
}
const IIgsInstrumentHeader* IIgsSoundMgr::getInstrument(uint8 program) const {
return &_instruments[_midiProgToInst->map(program)];
}
void IIgsSoundMgr::setProgramChangeMapping(const MidiProgramChangeMapping *mapping) {
_midiProgToInst = mapping;
}
void IIgsSoundMgr::removeStoppedSounds() {
for (Common::Array<IIgsMidiChannel>::iterator iter = _midiChannels.begin(); iter != _midiChannels.end(); iter++)
iter->removeStoppedSounds();
}
void IIgsMidiChannel::removeStoppedSounds() {
for (int i = _gsChannels.size() - 1; i >= 0; i--)
if (!_gsChannels[i].playing())
_gsChannels.remove_at(i);
}
uint IIgsSoundMgr::activeSounds() const {
uint result = 0;
for (Common::Array<IIgsMidiChannel>::const_iterator iter = _midiChannels.begin(); iter != _midiChannels.end(); iter++)
result += iter->activeSounds();
return result;
}
uint IIgsMidiChannel::activeSounds() const {
uint result = 0;
for (const_iterator iter = _gsChannels.begin(); iter != _gsChannels.end(); iter++)
if (!iter->end)
result++;
return result;
}
void IIgsMidiChannel::setInstrument(const IIgsInstrumentHeader *instrument, const int8 *sample) {
_instrument = instrument;
_sample = sample;
// Set program on each Apple IIGS channel playing on this MIDI channel
for (iterator iter = _gsChannels.begin(); iter != _gsChannels.end(); iter++)
iter->setInstrument(instrument, sample);
}
void IIgsMidiChannel::setVolume(uint8 volume) {
_volume = volume;
// Set volume on each Apple IIGS channel playing on this MIDI channel
for (iterator iter = _gsChannels.begin(); iter != _gsChannels.end(); iter++)
iter->setChannelVolume(volume);
}
void IIgsMidiChannel::noteOff(uint8 note, uint8 velocity) {
// Go through all the notes playing on this MIDI channel
// and turn off the ones that are playing the given note
for (iterator iter = _gsChannels.begin(); iter != _gsChannels.end(); iter++)
if (iter->origNote == note)
iter->noteOff(velocity);
}
void IIgsMidiChannel::noteOn(uint8 note, uint8 velocity) {
IIgsChannelInfo channel;
// Use the default channel volume and instrument
channel.setChannelVolume(_volume);
channel.setInstrument(_instrument, _sample);
// Set the note on and save the channel
channel.noteOn(note, velocity);
_gsChannels.push_back(channel);
}
void IIgsChannelInfo::rewind() {
this->envVol = this->startEnvVol;
this->envSeg = 0;
this->pos = intToFrac(0);
}
void IIgsChannelInfo::setChannelVolume(uint8 volume) {
this->chanVol = intToFrac(volume);
}
void IIgsChannelInfo::setInstrument(const IIgsInstrumentHeader *instrument, const int8 *sample) {
assert(instrument != NULL && sample != NULL);
this->ins = instrument;
this->unrelocatedSample = sample;
}
// TODO/FIXME: Implement correctly and fully (Take velocity into account etc)
void IIgsChannelInfo::noteOn(uint8 noteParam, uint8 velocity) {
this->origNote = noteParam;
this->startEnvVol = intToFrac(0);
rewind();
const IIgsWaveInfo *waveInfo = NULL;
for (uint i = 0; i < ins->oscList.count; i++)
if (ins->oscList(i).waves[0].top >= noteParam)
waveInfo = &ins->oscList(i).waves[0];
assert(waveInfo != NULL);
this->relocatedSample = this->unrelocatedSample + waveInfo->addr;
this->posAdd = intToFrac(0);
this->note = intToFrac(noteParam) + doubleToFrac(waveInfo->relPitch/256.0);
this->vol = doubleToFrac(fracToDouble(this->envVol) * fracToDouble(this->chanVol) / 127.0);
this->loop = (waveInfo->mode == OSC_MODE_LOOP);
this->size = waveInfo->size - waveInfo->addr;
this->end = waveInfo->halt;
}
// TODO/FIXME: Implement correctly and fully (Take release time and velocity into account etc)
void IIgsChannelInfo::noteOff(uint8 velocity) {
this->loop = false;
this->envSeg = ins->relseg;
}
void IIgsChannelInfo::stop() {
this->end = true;
}
bool IIgsChannelInfo::playing() {
return !this->end;
}
void SoundMgr::playSampleSound() {
if (_vm->_soundemu != SOUND_EMU_APPLE2GS) {
warning("Trying to play a sample but not using Apple IIGS sound emulation mode");
return;
}
if (_playingSound != -1)
_playing = _gsSound.activeSounds() > 0;
}
static int cocoFrequencies[] = {
130, 138, 146, 155, 164, 174, 184, 195, 207, 220, 233, 246,
261, 277, 293, 311, 329, 349, 369, 391, 415, 440, 466, 493,
523, 554, 587, 622, 659, 698, 739, 783, 830, 880, 932, 987,
1046, 1108, 1174, 1244, 1318, 1396, 1479, 1567, 1661, 1760, 1864, 1975,
2093, 2217, 2349, 2489, 2637, 2793, 2959, 3135, 3322, 3520, 3729, 3951
};
void SoundMgr::playCoCoSound() {
int i = 0;
CoCoNote note;
do {
note.read(_chn[i].ptr);
if (note.freq != 0xff) {
playNote(0, cocoFrequencies[note.freq], note.volume);
uint32 start_time = _vm->_system->getMillis();
while (_vm->_system->getMillis() < start_time + note.duration) {
_vm->_system->updateScreen();
_vm->_system->delayMillis(10);
}
}
} while (note.freq != 0xff);
}
void SoundMgr::playAgiSound() {
int i;
AgiNote note;
_playing = false;
for (i = 0; i < (_vm->_soundemu == SOUND_EMU_PC ? 1 : 4); i++) {
_playing |= !_chn[i].end;
note.read(_chn[i].ptr); // Read a single note (Doesn't advance the pointer)
if (_chn[i].end)
continue;
if ((--_chn[i].timer) <= 0) {
stopNote(i);
if (note.freqDiv != 0) {
int volume = (note.attenuation == 0x0F) ? 0 : (0xFF - note.attenuation * 2);
playNote(i, note.freqDiv * 10, volume);
}
_chn[i].timer = note.duration;
if (_chn[i].timer == 0xffff) {
_chn[i].end = 1;
_chn[i].vol = 0;
_chn[i].env = 0;
if (g_useChorus) {
// chorus
if (_chn[i].type == AGI_SOUND_4CHN && _vm->_soundemu == SOUND_EMU_NONE && i < 3) {
_chn[i + 4].vol = 0;
_chn[i + 4].env = 0;
}
}
}
_chn[i].ptr += 5; // Advance the pointer to the next note data (5 bytes per note)
}
}
}
void SoundMgr::playSound() {
int i;
if (_endflag == -1)
return;
if (_vm->_soundemu == SOUND_EMU_APPLE2GS) {
if (_playingSound != -1) {
if (_vm->_game.sounds[_playingSound]->type() == AGI_SOUND_MIDI) {
playMidiSound();
//warning("playSound: Trying to play an Apple IIGS MIDI sound. Not yet implemented");
} else if (_vm->_game.sounds[_playingSound]->type() == AGI_SOUND_SAMPLE) {
//debugC(3, kDebugLevelSound, "playSound: Trying to play an Apple IIGS sample");
playSampleSound();
}
}
} else if (_vm->_soundemu == SOUND_EMU_COCO3) {
playCoCoSound();
} else {
//debugC(3, kDebugLevelSound, "playSound: Trying to play a PCjr 4-channel sound");
playAgiSound();
}
if (!_playing) {
if (_vm->_soundemu != SOUND_EMU_APPLE2GS) {
for (i = 0; i < NUM_CHANNELS; _chn[i++].vol = 0)
;
}
if (_endflag != -1)
_vm->setflag(_endflag, true);
if (_playingSound != -1)
_vm->_game.sounds[_playingSound]->stop();
_playingSound = -1;
_endflag = -1;
}
}
uint32 SoundMgr::mixSound(void) {
register int i, p;
const int16 *src;
int c, b, m;
memset(_sndBuffer, 0, BUFFER_SIZE << 1);
if (!_playing || _playingSound == -1)
return BUFFER_SIZE;
// Handle Apple IIGS sound mixing here
// TODO: Implement playing both waves in an oscillator
// TODO: Implement swap-mode in an oscillator
if (_vm->_soundemu == SOUND_EMU_APPLE2GS) {
for (uint midiChan = 0; midiChan < _gsSound._midiChannels.size(); midiChan++) {
for (uint gsChan = 0; gsChan < _gsSound._midiChannels[midiChan]._gsChannels.size(); gsChan++) {
IIgsChannelInfo &channel = _gsSound._midiChannels[midiChan]._gsChannels[gsChan];
if (channel.playing()) { // Only mix in actively playing channels
// Frequency multiplier was 1076.0 based on tests made with MESS 0.117.
// Tests made with KEGS32 averaged the multiplier to around 1045.
// So this is a guess but maybe it's 1046.5... i.e. C6's frequency?
double hertz = C6_FREQ * pow(SEMITONE, fracToDouble(channel.note));
channel.posAdd = doubleToFrac(hertz / getRate());
channel.vol = doubleToFrac(fracToDouble(channel.envVol) * fracToDouble(channel.chanVol) / 127.0);
double tempVol = fracToDouble(channel.vol)/127.0;
for (i = 0; i < IIGS_BUFFER_SIZE; i++) {
b = channel.relocatedSample[fracToInt(channel.pos)];
// TODO: Find out what volume/amplification setting is loud enough
// but still doesn't clip when playing many channels on it.
_sndBuffer[i] += (int16) (b * tempVol * 256/4);
channel.pos += channel.posAdd;
if (channel.pos >= intToFrac(channel.size)) {
if (channel.loop) {
// Don't divide by zero on zero length samples
channel.pos %= intToFrac(channel.size + (channel.size == 0));
// Probably we should loop the envelope too
channel.envSeg = 0;
channel.envVol = channel.startEnvVol;
} else {
channel.pos = channel.chanVol = 0;
channel.end = true;
break;
}
}
}
if (channel.envSeg < ENVELOPE_SEGMENT_COUNT) {
const IIgsEnvelopeSegment &seg = channel.ins->env.seg[channel.envSeg];
// I currently assume enveloping works with the same speed as the MIDI
// (i.e. with 1/60ths of a second ticks).
// TODO: Check if enveloping really works with the same speed as MIDI
frac_t envVolDelta = doubleToFrac(seg.inc/256.0);
if (intToFrac(seg.bp) >= channel.envVol) {
channel.envVol += envVolDelta;
if (channel.envVol >= intToFrac(seg.bp)) {
channel.envVol = intToFrac(seg.bp);
channel.envSeg += 1;
}
} else {
channel.envVol -= envVolDelta;
if (channel.envVol <= intToFrac(seg.bp)) {
channel.envVol = intToFrac(seg.bp);
channel.envSeg += 1;
}
}
}
}
}
}
_gsSound.removeStoppedSounds();
return IIGS_BUFFER_SIZE;
} // else ...
// Handle PCjr 4-channel sound mixing here
for (c = 0; c < NUM_CHANNELS; c++) {
if (!_chn[c].vol)
continue;
m = _chn[c].flags & AGI_SOUND_ENVELOPE ?
_chn[c].vol * _chn[c].env >> 16 : _chn[c].vol;
if (_chn[c].type != AGI_SOUND_4CHN || c != 3) {
src = _chn[c].ins;
p = _chn[c].phase;
for (i = 0; i < BUFFER_SIZE; i++) {
b = src[p >> 8];
#ifdef USE_INTERPOLATION
b += ((src[((p >> 8) + 1) % _chn[c].size] - src[p >> 8]) * (p & 0xff)) >> 8;
#endif
_sndBuffer[i] += (b * m) >> 4;
p += (uint32) 118600 *4 / _chn[c].freq;
// FIXME: Fingolfin asks: why is there a FIXME here? Please either clarify what
// needs fixing, or remove it!
// FIXME
if (_chn[c].flags & AGI_SOUND_LOOP) {
p %= _chn[c].size << 8;
} else {
if (p >= _chn[c].size << 8) {
p = _chn[c].vol = 0;
_chn[c].end = 1;
break;
}
}
}
_chn[c].phase = p;
} else {
// Add white noise
for (i = 0; i < BUFFER_SIZE; i++) {
b = _vm->_rnd->getRandomNumber(255) - 128;
_sndBuffer[i] += (b * m) >> 4;
}
}
switch (_chn[c].adsr) {
case AGI_SOUND_ENV_ATTACK:
// not implemented
_chn[c].adsr = AGI_SOUND_ENV_DECAY;
break;
case AGI_SOUND_ENV_DECAY:
if (_chn[c].env > _chn[c].vol * ENV_SUSTAIN + ENV_DECAY) {
_chn[c].env -= ENV_DECAY;
} else {
_chn[c].env = _chn[c].vol * ENV_SUSTAIN;
_chn[c].adsr = AGI_SOUND_ENV_SUSTAIN;
}
break;
case AGI_SOUND_ENV_SUSTAIN:
break;
case AGI_SOUND_ENV_RELEASE:
if (_chn[c].env >= ENV_RELEASE) {
_chn[c].env -= ENV_RELEASE;
} else {
_chn[c].env = 0;
}
}
}
return BUFFER_SIZE;
}
/**
* Finds information about an Apple IIGS AGI executable based on the game ID.
* @return A non-null IIgsExeInfo pointer if successful, otherwise NULL.
*/
const IIgsExeInfo *SoundMgr::getIIgsExeInfo(enum AgiGameID gameid) const {
for (int i = 0; i < ARRAYSIZE(IIgsExeInfos); i++)
if (IIgsExeInfos[i].gameid == gameid)
return &IIgsExeInfos[i];
return NULL;
}
bool IIgsSoundMgr::loadInstrumentHeaders(const Common::FSNode &exePath, const IIgsExeInfo &exeInfo) {
bool loadedOk = false; // Was loading successful?
Common::File file;
// Open the executable file and check that it has correct size
file.open(exePath);
if (file.size() != (int32)exeInfo.exeSize) {
debugC(3, kDebugLevelSound, "Apple IIGS executable (%s) has wrong size (Is %d, should be %d)",
exePath.getPath().c_str(), file.size(), exeInfo.exeSize);
}
// Read the whole executable file into memory
Common::SharedPtr<Common::MemoryReadStream> data(file.readStream(file.size()));
file.close();
// Check that we got enough data to be able to parse the instruments
if (data && data->size() >= (int32)(exeInfo.instSetStart + exeInfo.instSet.byteCount)) {
// Check instrument set's length (The info's saved in the executable)
data->seek(exeInfo.instSetStart - 4);
uint16 instSetByteCount = data->readUint16LE();
if (instSetByteCount != exeInfo.instSet.byteCount) {
debugC(3, kDebugLevelSound, "Wrong instrument set size (Is %d, should be %d) in Apple IIGS executable (%s)",
instSetByteCount, exeInfo.instSet.byteCount, exePath.getPath().c_str());
}
// Check instrument set's md5sum
data->seek(exeInfo.instSetStart);
char md5str[32+1];
Common::md5_file_string(*data, md5str, exeInfo.instSet.byteCount);
if (scumm_stricmp(md5str, exeInfo.instSet.md5)) {
warning("Unknown Apple IIGS instrument set (md5: %s) in %s, trying to use it nonetheless",
md5str, exePath.getPath().c_str());
}
// Read in the instrument set one instrument at a time
data->seek(exeInfo.instSetStart);
// Load the instruments
_instruments.clear();
_instruments.reserve(exeInfo.instSet.instCount);
IIgsInstrumentHeader instrument;
for (uint i = 0; i < exeInfo.instSet.instCount; i++) {
if (!instrument.read(*data)) {
warning("Error loading Apple IIGS instrument (%d. of %d) from %s, not loading more instruments",
i + 1, exeInfo.instSet.instCount, exePath.getPath().c_str());
break;
}
_instruments.push_back(instrument); // Add the successfully loaded instrument to the instruments array
}
// Loading was successful only if all instruments were loaded successfully
loadedOk = (_instruments.size() == exeInfo.instSet.instCount);
} else // Couldn't read enough data from the executable file
warning("Error loading instruments from Apple IIGS executable (%s)", exePath.getPath().c_str());
return loadedOk;
}
/**
* Convert sample from 8-bit unsigned to 8-bit signed format.
* @param source Source stream containing the 8-bit unsigned sample data.
* @param dest Destination buffer for the 8-bit signed sample data.
* @param length Length of the sample data to be converted.
*/
bool SoundMgr::convertWave(Common::SeekableReadStream &source, int8 *dest, uint length) {
// Convert the wave from 8-bit unsigned to 8-bit signed format
for (uint i = 0; i < length; i++)
dest[i] = (int8) ((int) source.readByte() - 128);
return !(source.eos() || source.err());
}
bool IIgsSoundMgr::loadWaveFile(const Common::FSNode &wavePath, const IIgsExeInfo &exeInfo) {
Common::File file;
// Open the wave file and read it into memory
file.open(wavePath);
Common::SharedPtr<Common::MemoryReadStream> uint8Wave(file.readStream(file.size()));
file.close();
// Check that we got the whole wave file
if (uint8Wave && uint8Wave->size() == SIERRASTANDARD_SIZE) {
// Check wave file's md5sum
char md5str[32+1];
Common::md5_file_string(*uint8Wave, md5str, SIERRASTANDARD_SIZE);
if (scumm_stricmp(md5str, exeInfo.instSet.waveFileMd5)) {
warning("Unknown Apple IIGS wave file (md5: %s, game: %s).\n" \
"Please report the information on the previous line to the ScummVM team.\n" \
"Using the wave file as it is - music may sound weird", md5str, exeInfo.exePrefix);
}
uint8Wave->seek(0); // Seek wave to its start
// Convert the wave file from 8-bit unsigned to 8-bit signed and save the result
_wave.resize(uint8Wave->size());
return SoundMgr::convertWave(*uint8Wave, _wave.begin(), uint8Wave->size());
} else { // Couldn't read the wave file or it had incorrect size
warning("Error loading Apple IIGS wave file (%s), not loading instruments", wavePath.getPath().c_str());
return false;
}
}
/**
* A function object (i.e. a functor) for testing if a Common::FSNode
* object's name is equal (Ignoring case) to a string or to at least
* one of the strings in a list of strings. Can be used e.g. with find_if().
*/
struct fsnodeNameEqualsIgnoreCase : public Common::UnaryFunction<const Common::FSNode&, bool> {
// FIXME: This should be replaced; use SearchMan instead
fsnodeNameEqualsIgnoreCase(const Common::StringList &str) : _str(str) {}
fsnodeNameEqualsIgnoreCase(const Common::String str) { _str.push_back(str); }
bool operator()(const Common::FSNode &param) const {
for (Common::StringList::const_iterator iter = _str.begin(); iter != _str.end(); iter++)
if (param.getName().equalsIgnoreCase(*iter))
return true;
return false;
}
private:
Common::StringList _str;
};
bool SoundMgr::loadInstruments() {
// Check that the platform is Apple IIGS, as only it uses custom instruments
if (_vm->getPlatform() != Common::kPlatformApple2GS) {
debugC(3, kDebugLevelSound, "Platform isn't Apple IIGS so not loading any instruments");
return true;
}
// Get info on the particular Apple IIGS AGI game's executable
const IIgsExeInfo *exeInfo = getIIgsExeInfo((enum AgiGameID) _vm->getGameID());
if (exeInfo == NULL) {
warning("Unsupported Apple IIGS game, not loading instruments");
return false;
}
// List files in the game path
Common::FSList fslist;
Common::FSNode dir(ConfMan.get("path"));
if (!dir.getChildren(fslist, Common::FSNode::kListFilesOnly)) {
warning("Invalid game path (\"%s\"), not loading Apple IIGS instruments", dir.getPath().c_str());
return false;
}
// Populate executable filenames list (Long filename and short filename) for searching
Common::StringList exeNames;
exeNames.push_back(Common::String(exeInfo->exePrefix) + ".SYS16");
exeNames.push_back(Common::String(exeInfo->exePrefix) + ".SYS");
// Populate wave filenames list (Long filename and short filename) for searching
Common::StringList waveNames;
waveNames.push_back("SIERRASTANDARD");
waveNames.push_back("SIERRAST");
// Search for the executable file and the wave file (i.e. check if any of the filenames match)
Common::FSList::const_iterator exeFsnode, waveFsnode;
exeFsnode = Common::find_if(fslist.begin(), fslist.end(), fsnodeNameEqualsIgnoreCase(exeNames));
waveFsnode = Common::find_if(fslist.begin(), fslist.end(), fsnodeNameEqualsIgnoreCase(waveNames));
// Make sure that we found the executable file
if (exeFsnode == fslist.end()) {
warning("Couldn't find Apple IIGS game executable (%s), not loading instruments", exeNames.begin()->c_str());
return false;
}
// Make sure that we found the wave file
if (waveFsnode == fslist.end()) {
warning("Couldn't find Apple IIGS wave file (%s), not loading instruments", waveNames.begin()->c_str());
return false;
}
// Set the MIDI program change to instrument number mapping and
// load the instrument headers and their sample data.
// None of the tested SIERRASTANDARD-files have zeroes in them so
// there's no need to check for prematurely ending samples here.
_gsSound.setProgramChangeMapping(&exeInfo->instSet.progToInst);
return _gsSound.loadWaveFile(*waveFsnode, *exeInfo) && _gsSound.loadInstrumentHeaders(*exeFsnode, *exeInfo);
}
void SoundMgr::fillAudio(void *udata, int16 *stream, uint len) {
SoundMgr *soundMgr = (SoundMgr *)udata;
uint32 p = 0;
// current number of audio bytes in _sndBuffer
static uint32 data_available = 0;
// offset of start of audio bytes in _sndBuffer
static uint32 data_offset = 0;
len <<= 2;
debugC(5, kDebugLevelSound, "(%p, %p, %d)", (void *)udata, (void *)stream, len);
while (len > data_available) {
memcpy((uint8 *)stream + p, (uint8*)_sndBuffer + data_offset, data_available);
p += data_available;
len -= data_available;
soundMgr->playSound();
data_available = soundMgr->mixSound() << 1;
data_offset = 0;
}
memcpy((uint8 *)stream + p, (uint8*)_sndBuffer + data_offset, len);
data_offset += len;
data_available -= len;
}
SoundMgr::SoundMgr(AgiBase *agi, Audio::Mixer *pMixer) : _chn() {
_vm = agi;
_mixer = pMixer;
_sampleRate = pMixer->getOutputRate();
_endflag = -1;
_playingSound = -1;
_env = false;
_playing = false;
_sndBuffer = (int16 *)calloc(2, BUFFER_SIZE);
_waveform = 0;
_disabledMidi = false;
}
void SoundMgr::premixerCall(int16 *data, uint len) {
fillAudio(this, data, len);
}
void SoundMgr::setVolume(uint8 volume) {
// TODO
}
SoundMgr::~SoundMgr() {
free(_sndBuffer);
}
} // End of namespace Agi