scummvm/engines/scumm/gfx.cpp
Tarek Soliman a4798602d7 JANITORIAL: Fix missing whitespace in pointer cast
find -name '*.h' -or -name '*.cpp' | xargs sed -r -i 's@\(([A-Za-z0-9]+)\*\)@(\1 *)@g'

This seems to have caught some params as well which is not undesirable IMO.
It also caught some strings containing this which is undesirable so I
excluded them manually. (engines/sci/engine/kernel_tables.h)
2012-02-15 10:07:10 -06:00

4147 lines
107 KiB
C++

/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "common/system.h"
#include "scumm/actor.h"
#include "scumm/charset.h"
#ifdef ENABLE_HE
#include "scumm/he/intern_he.h"
#endif
#include "scumm/resource.h"
#include "scumm/scumm_v0.h"
#include "scumm/scumm_v5.h"
#include "scumm/scumm_v6.h"
#include "scumm/usage_bits.h"
#include "scumm/he/wiz_he.h"
#include "scumm/util.h"
#ifdef USE_ARM_GFX_ASM
#ifndef IPHONE
#define asmDrawStripToScreen _asmDrawStripToScreen
#define asmCopy8Col _asmCopy8Col
#endif
extern "C" void asmDrawStripToScreen(int height, int width, void const* text, void const* src, byte* dst,
int vsPitch, int vmScreenWidth, int textSurfacePitch);
extern "C" void asmCopy8Col(byte* dst, int dstPitch, const byte* src, int height, uint8 bitDepth);
#endif /* USE_ARM_GFX_ASM */
namespace Scumm {
static void blit(byte *dst, int dstPitch, const byte *src, int srcPitch, int w, int h, uint8 bitDepth);
static void fill(byte *dst, int dstPitch, uint16 color, int w, int h, uint8 bitDepth);
#ifndef USE_ARM_GFX_ASM
static void copy8Col(byte *dst, int dstPitch, const byte *src, int height, uint8 bitDepth);
#endif
static void clear8Col(byte *dst, int dstPitch, int height, uint8 bitDepth);
static void ditherHerc(byte *src, byte *hercbuf, int srcPitch, int *x, int *y, int *width, int *height);
struct StripTable {
int offsets[160];
int run[160];
int color[160];
int zoffsets[120]; // FIXME: Why only 120 here?
int zrun[120]; // FIXME: Why only 120 here?
};
enum {
kScrolltime = 500, // ms scrolling is supposed to take
kPictureDelay = 20,
kFadeDelay = 4 // 1/4th of a jiffie
};
#define NUM_SHAKE_POSITIONS 8
static const int8 shake_positions[NUM_SHAKE_POSITIONS] = {
0, 1 * 2, 2 * 2, 1 * 2, 0 * 2, 2 * 2, 3 * 2, 1 * 2
};
/**
* The following structs define four basic fades/transitions used by
* transitionEffect(), each looking differently to the user.
* Note that the stripTables contain strip numbers, and they assume
* that the screen has 40 vertical strips (i.e. 320 pixel), and 25 horizontal
* strips (i.e. 200 pixel). There is a hack in transitionEffect that
* makes it work correctly in games which have a different screen height
* (for example, 240 pixel), but nothing is done regarding the width, so this
* code won't work correctly in COMI. Also, the number of iteration depends
* on min(vertStrips, horizStrips}. So the 13 is derived from 25/2, rounded up.
* And the 25 = min(25,40). Hence for Zak256 instead of 13 and 25, the values
* 15 and 30 should be used, and for COMI probably 30 and 60.
*/
struct TransitionEffect {
byte numOfIterations;
int8 deltaTable[16]; // four times l / t / r / b
byte stripTable[16]; // ditto
};
static const TransitionEffect transitionEffects[6] = {
// Iris effect (looks like an opening/closing camera iris)
{
13, // Number of iterations
{
1, 1, -1, 1,
-1, 1, -1, -1,
1, -1, -1, -1,
1, 1, 1, -1
},
{
0, 0, 39, 0,
39, 0, 39, 24,
0, 24, 39, 24,
0, 0, 0, 24
}
},
// Box wipe (a box expands from the upper-left corner to the lower-right corner)
{
25, // Number of iterations
{
0, 1, 2, 1,
2, 0, 2, 1,
2, 0, 2, 1,
0, 0, 0, 0
},
{
0, 0, 0, 0,
0, 0, 0, 0,
1, 0, 1, 0,
255, 0, 0, 0
}
},
// Box wipe (a box expands from the lower-right corner to the upper-left corner)
{
25, // Number of iterations
{
-2, -1, 0, -1,
-2, -1, -2, 0,
-2, -1, -2, 0,
0, 0, 0, 0
},
{
39, 24, 39, 24,
39, 24, 39, 24,
38, 24, 38, 24,
255, 0, 0, 0
}
},
// Inverse box wipe
{
25, // Number of iterations
{
0, -1, -2, -1,
-2, 0, -2, -1,
-2, 0, -2, -1,
0, 0, 0, 0
},
{
0, 24, 39, 24,
39, 0, 39, 24,
38, 0, 38, 24,
255, 0, 0, 0
}
},
// Inverse iris effect, specially tailored for V1/V2 games
{
9, // Number of iterations
{
-1, -1, 1, -1,
-1, 1, 1, 1,
-1, -1, -1, 1,
1, -1, 1, 1
},
{
7, 7, 32, 7,
7, 8, 32, 8,
7, 8, 7, 8,
32, 7, 32, 8
}
},
// Horizontal wipe (a box expands from left to right side). For MM NES
{
16, // Number of iterations
{
2, 0, 2, 0,
2, 0, 2, 0,
0, 0, 0, 0,
0, 0, 0, 0
},
{
0, 0, 0, 15,
1, 0, 1, 15,
255, 0, 0, 0,
255, 0, 0, 0
}
}
};
Gdi::Gdi(ScummEngine *vm) : _vm(vm) {
_numZBuffer = 0;
memset(_imgBufOffs, 0, sizeof(_imgBufOffs));
_numStrips = 0;
_paletteMod = 0;
_roomPalette = vm->_roomPalette;
_transparentColor = 255;
_decomp_shr = 0;
_decomp_mask = 0;
_vertStripNextInc = 0;
_zbufferDisabled = false;
_objectMode = false;
_distaff = false;
}
Gdi::~Gdi() {
}
GdiHE::GdiHE(ScummEngine *vm) : Gdi(vm), _tmskPtr(0) {
}
GdiNES::GdiNES(ScummEngine *vm) : Gdi(vm) {
memset(&_NES, 0, sizeof(_NES));
}
#ifdef USE_RGB_COLOR
GdiPCEngine::GdiPCEngine(ScummEngine *vm) : Gdi(vm) {
memset(&_PCE, 0, sizeof(_PCE));
}
GdiPCEngine::~GdiPCEngine() {
free(_PCE.roomTiles);
free(_PCE.staffTiles);
free(_PCE.masks);
}
#endif
GdiV1::GdiV1(ScummEngine *vm) : Gdi(vm) {
memset(&_V1, 0, sizeof(_V1));
}
GdiV2::GdiV2(ScummEngine *vm) : Gdi(vm) {
_roomStrips = 0;
}
GdiV2::~GdiV2() {
free(_roomStrips);
}
#ifdef USE_RGB_COLOR
GdiHE16bit::GdiHE16bit(ScummEngine *vm) : GdiHE(vm) {
}
#endif
void Gdi::init() {
_numStrips = _vm->_screenWidth / 8;
// Increase the number of screen strips by one; needed for smooth scrolling
if (_vm->_game.version >= 7) {
// We now have mostly working smooth scrolling code in place for V7+ games
// (i.e. The Dig, Full Throttle and COMI). It seems to work very well so far.
//
// To understand how we achieve smooth scrolling, first note that with it, the
// virtual screen strips don't match the display screen strips anymore. To
// overcome that problem, we simply use a screen pitch that is 8 pixel wider
// than the actual screen width, and always draw one strip more than needed to
// the backbuf (thus we have to treat the right border seperately).
_numStrips += 1;
}
}
void Gdi::roomChanged(byte *roomptr) {
}
void GdiNES::roomChanged(byte *roomptr) {
decodeNESGfx(roomptr);
}
#ifdef USE_RGB_COLOR
void GdiPCEngine::roomChanged(byte *roomptr) {
decodePCEngineGfx(roomptr);
}
#endif
void Gdi::loadTiles(byte *roomptr) {
}
#ifdef USE_RGB_COLOR
void GdiPCEngine::loadTiles(byte *roomptr) {
decodePCEngineTileData(_vm->findResourceData(MKTAG('T','I','L','E'), roomptr));
}
#endif
void GdiV1::roomChanged(byte *roomptr) {
for (int i = 0; i < 4; i++){
_V1.colors[i] = roomptr[6 + i];
}
decodeV1Gfx(roomptr + READ_LE_UINT16(roomptr + 10), _V1.charMap, 2048);
decodeV1Gfx(roomptr + READ_LE_UINT16(roomptr + 12), _V1.picMap, roomptr[4] * roomptr[5]);
decodeV1Gfx(roomptr + READ_LE_UINT16(roomptr + 14), _V1.colorMap, roomptr[4] * roomptr[5]);
decodeV1Gfx(roomptr + READ_LE_UINT16(roomptr + 16), _V1.maskMap, roomptr[4] * roomptr[5]);
// Read the mask data. The 16bit length value seems to always be 8 too big.
// See bug #1837375 for details on this.
const byte *maskPtr = roomptr + READ_LE_UINT16(roomptr + 18);
decodeV1Gfx(maskPtr + 2, _V1.maskChar, READ_LE_UINT16(maskPtr) - 8);
_objectMode = true;
}
void GdiV2::roomChanged(byte *roomptr) {
_roomStrips = generateStripTable(roomptr + READ_LE_UINT16(roomptr + 0x0A),
_vm->_roomWidth, _vm->_roomHeight, _roomStrips);
}
#pragma mark -
#pragma mark --- Virtual Screens ---
#pragma mark -
void ScummEngine::initScreens(int b, int h) {
int i;
int adj = 0;
for (i = 0; i < 3; i++) {
_res->nukeResource(rtBuffer, i + 1);
_res->nukeResource(rtBuffer, i + 5);
}
#ifndef DISABLE_TOWNS_DUAL_LAYER_MODE
if (_townsScreen) {
if (!_townsClearLayerFlag && (h - b != _virtscr[kMainVirtScreen].h))
_townsScreen->clearLayer(0);
if (_game.id != GID_MONKEY) {
_textSurface.fillRect(Common::Rect(0, 0, _textSurface.w * _textSurfaceMultiplier, _textSurface.h * _textSurfaceMultiplier), 0);
_townsScreen->clearLayer(1);
}
}
#endif
if (!getResourceAddress(rtBuffer, 4)) {
// Since the size of screen 3 is fixed, there is no need to reallocate
// it if its size changed.
// Not sure what it is good for, though. I think it may have been used
// in pre-V7 for the games messages (like 'Pause', Yes/No dialogs,
// version display, etc.). I don't know about V7, maybe the same is the
// case there. If so, we could probably just remove it completely.
if (_game.version >= 7) {
initVirtScreen(kUnkVirtScreen, (_screenHeight / 2) - 10, _screenWidth, 13, false, false);
} else {
initVirtScreen(kUnkVirtScreen, 80, _screenWidth, 13, false, false);
}
}
if ((_game.platform == Common::kPlatformNES) && (h != _screenHeight)) {
// This is a hack to shift the whole screen downwards to match the original.
// Otherwise we would have to do lots of coordinate adjustments all over
// the code.
adj = 16;
initVirtScreen(kUnkVirtScreen, 0, _screenWidth, adj, false, false);
}
initVirtScreen(kMainVirtScreen, b + adj, _screenWidth, h - b, true, true);
initVirtScreen(kTextVirtScreen, adj, _screenWidth, b, false, false);
initVirtScreen(kVerbVirtScreen, h + adj, _screenWidth, _screenHeight - h - adj, false, false);
_screenB = b;
_screenH = h;
_gdi->init();
}
void ScummEngine::initVirtScreen(VirtScreenNumber slot, int top, int width, int height, bool twobufs,
bool scrollable) {
VirtScreen *vs = &_virtscr[slot];
int size;
assert(height >= 0);
assert(slot >= 0 && slot < 4);
if (_game.version >= 7) {
if (slot == kMainVirtScreen && (_roomHeight != 0))
height = _roomHeight;
}
vs->number = slot;
vs->w = width;
vs->topline = top;
vs->h = height;
vs->hasTwoBuffers = twobufs;
vs->xstart = 0;
vs->backBuf = NULL;
if (_game.features & GF_16BIT_COLOR)
vs->format = Graphics::PixelFormat(2, 5, 5, 5, 0, 10, 5, 0, 0);
else
vs->format = Graphics::PixelFormat::createFormatCLUT8();
vs->pitch = width * vs->format.bytesPerPixel;
if (_game.version >= 7) {
// Increase the pitch by one; needed to accomodate the extra screen
// strip which we use to implement smooth scrolling. See Gdi::init().
vs->pitch += 8;
}
size = vs->pitch * vs->h;
if (scrollable) {
// Allow enough spaces so that rooms can be up to 4 resp. 8 screens
// wide. To achieve horizontal scrolling, SCUMM uses a neat trick:
// only the offset into the screen buffer (xstart) is changed. That way
// very little of the screen has to be redrawn, and we have a very low
// memory overhead (namely for every pixel we want to scroll, we need
// one additional byte in the buffer).
if (_game.version >= 7) {
size += vs->pitch * 8;
} else {
size += vs->pitch * 4;
}
}
_res->createResource(rtBuffer, slot + 1, size);
vs->pixels = getResourceAddress(rtBuffer, slot + 1);
memset(vs->pixels, 0, size); // reset background
if (twobufs) {
vs->backBuf = _res->createResource(rtBuffer, slot + 5, size);
}
if (slot != 3) {
vs->setDirtyRange(0, height);
}
}
VirtScreen *ScummEngine::findVirtScreen(int y) {
VirtScreen *vs = _virtscr;
int i;
for (i = 0; i < 3; i++, vs++) {
if (y >= vs->topline && y < vs->topline + vs->h) {
return vs;
}
}
return NULL;
}
void ScummEngine::markRectAsDirty(VirtScreenNumber virt, int left, int right, int top, int bottom, int dirtybit) {
VirtScreen *vs = &_virtscr[virt];
int lp, rp;
if (left > right || top > bottom)
return;
if (top > vs->h || bottom < 0)
return;
if (top < 0)
top = 0;
if (bottom > vs->h)
bottom = vs->h;
if (virt == kMainVirtScreen && dirtybit) {
lp = left / 8 + _screenStartStrip;
if (lp < 0)
lp = 0;
rp = (right + vs->xstart) / 8;
if (_game.version >= 7) {
if (rp > 409)
rp = 409;
} else {
if (rp >= 200)
rp = 200;
}
for (; lp <= rp; lp++)
setGfxUsageBit(lp, dirtybit);
}
// The following code used to be in the separate method setVirtscreenDirty
lp = left / 8;
rp = right / 8;
if ((lp >= _gdi->_numStrips) || (rp < 0))
return;
if (lp < 0)
lp = 0;
if (rp >= _gdi->_numStrips)
rp = _gdi->_numStrips - 1;
while (lp <= rp) {
if (top < vs->tdirty[lp])
vs->tdirty[lp] = top;
if (bottom > vs->bdirty[lp])
vs->bdirty[lp] = bottom;
lp++;
}
}
/**
* Update all dirty screen areas. This method blits all of the internal engine
* graphics to the actual display, as needed. In addition, the 'shaking'
* code in the backend is controlled from here.
*/
void ScummEngine::drawDirtyScreenParts() {
// Update verbs
updateDirtyScreen(kVerbVirtScreen);
// Update the conversation area (at the top of the screen)
updateDirtyScreen(kTextVirtScreen);
// Update game area ("stage")
if (camera._last.x != camera._cur.x || (_game.version >= 7 && (camera._cur.y != camera._last.y))) {
// Camera moved: redraw everything
VirtScreen *vs = &_virtscr[kMainVirtScreen];
drawStripToScreen(vs, 0, vs->w, 0, vs->h);
vs->setDirtyRange(vs->h, 0);
} else {
updateDirtyScreen(kMainVirtScreen);
}
// Handle shaking
if (_shakeEnabled) {
_shakeFrame = (_shakeFrame + 1) % NUM_SHAKE_POSITIONS;
_system->setShakePos(shake_positions[_shakeFrame]);
} else if (!_shakeEnabled &&_shakeFrame != 0) {
_shakeFrame = 0;
_system->setShakePos(0);
}
}
void ScummEngine_v6::drawDirtyScreenParts() {
// For the Full Throttle credits to work properly, the blast
// texts have to be drawn before the blast objects. Unless
// someone can think of a better way to achieve this effect.
if (_game.version >= 7 && VAR(VAR_BLAST_ABOVE_TEXT) == 1) {
drawBlastTexts();
drawBlastObjects();
if (_game.version == 8) {
// Does this case ever happen? We need to draw the
// actor over the blast object, so we're forced to
// also draw it over the subtitles.
processUpperActors();
}
} else {
drawBlastObjects();
if (_game.version == 8) {
// Do this before drawing blast texts. Subtitles go on
// top of the CoMI verb coin, e.g. when Murray is
// talking to himself early in the game.
processUpperActors();
}
drawBlastTexts();
}
// Call the original method.
ScummEngine::drawDirtyScreenParts();
// Remove all blasted objects/text again.
removeBlastTexts();
removeBlastObjects();
}
/**
* Blit the dirty data from the given VirtScreen to the display. If the camera moved,
* a full blit is done, otherwise only the visible dirty areas are updated.
*/
void ScummEngine::updateDirtyScreen(VirtScreenNumber slot) {
VirtScreen *vs = &_virtscr[slot];
// Do nothing for unused virtual screens
if (vs->h == 0)
return;
int i;
int w = 8;
int start = 0;
for (i = 0; i < _gdi->_numStrips; i++) {
if (vs->bdirty[i]) {
const int top = vs->tdirty[i];
const int bottom = vs->bdirty[i];
vs->tdirty[i] = vs->h;
vs->bdirty[i] = 0;
if (i != (_gdi->_numStrips - 1) && vs->bdirty[i + 1] == bottom && vs->tdirty[i + 1] == top) {
// Simple optimizations: if two or more neighboring strips
// form one bigger rectangle, coalesce them.
w += 8;
continue;
}
drawStripToScreen(vs, start * 8, w, top, bottom);
w = 8;
}
start = i + 1;
}
}
/**
* Blit the specified rectangle from the given virtual screen to the display.
* Note: t and b are in *virtual screen* coordinates, while x is relative to
* the *real screen*. This is due to the way tdirty/vdirty work: they are
* arrays which map 'strips' (sections of the real screen) to dirty areas as
* specified by top/bottom coordinate in the virtual screen.
*/
void ScummEngine::drawStripToScreen(VirtScreen *vs, int x, int width, int top, int bottom) {
// Short-circuit if nothing has to be drawn
if (bottom <= top || top >= vs->h)
return;
// Some paranoia checks
assert(top >= 0 && bottom <= vs->h);
assert(x >= 0 && width <= vs->pitch);
assert(_textSurface.pixels);
// Perform some clipping
if (width > vs->w - x)
width = vs->w - x;
if (top < _screenTop)
top = _screenTop;
if (bottom > _screenTop + _screenHeight)
bottom = _screenTop + _screenHeight;
// Convert the vertical coordinates to real screen coords
int y = vs->topline + top - _screenTop;
int height = bottom - top;
if (width <= 0 || height <= 0)
return;
const void *src = vs->getPixels(x, top);
int m = _textSurfaceMultiplier;
int vsPitch;
int pitch = vs->pitch;
vsPitch = vs->pitch - width * vs->format.bytesPerPixel;
if (_game.version < 7) {
// For The Dig, FT and COMI, we just blit everything to the screen at once.
// For older games, things are more complicated. First off, we need to
// deal with the _textSurface, which needs to be composited over the
// screen contents. Secondly, a rendering mode might be active, which
// means a filter has to be applied.
// Compute pointer to the text surface
assert(_compositeBuf);
const void *text = _textSurface.getBasePtr(x * m, y * m);
// The values x, width, etc. are all multiples of 8 at this point,
// so loop unrolloing might be a good idea...
assert(IS_ALIGNED(text, 4));
assert(0 == (width & 3));
// Compose the text over the game graphics
#ifndef DISABLE_TOWNS_DUAL_LAYER_MODE
if (_game.platform == Common::kPlatformFMTowns) {
towns_drawStripToScreen(vs, x, y, x, top, width, height);
return;
} else
#endif
if (_outputPixelFormat.bytesPerPixel == 2) {
const byte *srcPtr = (const byte *)src;
const byte *textPtr = (byte *)_textSurface.getBasePtr(x * m, y * m);
byte *dstPtr = _compositeBuf;
for (int h = 0; h < height * m; ++h) {
for (int w = 0; w < width * m; ++w) {
uint16 tmp = *textPtr++;
if (tmp == CHARSET_MASK_TRANSPARENCY) {
tmp = READ_UINT16(srcPtr);
WRITE_UINT16(dstPtr, tmp); dstPtr += 2;
} else if (_game.heversion != 0) {
error ("16Bit Color HE Game using old charset");
} else {
WRITE_UINT16(dstPtr, _16BitPalette[tmp]); dstPtr += 2;
}
srcPtr += vs->format.bytesPerPixel;
}
srcPtr += vsPitch;
textPtr += _textSurface.pitch - width * m;
}
}
#ifdef USE_ARM_GFX_ASM
asmDrawStripToScreen(height, width, text, src, _compositeBuf, vs->pitch, width, _textSurface.pitch);
#else
else {
// We blit four pixels at a time, for improved performance.
const uint32 *src32 = (const uint32 *)src;
uint32 *dst32 = (uint32 *)_compositeBuf;
vsPitch >>= 2;
const uint32 *text32 = (const uint32 *)text;
const int textPitch = (_textSurface.pitch - width * m) >> 2;
for (int h = height * m; h > 0; --h) {
for (int w = width * m; w > 0; w -= 4) {
uint32 temp = *text32++;
// Generate a byte mask for those text pixels (bytes) with
// value CHARSET_MASK_TRANSPARENCY. In the end, each byte
// in mask will be either equal to 0x00 or 0xFF.
// Doing it this way avoids branches and bytewise operations,
// at the cost of readability ;).
uint32 mask = temp ^ CHARSET_MASK_TRANSPARENCY_32;
mask = (((mask & 0x7f7f7f7f) + 0x7f7f7f7f) | mask) & 0x80808080;
mask = ((mask >> 7) + 0x7f7f7f7f) ^ 0x80808080;
// The following line is equivalent to this code:
// *dst32++ = (*src32++ & mask) | (temp & ~mask);
// However, some compilers can generate somewhat better
// machine code for this equivalent statement:
*dst32++ = ((temp ^ *src32++) & mask) ^ temp;
}
src32 += vsPitch;
text32 += textPitch;
}
}
#endif
src = _compositeBuf;
pitch = width * vs->format.bytesPerPixel;
if (_renderMode == Common::kRenderHercA || _renderMode == Common::kRenderHercG) {
ditherHerc(_compositeBuf, _herculesBuf, width, &x, &y, &width, &height);
src = _herculesBuf + x + y * kHercWidth;
pitch = kHercWidth;
// center image on the screen
x += (kHercWidth - _screenWidth * 2) / 2; // (720 - 320*2)/2 = 40
} else if (_useCJKMode && m == 2) {
pitch *= m;
x *= m;
y *= m;
width *= m;
height *= m;
} else {
if (_renderMode == Common::kRenderCGA)
ditherCGA(_compositeBuf, width, x, y, width, height);
// HACK: This is dirty hack which renders narrow NES rooms centered
// NES can address negative number strips and that poses problem for
// our code. So instead of adding zillions of fixes and potentially
// breaking other games, we shift it right at the rendering stage.
if ((_game.platform == Common::kPlatformNES) && (((_NESStartStrip > 0) && (vs->number == kMainVirtScreen)) || (vs->number == kTextVirtScreen))) {
x += 16;
while (x + width >= _screenWidth)
width -= 16;
if (width <= 0)
return;
// HACK: In this way we won't get a screen with dirty side strips when
// loading a narrow room in a full screen room.
if (width == 224 && height == 240 && x == 16) {
char blackbuf[16 * 240];
memset(blackbuf, 0, 16 * 240); // Prepare a buffer 16px wide and 240px high, to fit on a lateral strip
width = 240; // Fix right strip
_system->copyRectToScreen((const byte *)blackbuf, 16, 0, 0, 16, 240); // Fix left strip
}
}
}
}
// Finally blit the whole thing to the screen
_system->copyRectToScreen((const byte *)src, pitch, x, y, width, height);
}
// CGA
// indy3 loom maniac monkey1 zak
//
// Herc (720x350)
// maniac monkey1 zak
//
// EGA
// monkey2 loom maniac monkey1 atlantis indy3 zak loomcd
static const byte cgaDither[2][2][16] = {
{{0, 1, 0, 1, 2, 2, 0, 0, 3, 1, 3, 1, 3, 2, 1, 3},
{0, 0, 1, 1, 0, 2, 2, 3, 0, 3, 1, 1, 3, 3, 1, 3}},
{{0, 0, 1, 1, 0, 2, 2, 3, 0, 3, 1, 1, 3, 3, 1, 3},
{0, 1, 0, 1, 2, 2, 0, 0, 3, 1, 1, 1, 3, 2, 1, 3}}};
// CGA dithers 4x4 square with direct substitutes
// Odd lines have colors swapped, so there will be checkered patterns.
// But apparently there is a mistake for 10th color.
void ScummEngine::ditherCGA(byte *dst, int dstPitch, int x, int y, int width, int height) const {
byte *ptr;
int idx1, idx2;
for (int y1 = 0; y1 < height; y1++) {
ptr = dst + y1 * dstPitch;
if (_game.version == 2)
idx1 = 0;
else
idx1 = (y + y1) % 2;
for (int x1 = 0; x1 < width; x1++) {
idx2 = (x + x1) % 2;
*ptr = cgaDither[idx1][idx2][*ptr & 0xF];
ptr++;
}
}
}
// Hercules dithering. It uses same dithering tables but output is 1bpp and
// it stretches in this way:
// aaaa0
// aa aaaa1
// bb bbbb0 Here 0 and 1 mean dithering table row number
// cc --> bbbb1
// dd cccc0
// cccc1
// dddd0
void ditherHerc(byte *src, byte *hercbuf, int srcPitch, int *x, int *y, int *width, int *height) {
byte *srcptr, *dstptr;
const int xo = *x, yo = *y, widtho = *width, heighto = *height;
int dsty = yo*2 - yo/4;
for (int y1 = 0; y1 < heighto;) {
assert(dsty < kHercHeight);
srcptr = src + y1 * srcPitch;
dstptr = hercbuf + dsty * kHercWidth + xo * 2;
const int idx1 = (dsty % 7) % 2;
for (int x1 = 0; x1 < widtho; x1++) {
const int idx2 = (xo + x1) % 2;
const byte tmp = cgaDither[idx1][idx2][*srcptr & 0xF];
*dstptr++ = tmp >> 1;
*dstptr++ = tmp & 0x1;
srcptr++;
}
if (idx1 || dsty % 7 == 6)
y1++;
dsty++;
}
*x *= 2;
*y = yo*2 - yo/4;
*width *= 2;
*height = dsty - *y;
}
#pragma mark -
#pragma mark --- Background buffers & charset mask ---
#pragma mark -
void ScummEngine::initBGBuffers(int height) {
const byte *ptr;
int size, itemsize, i;
byte *room;
if (_game.version >= 7) {
// Resize main virtual screen in V7 games. This is necessary
// because in V7, rooms may be higher than one screen, so we have
// to accomodate for that.
initVirtScreen(kMainVirtScreen, _virtscr[kMainVirtScreen].topline, _screenWidth, height, true, true);
}
if (_game.heversion >= 70)
room = getResourceAddress(rtRoomImage, _roomResource);
else
room = getResourceAddress(rtRoom, _roomResource);
if (_game.version <= 3) {
_gdi->_numZBuffer = 2;
} else if (_game.features & GF_SMALL_HEADER) {
int off;
ptr = findResourceData(MKTAG('S','M','A','P'), room);
_gdi->_numZBuffer = 0;
if (_game.features & GF_16COLOR)
off = READ_LE_UINT16(ptr);
else
off = READ_LE_UINT32(ptr);
while (off && _gdi->_numZBuffer < 4) {
_gdi->_numZBuffer++;
ptr += off;
off = READ_LE_UINT16(ptr);
}
} else if (_game.version == 8) {
// in V8 there is no RMIH and num z buffers is in RMHD
ptr = findResource(MKTAG('R','M','H','D'), room);
_gdi->_numZBuffer = READ_LE_UINT32(ptr + 24) + 1;
} else if (_game.heversion >= 70) {
ptr = findResource(MKTAG('R','M','I','H'), room);
_gdi->_numZBuffer = READ_LE_UINT16(ptr + 8) + 1;
} else {
ptr = findResource(MKTAG('R','M','I','H'), findResource(MKTAG('R','M','I','M'), room));
_gdi->_numZBuffer = READ_LE_UINT16(ptr + 8) + 1;
}
assert(_gdi->_numZBuffer >= 1 && _gdi->_numZBuffer <= 8);
if (_game.version >= 7)
itemsize = (_roomHeight + 10) * _gdi->_numStrips;
else
itemsize = (_roomHeight + 4) * _gdi->_numStrips;
size = itemsize * _gdi->_numZBuffer;
memset(_res->createResource(rtBuffer, 9, size), 0, size);
for (i = 0; i < (int)ARRAYSIZE(_gdi->_imgBufOffs); i++) {
if (i < _gdi->_numZBuffer)
_gdi->_imgBufOffs[i] = i * itemsize;
else
_gdi->_imgBufOffs[i] = (_gdi->_numZBuffer - 1) * itemsize;
}
}
/**
* Redraw background as needed, i.e. the left/right sides if scrolling took place etc.
* Note that this only updated the virtual screen, not the actual display.
*/
void ScummEngine::redrawBGAreas() {
int i;
int diff;
int val = 0;
if (_game.id != GID_PASS && _game.version >= 4 && _game.version <= 6) {
// Starting with V4 games (with the exception of the PASS demo), text
// is drawn over the game graphics (as opposed to be drawn in a
// separate region of the screen). So, when scrolling in one of these
// games (pre-new camera system), if actor text is visible (as indicated
// by the _hasMask flag), we first remove it before proceeding.
if (camera._cur.x != camera._last.x && _charset->_hasMask)
stopTalk();
}
// Redraw parts of the background which are marked as dirty.
if (!_fullRedraw && _bgNeedsRedraw) {
for (i = 0; i != _gdi->_numStrips; i++) {
if (testGfxUsageBit(_screenStartStrip + i, USAGE_BIT_DIRTY)) {
redrawBGStrip(i, 1);
}
}
}
if (_game.version >= 7) {
diff = camera._cur.x / 8 - camera._last.x / 8;
if (_fullRedraw || ABS(diff) >= _gdi->_numStrips) {
_bgNeedsRedraw = false;
redrawBGStrip(0, _gdi->_numStrips);
} else if (diff > 0) {
val = -diff;
redrawBGStrip(_gdi->_numStrips - diff, diff);
} else if (diff < 0) {
val = -diff;
redrawBGStrip(0, -diff);
}
} else {
diff = camera._cur.x - camera._last.x;
if (!_fullRedraw && diff == 8) {
val = -1;
redrawBGStrip(_gdi->_numStrips - 1, 1);
} else if (!_fullRedraw && diff == -8) {
val = +1;
redrawBGStrip(0, 1);
} else if (_fullRedraw || diff != 0) {
if (_game.version <= 5) {
((ScummEngine_v5 *)this)->clearFlashlight();
}
_bgNeedsRedraw = false;
redrawBGStrip(0, _gdi->_numStrips);
}
}
drawRoomObjects(val);
_bgNeedsRedraw = false;
}
#ifdef ENABLE_HE
void ScummEngine_v71he::redrawBGAreas() {
if (camera._cur.x != camera._last.x && _charset->_hasMask)
stopTalk();
byte *room = getResourceAddress(rtRoomImage, _roomResource) + _IM00_offs;
if (_fullRedraw) {
_bgNeedsRedraw = false;
_gdi->drawBMAPBg(room, &_virtscr[kMainVirtScreen]);
}
drawRoomObjects(0);
_bgNeedsRedraw = false;
}
void ScummEngine_v72he::redrawBGAreas() {
ScummEngine_v71he::redrawBGAreas();
_wiz->flushWizBuffer();
}
#endif
void ScummEngine::redrawBGStrip(int start, int num) {
byte *room;
int s = _screenStartStrip + start;
for (int i = 0; i < num; i++)
setGfxUsageBit(s + i, USAGE_BIT_DIRTY);
if (_game.heversion >= 70)
room = getResourceAddress(rtRoomImage, _roomResource);
else
room = getResourceAddress(rtRoom, _roomResource);
_gdi->drawBitmap(room + _IM00_offs, &_virtscr[kMainVirtScreen], s, 0, _roomWidth, _virtscr[kMainVirtScreen].h, s, num, 0);
}
void ScummEngine::restoreBackground(Common::Rect rect, byte backColor) {
VirtScreen *vs;
byte *screenBuf;
if (rect.top < 0)
rect.top = 0;
if (rect.left >= rect.right || rect.top >= rect.bottom)
return;
if ((vs = findVirtScreen(rect.top)) == NULL)
return;
if (rect.left > vs->w)
return;
// Indy4 Amiga always uses the room or verb palette map to match colors to
// the currently setup palette, thus we need to select it over here too.
// Done like the original interpreter.
if (_game.platform == Common::kPlatformAmiga && _game.id == GID_INDY4) {
if (vs->number == kVerbVirtScreen)
backColor = _verbPalette[backColor];
else
backColor = _roomPalette[backColor];
}
// Convert 'rect' to local (virtual screen) coordinates
rect.top -= vs->topline;
rect.bottom -= vs->topline;
rect.clip(vs->w, vs->h);
const int height = rect.height();
const int width = rect.width();
#ifndef DISABLE_TOWNS_DUAL_LAYER_MODE
if (_game.platform == Common::kPlatformFMTowns && _game.id == GID_MONKEY && vs->number == kVerbVirtScreen && rect.bottom <= 154)
rect.right = 319;
#endif
markRectAsDirty(vs->number, rect, USAGE_BIT_RESTORED);
screenBuf = vs->getPixels(rect.left, rect.top);
if (!height)
return;
if (vs->hasTwoBuffers && _currentRoom != 0 && isLightOn()) {
blit(screenBuf, vs->pitch, vs->getBackPixels(rect.left, rect.top), vs->pitch, width, height, vs->format.bytesPerPixel);
if (vs->number == kMainVirtScreen && _charset->_hasMask) {
#ifndef DISABLE_TOWNS_DUAL_LAYER_MODE
if (_game.platform == Common::kPlatformFMTowns) {
byte *mask = (byte *)_textSurface.getBasePtr(rect.left * _textSurfaceMultiplier, (rect.top + vs->topline) * _textSurfaceMultiplier);
fill(mask, _textSurface.pitch, 0, width * _textSurfaceMultiplier, height * _textSurfaceMultiplier, _textSurface.format.bytesPerPixel);
} else
#endif
{
byte *mask = (byte *)_textSurface.getBasePtr(rect.left, rect.top - _screenTop);
fill(mask, _textSurface.pitch, CHARSET_MASK_TRANSPARENCY, width * _textSurfaceMultiplier, height * _textSurfaceMultiplier, _textSurface.format.bytesPerPixel);
}
}
} else {
#ifndef DISABLE_TOWNS_DUAL_LAYER_MODE
if (_game.platform == Common::kPlatformFMTowns) {
backColor |= (backColor << 4);
byte *mask = (byte *)_textSurface.getBasePtr(rect.left * _textSurfaceMultiplier, (rect.top + vs->topline) * _textSurfaceMultiplier);
fill(mask, _textSurface.pitch, backColor, width * _textSurfaceMultiplier, height * _textSurfaceMultiplier, _textSurface.format.bytesPerPixel);
}
#endif
if (_game.features & GF_16BIT_COLOR)
fill(screenBuf, vs->pitch, _16BitPalette[backColor], width, height, vs->format.bytesPerPixel);
else
fill(screenBuf, vs->pitch, backColor, width, height, vs->format.bytesPerPixel);
}
}
void ScummEngine::restoreCharsetBg() {
_nextLeft = _string[0].xpos;
_nextTop = _string[0].ypos + _screenTop;
if (_charset->_hasMask) {
_charset->_hasMask = false;
_charset->_str.left = -1;
_charset->_left = -1;
// Restore background on the whole text area. This code is based on
// restoreBackground(), but was changed to only restore those parts which are
// currently covered by the charset mask.
VirtScreen *vs = &_virtscr[_charset->_textScreenID];
if (!vs->h)
return;
markRectAsDirty(vs->number, Common::Rect(vs->w, vs->h), USAGE_BIT_RESTORED);
byte *screenBuf = vs->getPixels(0, 0);
if (vs->hasTwoBuffers && _currentRoom != 0 && isLightOn()) {
if (vs->number != kMainVirtScreen) {
// Restore from back buffer
const byte *backBuf = vs->getBackPixels(0, 0);
blit(screenBuf, vs->pitch, backBuf, vs->pitch, vs->w, vs->h, vs->format.bytesPerPixel);
}
} else {
// Clear area
memset(screenBuf, 0, vs->h * vs->pitch);
}
if (vs->hasTwoBuffers) {
// Clean out the charset mask
clearTextSurface();
}
}
}
void ScummEngine::clearCharsetMask() {
memset(getResourceAddress(rtBuffer, 9), 0, _gdi->_imgBufOffs[1]);
}
void ScummEngine::clearTextSurface() {
#ifndef DISABLE_TOWNS_DUAL_LAYER_MODE
if (_townsScreen)
_townsScreen->fillLayerRect(1, 0, 0, _textSurface.w, _textSurface.h, 0);
#endif
fill((byte *)_textSurface.pixels, _textSurface.pitch,
#ifndef DISABLE_TOWNS_DUAL_LAYER_MODE
_game.platform == Common::kPlatformFMTowns ? 0 :
#endif
CHARSET_MASK_TRANSPARENCY, _textSurface.w, _textSurface.h, _textSurface.format.bytesPerPixel);
}
byte *ScummEngine::getMaskBuffer(int x, int y, int z) {
return _gdi->getMaskBuffer((x + _virtscr[kMainVirtScreen].xstart) / 8, y, z);
}
byte *Gdi::getMaskBuffer(int x, int y, int z) {
return _vm->getResourceAddress(rtBuffer, 9)
+ x + y * _numStrips + _imgBufOffs[z];
}
#pragma mark -
#pragma mark --- Misc ---
#pragma mark -
static void blit(byte *dst, int dstPitch, const byte *src, int srcPitch, int w, int h, uint8 bitDepth) {
assert(w > 0);
assert(h > 0);
assert(src != NULL);
assert(dst != NULL);
if ((w * bitDepth == srcPitch) && (w * bitDepth == dstPitch)) {
memcpy(dst, src, w * h * bitDepth);
} else {
do {
memcpy(dst, src, w * bitDepth);
dst += dstPitch;
src += srcPitch;
} while (--h);
}
}
static void fill(byte *dst, int dstPitch, uint16 color, int w, int h, uint8 bitDepth) {
assert(h > 0);
assert(dst != NULL);
if (bitDepth == 2) {
do {
for (int i = 0; i < w; i++)
WRITE_UINT16(dst + i * 2, color);
dst += dstPitch;
} while (--h);
} else {
if (w == dstPitch) {
memset(dst, color, w * h);
} else {
do {
memset(dst, color, w);
dst += dstPitch;
} while (--h);
}
}
}
#ifdef USE_ARM_GFX_ASM
#define copy8Col(A,B,C,D,E) asmCopy8Col(A,B,C,D,E)
#else
static void copy8Col(byte *dst, int dstPitch, const byte *src, int height, uint8 bitDepth) {
do {
#if defined(SCUMM_NEED_ALIGNMENT)
memcpy(dst, src, 8 * bitDepth);
#else
((uint32 *)dst)[0] = ((const uint32 *)src)[0];
((uint32 *)dst)[1] = ((const uint32 *)src)[1];
if (bitDepth == 2) {
((uint32 *)dst)[2] = ((const uint32 *)src)[2];
((uint32 *)dst)[3] = ((const uint32 *)src)[3];
}
#endif
dst += dstPitch;
src += dstPitch;
} while (--height);
}
#endif /* USE_ARM_GFX_ASM */
static void clear8Col(byte *dst, int dstPitch, int height, uint8 bitDepth) {
do {
#if defined(SCUMM_NEED_ALIGNMENT)
memset(dst, 0, 8 * bitDepth);
#else
((uint32 *)dst)[0] = 0;
((uint32 *)dst)[1] = 0;
if (bitDepth == 2) {
((uint32 *)dst)[2] = 0;
((uint32 *)dst)[3] = 0;
}
#endif
dst += dstPitch;
} while (--height);
}
void ScummEngine::drawBox(int x, int y, int x2, int y2, int color) {
int width, height;
VirtScreen *vs;
byte *backbuff, *bgbuff;
if ((vs = findVirtScreen(y)) == NULL)
return;
// Indy4 Amiga always uses the room or verb palette map to match colors to
// the currently setup palette, thus we need to select it over here too.
// Done like the original interpreter.
if (_game.platform == Common::kPlatformAmiga && _game.id == GID_INDY4) {
if (vs->number == kVerbVirtScreen)
color = _verbPalette[color];
else
color = _roomPalette[color];
}
if (x > x2)
SWAP(x, x2);
if (y > y2)
SWAP(y, y2);
x2++;
y2++;
// Adjust for the topline of the VirtScreen
y -= vs->topline;
y2 -= vs->topline;
// Clip the coordinates
if (x < 0)
x = 0;
else if (x >= vs->w)
return;
if (x2 < 0)
return;
else if (x2 > vs->w)
x2 = vs->w;
if (y < 0)
y = 0;
else if (y > vs->h)
return;
if (y2 < 0)
return;
else if (y2 > vs->h)
y2 = vs->h;
width = x2 - x;
height = y2 - y;
// This will happen in the Sam & Max intro - see bug #1039162 - where
// it would trigger an assertion in blit().
if (width <= 0 || height <= 0)
return;
markRectAsDirty(vs->number, x, x2, y, y2);
backbuff = vs->getPixels(x, y);
bgbuff = vs->getBackPixels(x, y);
// A check for -1 might be wrong in all cases since o5_drawBox() in its current form
// is definitely not capable of passing a parameter of -1 (color range is 0 - 255).
// Just to make sure I don't break anything I restrict the code change to FM-Towns
// version 5 games where this change is necessary to fix certain long standing bugs.
if (color == -1
#ifndef DISABLE_TOWNS_DUAL_LAYER_MODE
|| (color >= 254 && _game.platform == Common::kPlatformFMTowns && (_game.id == GID_MONKEY2 || _game.id == GID_INDY4))
#endif
) {
#ifndef DISABLE_TOWNS_DUAL_LAYER_MODE
if (_game.platform == Common::kPlatformFMTowns) {
if (color == 254)
towns_setupPalCycleField(x, y, x2, y2);
} else
#endif
{
if (vs->number != kMainVirtScreen)
error("can only copy bg to main window");
blit(backbuff, vs->pitch, bgbuff, vs->pitch, width, height, vs->format.bytesPerPixel);
if (_charset->_hasMask) {
byte *mask = (byte *)_textSurface.getBasePtr(x * _textSurfaceMultiplier, (y - _screenTop) * _textSurfaceMultiplier);
fill(mask, _textSurface.pitch, CHARSET_MASK_TRANSPARENCY, width * _textSurfaceMultiplier, height * _textSurfaceMultiplier, _textSurface.format.bytesPerPixel);
}
}
} else if (_game.heversion >= 72) {
// Flags are used for different methods in HE games
uint32 flags = color;
if ((flags & 0x2000) || (flags & 0x4000000)) {
blit(backbuff, vs->pitch, bgbuff, vs->pitch, width, height, vs->format.bytesPerPixel);
} else if ((flags & 0x4000) || (flags & 0x2000000)) {
blit(bgbuff, vs->pitch, backbuff, vs->pitch, width, height, vs->format.bytesPerPixel);
} else if ((flags & 0x8000) || (flags & 0x1000000)) {
flags &= (flags & 0x1000000) ? 0xFFFFFF : 0x7FFF;
fill(backbuff, vs->pitch, flags, width, height, vs->format.bytesPerPixel);
fill(bgbuff, vs->pitch, flags, width, height, vs->format.bytesPerPixel);
} else {
fill(backbuff, vs->pitch, flags, width, height, vs->format.bytesPerPixel);
}
} else if (_game.heversion >= 60) {
// Flags are used for different methods in HE games
uint16 flags = color;
if (flags & 0x2000) {
blit(backbuff, vs->pitch, bgbuff, vs->pitch, width, height, vs->format.bytesPerPixel);
} else if (flags & 0x4000) {
blit(bgbuff, vs->pitch, backbuff, vs->pitch, width, height, vs->format.bytesPerPixel);
} else if (flags & 0x8000) {
flags &= 0x7FFF;
fill(backbuff, vs->pitch, flags, width, height, vs->format.bytesPerPixel);
fill(bgbuff, vs->pitch, flags, width, height, vs->format.bytesPerPixel);
} else {
fill(backbuff, vs->pitch, flags, width, height, vs->format.bytesPerPixel);
}
} else {
if (_game.features & GF_16BIT_COLOR) {
fill(backbuff, vs->pitch, _16BitPalette[color], width, height, vs->format.bytesPerPixel);
} else {
#ifndef DISABLE_TOWNS_DUAL_LAYER_MODE
if (_game.platform == Common::kPlatformFMTowns) {
color = ((color & 0x0f) << 4) | (color & 0x0f);
byte *mask = (byte *)_textSurface.getBasePtr(x * _textSurfaceMultiplier, (y - _screenTop + vs->topline) * _textSurfaceMultiplier);
fill(mask, _textSurface.pitch, color, width * _textSurfaceMultiplier, height * _textSurfaceMultiplier, _textSurface.format.bytesPerPixel);
if (_game.id == GID_MONKEY2 || _game.id == GID_INDY4 || ((_game.id == GID_INDY3 || _game.id == GID_ZAK) && vs->number != kTextVirtScreen) || (_game.id == GID_LOOM && vs->number == kMainVirtScreen))
return;
}
#endif
fill(backbuff, vs->pitch, color, width, height, vs->format.bytesPerPixel);
}
}
}
/**
* Moves the screen content by the offset specified via dx/dy.
* Only the region from x=0 till x=height-1 is affected.
* @param dx the horizontal offset.
* @param dy the vertical offset.
* @param height the number of lines which in which the move will be done.
*/
void ScummEngine::moveScreen(int dx, int dy, int height) {
// Short circuit check - do we have to do anything anyway?
if ((dx == 0 && dy == 0) || height <= 0)
return;
Graphics::Surface *screen = _system->lockScreen();
if (!screen)
return;
screen->move(dx, dy, height);
_system->unlockScreen();
}
void ScummEngine_v5::clearFlashlight() {
_flashlight.isDrawn = false;
_flashlight.buffer = NULL;
}
void ScummEngine_v5::drawFlashlight() {
int i, j, x, y;
VirtScreen *vs = &_virtscr[kMainVirtScreen];
// Remove the flash light first if it was previously drawn
if (_flashlight.isDrawn) {
markRectAsDirty(kMainVirtScreen, _flashlight.x, _flashlight.x + _flashlight.w,
_flashlight.y, _flashlight.y + _flashlight.h, USAGE_BIT_DIRTY);
if (_flashlight.buffer) {
fill(_flashlight.buffer, vs->pitch, 0, _flashlight.w, _flashlight.h, vs->format.bytesPerPixel);
}
_flashlight.isDrawn = false;
}
if (_flashlight.xStrips == 0 || _flashlight.yStrips == 0)
return;
// Calculate the area of the flashlight
if (_game.id == GID_ZAK || _game.id == GID_MANIAC) {
x = _mouse.x + vs->xstart;
y = _mouse.y - vs->topline;
} else {
Actor *a = derefActor(VAR(VAR_EGO), "drawFlashlight");
x = a->getPos().x;
y = a->getPos().y;
}
_flashlight.w = _flashlight.xStrips * 8;
_flashlight.h = _flashlight.yStrips * 8;
_flashlight.x = x - _flashlight.w / 2 - _screenStartStrip * 8;
_flashlight.y = y - _flashlight.h / 2;
if (_game.id == GID_LOOM)
_flashlight.y -= 12;
// Clip the flashlight at the borders
if (_flashlight.x < 0)
_flashlight.x = 0;
else if (_flashlight.x + _flashlight.w > _gdi->_numStrips * 8)
_flashlight.x = _gdi->_numStrips * 8 - _flashlight.w;
if (_flashlight.y < 0)
_flashlight.y = 0;
else if (_flashlight.y + _flashlight.h> vs->h)
_flashlight.y = vs->h - _flashlight.h;
// Redraw any actors "under" the flashlight
for (i = _flashlight.x / 8; i < (_flashlight.x + _flashlight.w) / 8; i++) {
assert(0 <= i && i < _gdi->_numStrips);
setGfxUsageBit(_screenStartStrip + i, USAGE_BIT_DIRTY);
vs->tdirty[i] = 0;
vs->bdirty[i] = vs->h;
}
byte *bgbak;
_flashlight.buffer = vs->getPixels(_flashlight.x, _flashlight.y);
bgbak = vs->getBackPixels(_flashlight.x, _flashlight.y);
blit(_flashlight.buffer, vs->pitch, bgbak, vs->pitch, _flashlight.w, _flashlight.h, vs->format.bytesPerPixel);
// Round the corners. To do so, we simply hard-code a set of nicely
// rounded corners.
static const int corner_data[] = { 8, 6, 4, 3, 2, 2, 1, 1 };
int minrow = 0;
int maxcol = (_flashlight.w - 1) * vs->format.bytesPerPixel;
int maxrow = (_flashlight.h - 1) * vs->pitch;
for (i = 0; i < 8; i++, minrow += vs->pitch, maxrow -= vs->pitch) {
int d = corner_data[i];
for (j = 0; j < d; j++) {
if (vs->format.bytesPerPixel == 2) {
WRITE_UINT16(&_flashlight.buffer[minrow + 2 * j], 0);
WRITE_UINT16(&_flashlight.buffer[minrow + maxcol - 2 * j], 0);
WRITE_UINT16(&_flashlight.buffer[maxrow + 2 * j], 0);
WRITE_UINT16(&_flashlight.buffer[maxrow + maxcol - 2 * j], 0);
} else {
_flashlight.buffer[minrow + j] = 0;
_flashlight.buffer[minrow + maxcol - j] = 0;
_flashlight.buffer[maxrow + j] = 0;
_flashlight.buffer[maxrow + maxcol - j] = 0;
}
}
}
_flashlight.isDrawn = true;
}
int ScummEngine_v0::getCurrentLights() const {
// V0 Maniac doesn't have a ScummVar for VAR_CURRENT_LIGHTS, and just uses
// an internal variable. Emulate this to prevent overwriting script vars...
// And V6 games do not use the "lights" at all. There, the whole screen is
// always visible, and actors are always colored, so we fake the correct
// light value for it.
return _currentLights;
}
int ScummEngine::getCurrentLights() const {
if (_game.version >= 6)
return LIGHTMODE_room_lights_on | LIGHTMODE_actor_use_colors;
else
return VAR(VAR_CURRENT_LIGHTS);
}
bool ScummEngine::isLightOn() const {
return (getCurrentLights() & LIGHTMODE_room_lights_on) != 0;
}
void ScummEngine::setShake(int mode) {
if (_shakeEnabled != (mode != 0))
_fullRedraw = true;
_shakeEnabled = mode != 0;
_shakeFrame = 0;
_system->setShakePos(0);
}
#pragma mark -
#pragma mark --- Image drawing ---
#pragma mark -
void Gdi::prepareDrawBitmap(const byte *ptr, VirtScreen *vs,
const int x, const int y, const int width, const int height,
int stripnr, int numstrip) {
// Do nothing by default
}
void GdiHE::prepareDrawBitmap(const byte *ptr, VirtScreen *vs,
const int x, const int y, const int width, const int height,
int stripnr, int numstrip) {
if (_vm->_game.heversion >= 72) {
_tmskPtr = _vm->findResource(MKTAG('T','M','S','K'), ptr);
} else
_tmskPtr = 0;
}
void GdiV1::prepareDrawBitmap(const byte *ptr, VirtScreen *vs,
const int x, const int y, const int width, const int height,
int stripnr, int numstrip) {
if (_objectMode) {
decodeV1Gfx(ptr, _V1.objectMap, (width / 8) * (height / 8) * 3);
}
}
void GdiNES::prepareDrawBitmap(const byte *ptr, VirtScreen *vs,
const int x, const int y, const int width, const int height,
int stripnr, int numstrip) {
if (_objectMode) {
decodeNESObject(ptr, x - stripnr, y, width, height);
}
}
#ifdef USE_RGB_COLOR
void GdiPCEngine::prepareDrawBitmap(const byte *ptr, VirtScreen *vs,
const int x, const int y, const int width, const int height,
int stripnr, int numstrip) {
if (_objectMode) {
decodePCEngineObject(ptr, x - stripnr, y, width, height);
}
}
#endif
void GdiV2::prepareDrawBitmap(const byte *ptr, VirtScreen *vs,
const int x, const int y, const int width, const int height,
int stripnr, int numstrip) {
//
// Since V3, all graphics data was encoded in strips, which is very efficient
// for redrawing only parts of the screen. However, V2 is different: here
// the whole graphics are encoded as one big chunk. That makes it rather
// difficult to draw only parts of a room/object. We handle the V2 graphics
// differently from all other (newer) graphic formats for this reason.
//
StripTable *table = (_objectMode ? 0 : _roomStrips);
const int left = (stripnr * 8);
const int right = left + (numstrip * 8);
byte *dst;
byte *mask_ptr;
const byte *src;
byte color, data = 0;
int run;
bool dither = false;
byte dither_table[128];
byte *ptr_dither_table;
int theX, theY, maxX;
memset(dither_table, 0, sizeof(dither_table));
if (vs->hasTwoBuffers)
dst = vs->backBuf + y * vs->pitch + x * 8;
else
dst = (byte *)vs->pixels + y * vs->pitch + x * 8;
mask_ptr = getMaskBuffer(x, y, 1);
if (table) {
run = table->run[stripnr];
color = table->color[stripnr];
src = ptr + table->offsets[stripnr];
theX = left;
maxX = right;
} else {
run = 1;
color = 0;
src = ptr;
theX = 0;
maxX = width;
}
// Decode and draw the image data.
assert(height <= 128);
for (; theX < maxX; theX++) {
ptr_dither_table = dither_table;
for (theY = 0; theY < height; theY++) {
if (--run == 0) {
data = *src++;
if (data & 0x80) {
run = data & 0x7f;
dither = true;
} else {
run = data >> 4;
dither = false;
}
color = _roomPalette[data & 0x0f];
if (run == 0) {
run = *src++;
}
}
if (!dither) {
*ptr_dither_table = color;
}
if (left <= theX && theX < right) {
*dst = *ptr_dither_table++;
dst += vs->pitch;
}
}
if (left <= theX && theX < right) {
dst -= _vertStripNextInc;
}
}
// Draw mask (zplane) data
theY = 0;
if (table) {
src = ptr + table->zoffsets[stripnr];
run = table->zrun[stripnr];
theX = left;
} else {
run = *src++;
theX = 0;
}
while (theX < right) {
const byte runFlag = run & 0x80;
if (runFlag) {
run &= 0x7f;
data = *src++;
}
do {
if (!runFlag)
data = *src++;
if (left <= theX) {
*mask_ptr = data;
mask_ptr += _numStrips;
}
theY++;
if (theY >= height) {
if (left <= theX) {
mask_ptr -= _numStrips * height - 1;
}
theY = 0;
theX += 8;
if (theX >= right)
break;
}
} while (--run);
run = *src++;
}
}
int Gdi::getZPlanes(const byte *ptr, const byte *zplane_list[9], bool bmapImage) const {
int numzbuf;
int i;
if ((_vm->_game.features & GF_SMALL_HEADER) || _vm->_game.version == 8)
zplane_list[0] = ptr;
else if (bmapImage)
zplane_list[0] = _vm->findResource(MKTAG('B','M','A','P'), ptr);
else
zplane_list[0] = _vm->findResource(MKTAG('S','M','A','P'), ptr);
if (_zbufferDisabled)
numzbuf = 0;
else if (_numZBuffer <= 1 || (_vm->_game.version <= 2))
numzbuf = _numZBuffer;
else {
numzbuf = _numZBuffer;
assert(numzbuf <= 9);
if (_vm->_game.id == GID_LOOM && _vm->_game.platform == Common::kPlatformPCEngine) {
zplane_list[1] = 0;
} else if (_vm->_game.features & GF_SMALL_HEADER) {
if (_vm->_game.features & GF_16COLOR)
zplane_list[1] = ptr + READ_LE_UINT16(ptr);
else {
zplane_list[1] = ptr + READ_LE_UINT32(ptr);
if (_vm->_game.features & GF_OLD256) {
if (0 == READ_LE_UINT32(zplane_list[1]))
zplane_list[1] = 0;
}
}
for (i = 2; i < numzbuf; i++) {
zplane_list[i] = zplane_list[i-1] + READ_LE_UINT16(zplane_list[i-1]);
}
} else if (_vm->_game.version == 8) {
// Find the OFFS chunk of the ZPLN chunk
const byte *zplnOffsChunkStart = ptr + 24 + READ_BE_UINT32(ptr + 12);
// Each ZPLN contains a WRAP chunk, which has (as always) an OFFS subchunk pointing
// at ZSTR chunks. These once more contain a WRAP chunk which contains nothing but
// an OFFS chunk. The content of this OFFS chunk contains the offsets to the
// Z-planes.
// We do not directly make use of this, but rather hard code offsets (like we do
// for all other Scumm-versions, too). Clearly this is a bit hackish, but works
// well enough, and there is no reason to assume that there are any cases where it
// might fail. Still, doing this properly would have the advantage of catching
// invalid/damaged data files, and allow us to exit gracefully instead of segfaulting.
for (i = 1; i < numzbuf; i++) {
zplane_list[i] = zplnOffsChunkStart + READ_LE_UINT32(zplnOffsChunkStart + 4 + i*4) + 16;
}
} else {
const uint32 zplane_tags[] = {
MKTAG('Z','P','0','0'),
MKTAG('Z','P','0','1'),
MKTAG('Z','P','0','2'),
MKTAG('Z','P','0','3'),
MKTAG('Z','P','0','4')
};
for (i = 1; i < numzbuf; i++) {
zplane_list[i] = _vm->findResource(zplane_tags[i], ptr);
}
}
}
return numzbuf;
}
/**
* Draw a bitmap onto a virtual screen. This is main drawing method for room backgrounds
* and objects, used throughout all SCUMM versions.
*/
void Gdi::drawBitmap(const byte *ptr, VirtScreen *vs, int x, const int y, const int width, const int height,
int stripnr, int numstrip, byte flag) {
assert(ptr);
assert(height > 0);
byte *dstPtr;
const byte *smap_ptr;
const byte *zplane_list[9];
int numzbuf;
int sx;
bool transpStrip = false;
// Check whether lights are turned on or not
const bool lightsOn = _vm->isLightOn();
if (_vm->_game.features & GF_SMALL_HEADER) {
smap_ptr = ptr;
} else if (_vm->_game.version == 8) {
// Skip to the BSTR->WRAP->OFFS chunk
smap_ptr = ptr + 24;
} else {
smap_ptr = _vm->findResource(MKTAG('S','M','A','P'), ptr);
assert(smap_ptr);
}
numzbuf = getZPlanes(ptr, zplane_list, false);
if (y + height > vs->h) {
warning("Gdi::drawBitmap, strip drawn to %d below window bottom %d", y + height, vs->h);
}
#ifndef DISABLE_TOWNS_DUAL_LAYER_MODE
if (_vm->_townsPaletteFlags & 2) {
int cx = (x - _vm->_screenStartStrip) << 3;
_vm->_textSurface.fillRect(Common::Rect(cx * _vm->_textSurfaceMultiplier, y * _vm->_textSurfaceMultiplier, (cx + width - 1) * _vm->_textSurfaceMultiplier, (y + height - 1) * _vm->_textSurfaceMultiplier), 0);
}
#endif
_vertStripNextInc = height * vs->pitch - 1 * vs->format.bytesPerPixel;
_objectMode = (flag & dbObjectMode) == dbObjectMode;
prepareDrawBitmap(ptr, vs, x, y, width, height, stripnr, numstrip);
sx = x - vs->xstart / 8;
if (sx < 0) {
numstrip -= -sx;
x += -sx;
stripnr += -sx;
sx = 0;
}
// Compute the number of strips we have to iterate over.
// TODO/FIXME: The computation of its initial value looks very fishy.
// It was added as a kind of hack to fix some corner cases, but it compares
// the room width to the virtual screen width; but the former should always
// be bigger than the latter (except for MM NES, maybe)... strange
int limit = MAX(_vm->_roomWidth, (int) vs->w) / 8 - x;
if (limit > numstrip)
limit = numstrip;
if (limit > _numStrips - sx)
limit = _numStrips - sx;
for (int k = 0; k < limit; ++k, ++stripnr, ++sx, ++x) {
if (y < vs->tdirty[sx])
vs->tdirty[sx] = y;
if (y + height > vs->bdirty[sx])
vs->bdirty[sx] = y + height;
// In the case of a double buffered virtual screen, we draw to
// the backbuffer, otherwise to the primary surface memory.
if (vs->hasTwoBuffers)
dstPtr = vs->backBuf + y * vs->pitch + (x * 8 * vs->format.bytesPerPixel);
else
dstPtr = (byte *)vs->pixels + y * vs->pitch + (x * 8 * vs->format.bytesPerPixel);
transpStrip = drawStrip(dstPtr, vs, x, y, width, height, stripnr, smap_ptr);
// COMI and HE games only uses flag value
if (_vm->_game.version == 8 || _vm->_game.heversion >= 60)
transpStrip = true;
if (vs->hasTwoBuffers) {
byte *frontBuf = (byte *)vs->pixels + y * vs->pitch + (x * 8 * vs->format.bytesPerPixel);
if (lightsOn)
copy8Col(frontBuf, vs->pitch, dstPtr, height, vs->format.bytesPerPixel);
else
clear8Col(frontBuf, vs->pitch, height, vs->format.bytesPerPixel);
}
decodeMask(x, y, width, height, stripnr, numzbuf, zplane_list, transpStrip, flag);
#if 0
// HACK: blit mask(s) onto normal screen. Useful to debug masking
for (int i = 0; i < numzbuf; i++) {
byte *dst1, *dst2;
dst1 = dst2 = (byte *)vs->pixels + y * vs->pitch + x * 8;
if (vs->hasTwoBuffers)
dst2 = vs->backBuf + y * vs->pitch + x * 8;
byte *mask_ptr = getMaskBuffer(x, y, i);
for (int h = 0; h < height; h++) {
int maskbits = *mask_ptr;
for (int j = 0; j < 8; j++) {
if (maskbits & 0x80)
dst1[j] = dst2[j] = 12 + i;
maskbits <<= 1;
}
dst1 += vs->pitch;
dst2 += vs->pitch;
mask_ptr += _numStrips;
}
}
#endif
}
}
bool Gdi::drawStrip(byte *dstPtr, VirtScreen *vs, int x, int y, const int width, const int height,
int stripnr, const byte *smap_ptr) {
// Do some input verification and make sure the strip/strip offset
// are actually valid. Normally, this should never be a problem,
// but if e.g. a savegame gets corrupted, we can easily get into
// trouble here. See also bug #795214.
int offset = -1, smapLen;
if (_vm->_game.features & GF_16COLOR) {
smapLen = READ_LE_UINT16(smap_ptr);
if (stripnr * 2 + 2 < smapLen) {
offset = READ_LE_UINT16(smap_ptr + stripnr * 2 + 2);
}
} else if (_vm->_game.features & GF_SMALL_HEADER) {
smapLen = READ_LE_UINT32(smap_ptr);
if (stripnr * 4 + 4 < smapLen)
offset = READ_LE_UINT32(smap_ptr + stripnr * 4 + 4);
} else {
smapLen = READ_BE_UINT32(smap_ptr);
if (stripnr * 4 + 8 < smapLen)
offset = READ_LE_UINT32(smap_ptr + stripnr * 4 + 8);
}
assertRange(0, offset, smapLen-1, "screen strip");
// Indy4 Amiga always uses the room or verb palette map to match colors to
// the currently setup palette, thus we need to select it over here too.
// Done like the original interpreter.
if (_vm->_game.platform == Common::kPlatformAmiga && _vm->_game.id == GID_INDY4) {
if (vs->number == kVerbVirtScreen)
_roomPalette = _vm->_verbPalette;
else
_roomPalette = _vm->_roomPalette;
}
return decompressBitmap(dstPtr, vs->pitch, smap_ptr + offset, height);
}
bool GdiNES::drawStrip(byte *dstPtr, VirtScreen *vs, int x, int y, const int width, const int height,
int stripnr, const byte *smap_ptr) {
byte *mask_ptr = getMaskBuffer(x, y, 1);
drawStripNES(dstPtr, mask_ptr, vs->pitch, stripnr, y, height);
return false;
}
#ifdef USE_RGB_COLOR
bool GdiPCEngine::drawStrip(byte *dstPtr, VirtScreen *vs, int x, int y, const int width, const int height,
int stripnr, const byte *smap_ptr) {
byte *mask_ptr = getMaskBuffer(x, y, 1);
drawStripPCEngine(dstPtr, mask_ptr, vs->pitch, stripnr, y, height);
return false;
}
#endif
bool GdiV1::drawStrip(byte *dstPtr, VirtScreen *vs, int x, int y, const int width, const int height,
int stripnr, const byte *smap_ptr) {
if (_objectMode)
drawStripV1Object(dstPtr, vs->pitch, stripnr, width, height);
else
drawStripV1Background(dstPtr, vs->pitch, stripnr, height);
return false;
}
bool GdiV2::drawStrip(byte *dstPtr, VirtScreen *vs, int x, int y, const int width, const int height,
int stripnr, const byte *smap_ptr) {
// Do nothing here for V2 games - drawing was already handled.
return false;
}
void Gdi::decodeMask(int x, int y, const int width, const int height,
int stripnr, int numzbuf, const byte *zplane_list[9],
bool transpStrip, byte flag) {
int i;
byte *mask_ptr;
const byte *z_plane_ptr;
if (flag & dbDrawMaskOnAll) {
// Sam & Max uses dbDrawMaskOnAll for things like the inventory
// box and the speech icons. While these objects only have one
// mask, it should be applied to all the Z-planes in the room,
// i.e. they should mask every actor.
//
// This flag used to be called dbDrawMaskOnBoth, and all it
// would do was to mask Z-plane 0. (Z-plane 1 would also be
// masked, because what is now the else-clause used to be run
// always.) While this seems to be the only way there is to
// mask Z-plane 0, this wasn't good enough since actors in
// Z-planes >= 2 would not be masked.
//
// The flag is also used by The Dig and Full Throttle, but I
// don't know what for. At the time of writing, these games
// are still too unstable for me to investigate.
if (_vm->_game.version == 8)
z_plane_ptr = zplane_list[1] + READ_LE_UINT32(zplane_list[1] + stripnr * 4 + 8);
else
z_plane_ptr = zplane_list[1] + READ_LE_UINT16(zplane_list[1] + stripnr * 2 + 8);
for (i = 0; i < numzbuf; i++) {
mask_ptr = getMaskBuffer(x, y, i);
if (transpStrip && (flag & dbAllowMaskOr))
decompressMaskImgOr(mask_ptr, z_plane_ptr, height);
else
decompressMaskImg(mask_ptr, z_plane_ptr, height);
}
} else {
for (i = 1; i < numzbuf; i++) {
uint32 offs;
if (!zplane_list[i])
continue;
if (_vm->_game.features & GF_OLD_BUNDLE)
offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2);
else if (_vm->_game.features & GF_OLD256)
offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2 + 4);
else if (_vm->_game.features & GF_SMALL_HEADER)
offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2 + 2);
else if (_vm->_game.version == 8)
offs = READ_LE_UINT32(zplane_list[i] + stripnr * 4 + 8);
else
offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2 + 8);
mask_ptr = getMaskBuffer(x, y, i);
if (offs) {
z_plane_ptr = zplane_list[i] + offs;
if (transpStrip && (flag & dbAllowMaskOr)) {
decompressMaskImgOr(mask_ptr, z_plane_ptr, height);
} else {
decompressMaskImg(mask_ptr, z_plane_ptr, height);
}
} else {
if (!(transpStrip && (flag & dbAllowMaskOr)))
for (int h = 0; h < height; h++)
mask_ptr[h * _numStrips] = 0;
}
}
}
}
void GdiHE::decodeMask(int x, int y, const int width, const int height,
int stripnr, int numzbuf, const byte *zplane_list[9],
bool transpStrip, byte flag) {
int i;
byte *mask_ptr;
const byte *z_plane_ptr;
for (i = 1; i < numzbuf; i++) {
uint32 offs;
if (!zplane_list[i])
continue;
offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2 + 8);
mask_ptr = getMaskBuffer(x, y, i);
if (offs) {
z_plane_ptr = zplane_list[i] + offs;
if (_tmskPtr) {
const byte *tmsk = _tmskPtr + READ_LE_UINT16(_tmskPtr + stripnr * 2 + 8);
decompressTMSK(mask_ptr, tmsk, z_plane_ptr, height);
} else if (transpStrip && (flag & dbAllowMaskOr)) {
decompressMaskImgOr(mask_ptr, z_plane_ptr, height);
} else {
decompressMaskImg(mask_ptr, z_plane_ptr, height);
}
} else {
if (!(transpStrip && (flag & dbAllowMaskOr)))
for (int h = 0; h < height; h++)
mask_ptr[h * _numStrips] = 0;
}
}
}
void GdiNES::decodeMask(int x, int y, const int width, const int height,
int stripnr, int numzbuf, const byte *zplane_list[9],
bool transpStrip, byte flag) {
byte *mask_ptr = getMaskBuffer(x, y, 1);
drawStripNESMask(mask_ptr, stripnr, y, height);
}
#ifdef USE_RGB_COLOR
void GdiPCEngine::decodeMask(int x, int y, const int width, const int height,
int stripnr, int numzbuf, const byte *zplane_list[9],
bool transpStrip, byte flag) {
byte *mask_ptr = getMaskBuffer(x, y, 1);
drawStripPCEngineMask(mask_ptr, stripnr, y, height);
}
#endif
void GdiV1::decodeMask(int x, int y, const int width, const int height,
int stripnr, int numzbuf, const byte *zplane_list[9],
bool transpStrip, byte flag) {
byte *mask_ptr = getMaskBuffer(x, y, 1);
drawStripV1Mask(mask_ptr, stripnr, width, height);
}
void GdiV2::decodeMask(int x, int y, const int width, const int height,
int stripnr, int numzbuf, const byte *zplane_list[9],
bool transpStrip, byte flag) {
// Do nothing here for V2 games - zplane was already handled.
}
#ifdef ENABLE_HE
/**
* Draw a bitmap onto a virtual screen. This is main drawing method for room backgrounds
* used throughout HE71+ versions.
*
* @note This function essentially is a stripped down & special cased version of
* the generic Gdi::drawBitmap() method.
*/
void Gdi::drawBMAPBg(const byte *ptr, VirtScreen *vs) {
const byte *z_plane_ptr;
byte *mask_ptr;
const byte *zplane_list[9];
const byte *bmap_ptr = _vm->findResourceData(MKTAG('B','M','A','P'), ptr);
assert(bmap_ptr);
byte code = *bmap_ptr++;
byte *dst = vs->getBackPixels(0, 0);
// The following few lines more or less duplicate decompressBitmap(), only
// for an area spanning multiple strips. In particular, the codecs 13 & 14
// in decompressBitmap call drawStripHE()
_decomp_shr = code % 10;
_decomp_mask = 0xFF >> (8 - _decomp_shr);
switch (code) {
case 134:
case 135:
case 136:
case 137:
case 138:
drawStripHE(dst, vs->pitch, bmap_ptr, vs->w, vs->h, false);
break;
case 144:
case 145:
case 146:
case 147:
case 148:
drawStripHE(dst, vs->pitch, bmap_ptr, vs->w, vs->h, true);
break;
case 150:
fill(dst, vs->pitch, *bmap_ptr, vs->w, vs->h, vs->format.bytesPerPixel);
break;
default:
// Alternative russian freddi3 uses badly formatted bitmaps
debug(0, "Gdi::drawBMAPBg: default case %d", code);
}
((ScummEngine_v71he *)_vm)->restoreBackgroundHE(Common::Rect(vs->w, vs->h));
int numzbuf = getZPlanes(ptr, zplane_list, true);
if (numzbuf <= 1)
return;
uint32 offs;
for (int stripnr = 0; stripnr < _numStrips; stripnr++) {
for (int i = 1; i < numzbuf; i++) {
if (!zplane_list[i])
continue;
offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2 + 8);
mask_ptr = getMaskBuffer(stripnr, 0, i);
if (offs) {
z_plane_ptr = zplane_list[i] + offs;
decompressMaskImg(mask_ptr, z_plane_ptr, vs->h);
}
}
#if 0
// HACK: blit mask(s) onto normal screen. Useful to debug masking
for (int i = 0; i < numzbuf; i++) {
byte *dst1 = (byte *)vs->pixels + stripnr * 8;
byte *dst2 = vs->backBuf + stripnr * 8;
mask_ptr = getMaskBuffer(stripnr, 0, i);
for (int h = 0; h < vs->h; h++) {
int maskbits = *mask_ptr;
for (int j = 0; j < 8; j++) {
if (maskbits & 0x80)
dst1[j] = dst2[j] = 12 + i;
maskbits <<= 1;
}
dst1 += vs->pitch;
dst2 += vs->pitch;
mask_ptr += _numStrips;
}
}
#endif
}
}
void Gdi::drawBMAPObject(const byte *ptr, VirtScreen *vs, int obj, int x, int y, int w, int h) {
const byte *bmap_ptr = _vm->findResourceData(MKTAG('B','M','A','P'), ptr);
assert(bmap_ptr);
byte code = *bmap_ptr++;
int scrX = _vm->_screenStartStrip * 8 * _vm->_bytesPerPixel;
if (code == 8 || code == 9) {
Common::Rect rScreen(0, 0, vs->w, vs->h);
byte *dst = (byte *)_vm->_virtscr[kMainVirtScreen].backBuf + scrX;
Wiz::copyWizImage(dst, bmap_ptr, vs->pitch, kDstScreen, vs->w, vs->h, x - scrX, y, w, h, &rScreen, 0, 0, 0, _vm->_bytesPerPixel);
}
Common::Rect rect1(x, y, x + w, y + h);
Common::Rect rect2(scrX, 0, vs->w + scrX, vs->h);
if (rect1.intersects(rect2)) {
rect1.clip(rect2);
rect1.left -= rect2.left;
rect1.right -= rect2.left;
rect1.top -= rect2.top;
rect1.bottom -= rect2.top;
((ScummEngine_v71he *)_vm)->restoreBackgroundHE(rect1);
}
}
void ScummEngine_v70he::restoreBackgroundHE(Common::Rect rect, int dirtybit) {
byte *src, *dst;
VirtScreen *vs = &_virtscr[kMainVirtScreen];
if (rect.top > vs->h || rect.bottom < 0)
return;
if (rect.left > vs->w || rect.right < 0)
return;
rect.left = MAX(0, (int)rect.left);
rect.left = MIN((int)rect.left, (int)vs->w - 1);
rect.right = MAX(0, (int)rect.right);
rect.right = MIN((int)rect.right, (int)vs->w);
rect.top = MAX(0, (int)rect.top);
rect.top = MIN((int)rect.top, (int)vs->h - 1);
rect.bottom = MAX(0, (int)rect.bottom);
rect.bottom = MIN((int)rect.bottom, (int)vs->h);
const int rw = rect.width();
const int rh = rect.height();
if (rw == 0 || rh == 0)
return;
src = _virtscr[kMainVirtScreen].getBackPixels(rect.left, rect.top);
dst = _virtscr[kMainVirtScreen].getPixels(rect.left, rect.top);
assert(rw <= _screenWidth && rw > 0);
assert(rh <= _screenHeight && rh > 0);
blit(dst, _virtscr[kMainVirtScreen].pitch, src, _virtscr[kMainVirtScreen].pitch, rw, rh, vs->format.bytesPerPixel);
markRectAsDirty(kMainVirtScreen, rect, dirtybit);
}
#endif
/**
* Reset the background behind an actor or blast object.
*/
void Gdi::resetBackground(int top, int bottom, int strip) {
VirtScreen *vs = &_vm->_virtscr[kMainVirtScreen];
byte *backbuff_ptr, *bgbak_ptr;
int numLinesToProcess;
if (top < 0)
top = 0;
if (bottom > vs->h)
bottom = vs->h;
if (top >= bottom)
return;
assert(0 <= strip && strip < _numStrips);
if (top < vs->tdirty[strip])
vs->tdirty[strip] = top;
if (bottom > vs->bdirty[strip])
vs->bdirty[strip] = bottom;
bgbak_ptr = (byte *)vs->backBuf + top * vs->pitch + (strip + vs->xstart/8) * 8 * vs->format.bytesPerPixel;
backbuff_ptr = (byte *)vs->pixels + top * vs->pitch + (strip + vs->xstart/8) * 8 * vs->format.bytesPerPixel;
numLinesToProcess = bottom - top;
if (numLinesToProcess) {
if (_vm->isLightOn()) {
copy8Col(backbuff_ptr, vs->pitch, bgbak_ptr, numLinesToProcess, vs->format.bytesPerPixel);
} else {
clear8Col(backbuff_ptr, vs->pitch, numLinesToProcess, vs->format.bytesPerPixel);
}
}
}
bool Gdi::decompressBitmap(byte *dst, int dstPitch, const byte *src, int numLinesToProcess) {
assert(numLinesToProcess);
if (_vm->_game.features & GF_16COLOR) {
drawStripEGA(dst, dstPitch, src, numLinesToProcess);
return false;
}
if ((_vm->_game.platform == Common::kPlatformAmiga) && (_vm->_game.version >= 4))
_paletteMod = 16;
else
_paletteMod = 0;
byte code = *src++;
bool transpStrip = false;
_decomp_shr = code % 10;
_decomp_mask = 0xFF >> (8 - _decomp_shr);
switch (code) {
case 1:
drawStripRaw(dst, dstPitch, src, numLinesToProcess, false);
break;
case 2:
unkDecode8(dst, dstPitch, src, numLinesToProcess); /* Ender - Zak256/Indy256 */
break;
case 3:
unkDecode9(dst, dstPitch, src, numLinesToProcess); /* Ender - Zak256/Indy256 */
break;
case 4:
unkDecode10(dst, dstPitch, src, numLinesToProcess); /* Ender - Zak256/Indy256 */
break;
case 7:
unkDecode11(dst, dstPitch, src, numLinesToProcess); /* Ender - Zak256/Indy256 */
break;
case 8:
// Used in 3DO versions of HE games
transpStrip = true;
drawStrip3DO(dst, dstPitch, src, numLinesToProcess, true);
break;
case 9:
drawStrip3DO(dst, dstPitch, src, numLinesToProcess, false);
break;
case 10:
// Used in Amiga version of Monkey Island 1
drawStripEGA(dst, dstPitch, src, numLinesToProcess);
break;
case 14:
case 15:
case 16:
case 17:
case 18:
drawStripBasicV(dst, dstPitch, src, numLinesToProcess, false);
break;
case 24:
case 25:
case 26:
case 27:
case 28:
drawStripBasicH(dst, dstPitch, src, numLinesToProcess, false);
break;
case 34:
case 35:
case 36:
case 37:
case 38:
transpStrip = true;
drawStripBasicV(dst, dstPitch, src, numLinesToProcess, true);
break;
case 44:
case 45:
case 46:
case 47:
case 48:
transpStrip = true;
drawStripBasicH(dst, dstPitch, src, numLinesToProcess, true);
break;
case 64:
case 65:
case 66:
case 67:
case 68:
case 104:
case 105:
case 106:
case 107:
case 108:
drawStripComplex(dst, dstPitch, src, numLinesToProcess, false);
break;
case 84:
case 85:
case 86:
case 87:
case 88:
case 124:
case 125:
case 126:
case 127:
case 128:
transpStrip = true;
drawStripComplex(dst, dstPitch, src, numLinesToProcess, true);
break;
case 134:
case 135:
case 136:
case 137:
case 138:
drawStripHE(dst, dstPitch, src, 8, numLinesToProcess, false);
break;
case 143: // Triggered by Russian water
case 144:
case 145:
case 146:
case 147:
case 148:
transpStrip = true;
drawStripHE(dst, dstPitch, src, 8, numLinesToProcess, true);
break;
case 149:
drawStripRaw(dst, dstPitch, src, numLinesToProcess, true);
break;
default:
error("Gdi::decompressBitmap: default case %d", code);
}
return transpStrip;
}
void Gdi::decompressMaskImg(byte *dst, const byte *src, int height) const {
byte b, c;
while (height) {
b = *src++;
if (b & 0x80) {
b &= 0x7F;
c = *src++;
do {
*dst = c;
dst += _numStrips;
--height;
} while (--b && height);
} else {
do {
*dst = *src++;
dst += _numStrips;
--height;
} while (--b && height);
}
}
}
void GdiHE::decompressTMSK(byte *dst, const byte *tmsk, const byte *src, int height) const {
byte srcbits = 0;
byte srcFlag = 0;
byte maskFlag = 0;
byte srcCount = 0;
byte maskCount = 0;
byte maskbits = 0;
while (height) {
if (srcCount == 0) {
srcCount = *src++;
srcFlag = srcCount & 0x80;
if (srcFlag) {
srcCount &= 0x7F;
srcbits = *src++;
}
}
if (srcFlag == 0) {
srcbits = *src++;
}
srcCount--;
if (maskCount == 0) {
maskCount = *tmsk++;
maskFlag = maskCount & 0x80;
if (maskFlag) {
maskCount &= 0x7F;
maskbits = *tmsk++;
}
}
if (maskFlag == 0) {
maskbits = *tmsk++;
}
maskCount--;
*dst |= srcbits;
*dst &= ~maskbits;
dst += _numStrips;
height--;
}
}
void Gdi::decompressMaskImgOr(byte *dst, const byte *src, int height) const {
byte b, c;
while (height) {
b = *src++;
if (b & 0x80) {
b &= 0x7F;
c = *src++;
do {
*dst |= c;
dst += _numStrips;
--height;
} while (--b && height);
} else {
do {
*dst |= *src++;
dst += _numStrips;
--height;
} while (--b && height);
}
}
}
static void decodeNESTileData(const byte *src, byte *dest) {
int len = READ_LE_UINT16(src); src += 2;
const byte *end = src + len;
src++; // skip number-of-tiles byte, assume it is correct
while (src < end) {
byte data = *src++;
for (int j = 0; j < (data & 0x7F); j++)
*dest++ = (data & 0x80) ? (*src++) : (*src);
if (!(data & 0x80))
src++;
}
}
void ScummEngine::decodeNESBaseTiles() {
byte *basetiles = getResourceAddress(rtCostume, 37);
_NESBaseTiles = basetiles[2];
decodeNESTileData(basetiles, _NESPatTable[1]);
}
static const int v1MMNEScostTables[2][6] = {
/* desc lens offs data gfx pal */
{ 25, 27, 29, 31, 33, 35},
{ 26, 28, 30, 32, 34, 36}
};
void ScummEngine::NES_loadCostumeSet(int n) {
int i;
_NESCostumeSet = n;
_NEScostdesc = getResourceAddress(rtCostume, v1MMNEScostTables[n][0]) + 2;
_NEScostlens = getResourceAddress(rtCostume, v1MMNEScostTables[n][1]) + 2;
_NEScostoffs = getResourceAddress(rtCostume, v1MMNEScostTables[n][2]) + 2;
_NEScostdata = getResourceAddress(rtCostume, v1MMNEScostTables[n][3]) + 2;
decodeNESTileData(getResourceAddress(rtCostume, v1MMNEScostTables[n][4]), _NESPatTable[0]);
byte *palette = getResourceAddress(rtCostume, v1MMNEScostTables[n][5]) + 2;
for (i = 0; i < 16; i++) {
byte c = *palette++;
if (c == 0x1D) // HACK - switch around colors 0x00 and 0x1D
c = 0; // so we don't need a zillion extra checks
else if (c == 0)// for determining the proper background color
c = 0x1D;
_NESPalette[1][i] = c;
}
}
void GdiNES::decodeNESGfx(const byte *room) {
const byte *gdata = room + READ_LE_UINT16(room + 0x0A);
int tileset = *gdata++;
int width = READ_LE_UINT16(room + 0x04);
// int height = READ_LE_UINT16(room + 0x06);
int i, j, n;
// We have narrow room. so expand it
if (width < 32) {
_vm->_NESStartStrip = (32 - width) >> 1;
} else {
_vm->_NESStartStrip = 0;
}
decodeNESTileData(_vm->getResourceAddress(rtCostume, 37 + tileset), _vm->_NESPatTable[1] + _vm->_NESBaseTiles * 16);
for (i = 0; i < 16; i++) {
byte c = *gdata++;
if (c == 0x0D)
c = 0x1D;
if (c == 0x1D) // HACK - switch around colors 0x00 and 0x1D
c = 0; // so we don't need a zillion extra checks
else if (c == 0) // for determining the proper background color
c = 0x1D;
_vm->_NESPalette[0][i] = c;
}
for (i = 0; i < 16; i++) {
_NES.nametable[i][0] = _NES.nametable[i][1] = 0;
n = 0;
while (n < width) {
byte data = *gdata++;
for (j = 0; j < (data & 0x7F); j++)
_NES.nametable[i][2 + n++] = (data & 0x80) ? (*gdata++) : (*gdata);
if (!(data & 0x80))
gdata++;
}
_NES.nametable[i][width+2] = _NES.nametable[i][width+3] = 0;
}
memcpy(_NES.nametableObj,_NES.nametable, 16*64);
const byte *adata = room + READ_LE_UINT16(room + 0x0C);
for (n = 0; n < 64;) {
byte data = *adata++;
for (j = 0; j < (data & 0x7F); j++)
_NES.attributes[n++] = (data & 0x80) ? (*adata++) : (*adata);
if (!(n & 7) && (width == 0x1C))
n += 8;
if (!(data & 0x80))
adata++;
}
memcpy(_NES.attributesObj, _NES.attributes, 64);
const byte *mdata = room + READ_LE_UINT16(room + 0x0E);
int mask = *mdata++;
if (mask == 0) {
_NES.hasmask = false;
return;
}
_NES.hasmask = true;
if (mask != 1)
debug(0,"NES room %i has irregular mask count %i",_vm->_currentRoom,mask);
int mwidth = *mdata++;
for (i = 0; i < 16; i++) {
n = 0;
while (n < mwidth) {
byte data = *mdata++;
for (j = 0; j < (data & 0x7F); j++)
_NES.masktable[i][n++] = (data & 0x80) ? (*mdata++) : (*mdata);
if (!(data & 0x80))
mdata++;
}
}
memcpy(_NES.masktableObj, _NES.masktable, 16*8);
}
void GdiNES::decodeNESObject(const byte *ptr, int xpos, int ypos, int width, int height) {
int x, y;
_NES.objX = xpos;
// decode tile update data
width /= 8;
ypos /= 8;
height /= 8;
for (y = ypos; y < ypos + height; y++) {
x = xpos;
while (x < xpos + width) {
byte len = *ptr++;
for (int i = 0; i < (len & 0x7F); i++)
_NES.nametableObj[y][2 + x++] = (len & 0x80) ? (*ptr++) : (*ptr);
if (!(len & 0x80))
ptr++;
}
}
int ax, ay;
// decode attribute update data
y = height / 2;
ay = ypos;
while (y) {
ax = xpos + 2;
x = 0;
int adata = 0;
while (x < (width >> 1)) {
if (!(x & 3))
adata = *ptr++;
byte *dest = &_NES.attributesObj[((ay << 2) & 0x30) | ((ax >> 2) & 0xF)];
int aand = 3;
int aor = adata & 3;
if (ay & 0x02) {
aand <<= 4;
aor <<= 4;
}
if (ax & 0x02) {
aand <<= 2;
aor <<= 2;
}
*dest = ((~aand) & *dest) | aor;
adata >>= 2;
ax += 2;
x++;
}
ay += 2;
y--;
}
// decode mask update data
if (!_NES.hasmask)
return;
int mx, mwidth;
int lmask, rmask;
mx = *ptr++;
mwidth = *ptr++;
lmask = *ptr++;
rmask = *ptr++;
for (y = 0; y < height; ++y) {
byte *dest = &_NES.masktableObj[y + ypos][mx];
*dest = (*dest & lmask) | *ptr++;
dest++;
for (x = 1; x < mwidth; x++) {
if (x + 1 == mwidth)
*dest = (*dest & rmask) | *ptr++;
else
*dest = *ptr++;
dest++;
}
}
}
void GdiNES::drawStripNES(byte *dst, byte *mask, int dstPitch, int stripnr, int top, int height) {
top /= 8;
height /= 8;
int x = stripnr + 2; // NES version has a 2 tile gap on each edge
if (_objectMode)
x += _NES.objX; // for objects, need to start at the left edge of the object, not the screen
if (x > 63) {
debug(0,"NES tried to render invalid strip %i",stripnr);
return;
}
for (int y = top; y < top + height; y++) {
int palette = ((_objectMode ? _NES.attributesObj : _NES.attributes)[((y << 2) & 0x30) | ((x >> 2) & 0xF)] >> (((y & 2) << 1) | (x & 2))) & 0x3;
int tile = (_objectMode ? _NES.nametableObj : _NES.nametable)[y][x];
for (int i = 0; i < 8; i++) {
byte c0 = _vm->_NESPatTable[1][tile * 16 + i];
byte c1 = _vm->_NESPatTable[1][tile * 16 + i + 8];
for (int j = 0; j < 8; j++)
dst[j] = _vm->_NESPalette[0][((c0 >> (7 - j)) & 1) | (((c1 >> (7 - j)) & 1) << 1) | (palette << 2)];
dst += dstPitch;
*mask = c0 | c1;
mask += _numStrips;
}
}
}
void GdiNES::drawStripNESMask(byte *dst, int stripnr, int top, int height) const {
top /= 8;
height /= 8;
int x = stripnr; // masks, unlike room graphics, should NOT be adjusted
if (_objectMode)
x += _NES.objX; // for objects, need to start at the left edge of the object, not the screen
if (x > 63) {
debug(0,"NES tried to mask invalid strip %i",stripnr);
return;
}
for (int y = top; y < top + height; y++) {
byte c;
if (_NES.hasmask)
c = (((_objectMode ? _NES.masktableObj : _NES.masktable)[y][x >> 3] >> (x & 7)) & 1) ? 0xFF : 0x00;
else
c = 0;
for (int i = 0; i < 8; i++) {
*dst &= c;
dst += _numStrips;
}
}
}
#ifdef USE_RGB_COLOR
void readOffsetTable(const byte *ptr, uint16 **table, int *count) {
int pos = 0;
*count = READ_LE_UINT16(ptr) / 2 + 1;
*table = (uint16 *)malloc(*count * sizeof(uint16));
for (int i = 0; i < *count; i++) {
(*table)[i] = READ_LE_UINT16(ptr + pos) + pos + 2;
pos += 2;
}
}
void decodeTileColor(byte cmd, byte *colors, int *rowIndex, int numRows) {
colors[(*rowIndex)++] = ((cmd) >> 4) & 0xF;
if (*rowIndex < numRows)
colors[(*rowIndex)++] = (cmd) & 0xF;
}
void GdiPCEngine::decodeStrip(const byte *ptr, uint16 *tiles, byte *colors, uint16 *masks, int numRows, bool isObject) {
int loopCnt;
uint16 lastTileData;
/*
* read tiles indices
*/
int rowIndex = 0;
if (isObject) {
loopCnt = numRows;
} else {
tiles[rowIndex++] = 0;
tiles[numRows - 1] = 0;
loopCnt = numRows - 1;
}
while (true) {
uint16 cmd = READ_LE_UINT16(ptr);
ptr += 2;
if (cmd & 0x8000) {
tiles[rowIndex - 1] = cmd & 0x0FFF;
} else if (cmd & 0x4000) {
tiles[numRows - 1] = cmd & 0x0FFF;
} else {
tiles[rowIndex++] = cmd;
lastTileData = cmd;
break;
}
}
while (rowIndex < loopCnt) {
byte cmd = *ptr++;
int cnt = cmd & 0x1F;
if (cmd & 0x80) {
for (int i = 0; i < cnt; ++i) {
tiles[rowIndex++] = lastTileData;
}
} else if (cmd & 0x40) {
for (int i = 0; i < cnt; ++i) {
++lastTileData;
tiles[rowIndex++] = lastTileData;
}
} else {
for (int i = 0; i < cnt; ++i) {
lastTileData = READ_LE_UINT16(ptr);
ptr += 2;
tiles[rowIndex++] = lastTileData;
}
}
}
/*
* read palette data
*/
rowIndex = 0;
byte cmd = *ptr++;
if (cmd == 0xFE) {
while (rowIndex < numRows) {
decodeTileColor(*ptr++, colors, &rowIndex, numRows);
}
} else {
byte lastCmd = cmd;
decodeTileColor(cmd, colors, &rowIndex, numRows);
while (rowIndex < numRows) {
cmd = *ptr++;
int cnt = cmd & 0x1F;
if (cmd & 0x80) {
for (int j = 0; j < cnt; ++j) {
decodeTileColor(lastCmd, colors, &rowIndex, numRows);
}
} else {
for (int j = 0; j < cnt; ++j) {
cmd = *ptr++;
decodeTileColor(cmd, colors, &rowIndex, numRows);
}
lastCmd = cmd;
}
}
}
/*
* read mask indices
*/
if (_distaff || _PCE.maskIDSize == 0 || numRows > 18) {
return;
}
rowIndex = 0;
while (rowIndex < numRows) {
cmd = *ptr++;
int cnt = cmd & 0x1F;
if (cmd & 0x80) {
uint16 value;
if (cmd & 0x60) {
value = (cmd & 0x40) ? 0 : 0xFF;
} else if (_PCE.maskIDSize == 1) {
value = *ptr++;
} else {
value = READ_LE_UINT16(ptr);
ptr += 2;
}
for (int i = 0; i < cnt; ++i) {
masks[rowIndex++] = value;
}
} else {
for (int i = 0; i < cnt; ++i) {
if (_PCE.maskIDSize == 1) {
masks[rowIndex++] = *ptr++;
} else {
masks[rowIndex++] = READ_LE_UINT16(ptr);
ptr += 2;
}
}
}
}
}
void GdiPCEngine::decodePCEngineGfx(const byte *room) {
uint16* stripOffsets;
decodePCEngineTileData(_vm->findResourceData(MKTAG('T','I','L','E'), room));
decodePCEngineMaskData(_vm->findResourceData(MKTAG('Z','P','0','0'), room));
const byte* smap_ptr = _vm->findResourceData(MKTAG('I','M','0','0'), room);
smap_ptr++; // roomID
int numStrips = *smap_ptr++;
int numRows = *smap_ptr++;
_PCE.maskIDSize = *smap_ptr++;
smap_ptr++; // unknown
memset(_PCE.nametable, 0, sizeof(_PCE.nametable));
memset(_PCE.colortable, 0, sizeof(_PCE.colortable));
readOffsetTable(smap_ptr, &stripOffsets, &numStrips);
for (int i = 0; i < numStrips; ++i) {
const byte *tilePtr = smap_ptr + stripOffsets[i];
decodeStrip(tilePtr,
&_PCE.nametable[i * numRows],
&_PCE.colortable[i * numRows],
&_PCE.masktable[i * numRows],
numRows,
false);
}
free(stripOffsets);
}
void GdiPCEngine::decodePCEngineObject(const byte *ptr, int xpos, int ypos, int width, int height) {
uint16 *stripOffsets;
int numStrips;
int numRows = height / 8;
memset(_PCE.nametableObj, 0, sizeof(_PCE.nametableObj));
memset(_PCE.colortableObj, 0, sizeof(_PCE.colortableObj));
readOffsetTable(ptr, &stripOffsets, &numStrips);
for (int i = 0; i < numStrips; ++i) {
const byte *tilePtr = ptr + stripOffsets[i];
decodeStrip(tilePtr,
&_PCE.nametableObj[i * numRows],
&_PCE.colortableObj[i * numRows],
&_PCE.masktableObj[i * numRows],
numRows,
true);
}
free(stripOffsets);
}
void GdiPCEngine::setTileData(byte *tile, int index, byte byte0, byte byte1) {
int row = index % 8;
int plane = (index / 8) * 2;
int plane02Bit, plane13Bit;
for (int col = 0; col < 8; ++col) {
plane02Bit = (byte0 >> (7-col)) & 0x1; // plane=0: bit0, plane=2: bit2
plane13Bit = (byte1 >> (7-col)) & 0x1; // plane=0: bit1, plane=2: bit3
tile[row * 8 + col] |= plane02Bit << (plane + 0);
tile[row * 8 + col] |= plane13Bit << (plane + 1);
}
}
void GdiPCEngine::decodePCEngineTileData(const byte *ptr) {
const byte *tilePtr;
byte* tile;
uint16* tileOffsets;
byte byte0, byte1;
readOffsetTable(ptr, &tileOffsets, &_PCE.numTiles);
if (_distaff) {
free(_PCE.staffTiles);
_PCE.staffTiles = (byte *)calloc(_PCE.numTiles * 8 * 8, sizeof(byte));
} else {
free(_PCE.roomTiles);
_PCE.roomTiles = (byte *)calloc(_PCE.numTiles * 8 * 8, sizeof(byte));
}
for (int i = 0; i < _PCE.numTiles; ++i) {
tile = (_distaff) ? &_PCE.staffTiles[i * 64] : &_PCE.roomTiles[i * 64];
tilePtr = ptr + tileOffsets[i];
int index = 0;
while (index < 16) {
byte cmd = *tilePtr++;
byte cnt = (cmd & 0x0F) + 1;
if (cmd & 0x80) {
byte0 = (cmd & 0x10) ? 0 : *tilePtr++;
byte1 = (cmd & 0x40) ? 0 : *tilePtr++;
while (cnt--) {
setTileData(tile, index++, byte0, byte1);
}
} else {
while (cnt--) {
byte0 = (cmd & 0x10) ? 0 : *tilePtr++;
byte1 = (cmd & 0x40) ? 0 : *tilePtr++;
setTileData(tile, index++, byte0, byte1);
}
}
}
}
free(tileOffsets);
}
void GdiPCEngine::decodePCEngineMaskData(const byte *ptr) {
const byte *maskPtr;
byte* mask;
uint16* maskOffsets;
if (!ptr) {
_PCE.numMasks = 0;
return;
}
readOffsetTable(ptr, &maskOffsets, &_PCE.numMasks);
free(_PCE.masks);
_PCE.masks = (byte *)malloc(_PCE.numMasks * 8 * sizeof(byte));
for (int i = 0; i < _PCE.numMasks; ++i) {
mask = &_PCE.masks[i * 8];
maskPtr = ptr + maskOffsets[i];
int index = 0;
while (index < 8) {
byte cmd = *maskPtr++;
int cnt = cmd & 0x1F;
if (cmd & 0x80) {
byte value;
if (cmd & 0x60)
value = (cmd & 0x40) ? 0x00 : 0xFF;
else
value = *maskPtr++;
for (int j = 0; j < cnt; ++j)
mask[index++] = ~value;
} else {
for (int j = 0; j < cnt; ++j)
mask[index++] = ~*maskPtr++;
}
}
}
free(maskOffsets);
}
void GdiPCEngine::drawStripPCEngine(byte *dst, byte *mask, int dstPitch, int stripnr, int top, int height) {
uint16 tileIdx;
byte *tile;
int paletteIdx, paletteOffset, paletteEntry;
height /= 8;
for (int y = 0; y < height; y++) {
tileIdx = (_objectMode ? _PCE.nametableObj : _PCE.nametable)[stripnr * height + y];
tile = (_distaff) ? &_PCE.staffTiles[tileIdx * 64] : &_PCE.roomTiles[tileIdx * 64];
paletteIdx = (_objectMode ? _PCE.colortableObj : _PCE.colortable)[stripnr * height + y];
paletteOffset = paletteIdx * 16;
for (int row = 0; row < 8; row++) {
for (int col = 0; col < 8; col++) {
paletteEntry = tile[row * 8 + col];
WRITE_UINT16(dst + col * 2, _vm->_16BitPalette[paletteOffset + paletteEntry]);
}
dst += dstPitch;
}
}
}
void GdiPCEngine::drawStripPCEngineMask(byte *dst, int stripnr, int top, int height) const {
uint16 maskIdx;
height /= 8;
for (int y = 0; y < height; y++) {
maskIdx = (_objectMode ? _PCE.masktableObj : _PCE.masktable)[stripnr * height + y];
for (int row = 0; row < 8; row++) {
if (_PCE.numMasks > 0)
*dst = _PCE.masks[maskIdx * 8 + row];
else
*dst = 0;
dst += _numStrips;
}
}
}
#endif
void GdiV1::drawStripV1Background(byte *dst, int dstPitch, int stripnr, int height) {
int charIdx;
height /= 8;
for (int y = 0; y < height; y++) {
_V1.colors[3] = (_V1.colorMap[y + stripnr * height] & 7);
// Check for room color change in V1 zak
if (_roomPalette[0] == 255) {
_V1.colors[2] = _roomPalette[2];
_V1.colors[1] = _roomPalette[1];
}
charIdx = _V1.picMap[y + stripnr * height] * 8;
for (int i = 0; i < 8; i++) {
byte c = _V1.charMap[charIdx + i];
dst[0] = dst[1] = _V1.colors[(c >> 6) & 3];
dst[2] = dst[3] = _V1.colors[(c >> 4) & 3];
dst[4] = dst[5] = _V1.colors[(c >> 2) & 3];
dst[6] = dst[7] = _V1.colors[(c >> 0) & 3];
dst += dstPitch;
}
}
}
void GdiV1::drawStripV1Object(byte *dst, int dstPitch, int stripnr, int width, int height) {
int charIdx;
height /= 8;
width /= 8;
for (int y = 0; y < height; y++) {
_V1.colors[3] = (_V1.objectMap[(y + height) * width + stripnr] & 7);
charIdx = _V1.objectMap[y * width + stripnr] * 8;
for (int i = 0; i < 8; i++) {
byte c = _V1.charMap[charIdx + i];
dst[0] = dst[1] = _V1.colors[(c >> 6) & 3];
dst[2] = dst[3] = _V1.colors[(c >> 4) & 3];
dst[4] = dst[5] = _V1.colors[(c >> 2) & 3];
dst[6] = dst[7] = _V1.colors[(c >> 0) & 3];
dst += dstPitch;
}
}
}
void GdiV1::drawStripV1Mask(byte *dst, int stripnr, int width, int height) const {
int maskIdx;
height /= 8;
width /= 8;
for (int y = 0; y < height; y++) {
if (_objectMode)
maskIdx = _V1.objectMap[(y + 2 * height) * width + stripnr] * 8;
else
maskIdx = _V1.maskMap[y + stripnr * height] * 8;
for (int i = 0; i < 8; i++) {
byte c = _V1.maskChar[maskIdx + i];
// V1/V0 masks are inverted compared to what ScummVM expects
*dst = c ^ 0xFF;
dst += _numStrips;
}
}
}
void GdiV1::decodeV1Gfx(const byte *src, byte *dst, int size) const {
int x, z;
byte color, run, common[4];
for (z = 0; z < 4; z++) {
common[z] = *src++;
}
x = 0;
while (x < size) {
run = *src++;
if (run & 0x80) {
color = common[(run >> 5) & 3];
run &= 0x1F;
for (z = 0; z <= run; z++) {
dst[x++] = color;
}
} else if (run & 0x40) {
run &= 0x3F;
color = *src++;
for (z = 0; z <= run; z++) {
dst[x++] = color;
}
} else {
for (z = 0; z <= run; z++) {
dst[x++] = *src++;
}
}
}
}
/**
* Create and fill a table with offsets to the graphic and mask strips in the
* given V2 EGA bitmap.
* @param src the V2 EGA bitmap
* @param width the width of the bitmap
* @param height the height of the bitmap
* @param table the strip table to fill
* @return filled strip table
*/
StripTable *GdiV2::generateStripTable(const byte *src, int width, int height, StripTable *table) const {
// If no strip table was given to use, allocate a new one
if (table == 0)
table = (StripTable *)calloc(1, sizeof(StripTable));
const byte *bitmapStart = src;
byte color = 0, data = 0;
int x, y, length = 0;
byte run = 1;
// Decode the graphics strips, and memorize the run/color values
// as well as the byte offset.
for (x = 0; x < width; x++) {
if ((x % 8) == 0) {
assert(x / 8 < 160);
table->run[x / 8] = run;
table->color[x / 8] = color;
table->offsets[x / 8] = src - bitmapStart;
}
for (y = 0; y < height; y++) {
if (--run == 0) {
data = *src++;
if (data & 0x80) {
run = data & 0x7f;
} else {
run = data >> 4;
}
if (run == 0) {
run = *src++;
}
color = data & 0x0f;
}
}
}
// The mask data follows immediately after the graphics.
x = 0;
y = height;
width /= 8;
for (;;) {
length = *src++;
const byte runFlag = length & 0x80;
if (runFlag) {
length &= 0x7f;
data = *src++;
}
do {
if (!runFlag)
data = *src++;
if (y == height) {
assert(x < 120);
table->zoffsets[x] = src - bitmapStart - 1;
table->zrun[x] = length | runFlag;
}
if (--y == 0) {
if (--width == 0)
return table;
x++;
y = height;
}
} while (--length);
}
return table;
}
void Gdi::drawStripEGA(byte *dst, int dstPitch, const byte *src, int height) const {
byte color = 0;
int run = 0, x = 0, y = 0, z;
while (x < 8) {
color = *src++;
if (color & 0x80) {
run = color & 0x3f;
if (color & 0x40) {
color = *src++;
if (run == 0) {
run = *src++;
}
for (z = 0; z < run; z++) {
*(dst + y * dstPitch + x) = (z & 1) ? _roomPalette[(color & 0xf) + _paletteMod] : _roomPalette[(color >> 4) + _paletteMod];
y++;
if (y >= height) {
y = 0;
x++;
}
}
} else {
if (run == 0) {
run = *src++;
}
for (z = 0; z < run; z++) {
*(dst + y * dstPitch + x) = *(dst + y * dstPitch + x - 1);
y++;
if (y >= height) {
y = 0;
x++;
}
}
}
} else {
run = color >> 4;
if (run == 0) {
run = *src++;
}
for (z = 0; z < run; z++) {
*(dst + y * dstPitch + x) = _roomPalette[(color & 0xf) + _paletteMod];
y++;
if (y >= height) {
y = 0;
x++;
}
}
}
}
}
#define READ_BIT (shift--, dataBit = data & 1, data >>= 1, dataBit)
#define FILL_BITS(n) do { \
if (shift < n) { \
data |= *src++ << shift; \
shift += 8; \
} \
} while (0)
// NOTE: drawStripHE is actually very similar to drawStripComplex
void Gdi::drawStripHE(byte *dst, int dstPitch, const byte *src, int width, int height, const bool transpCheck) const {
static const int delta_color[] = { -4, -3, -2, -1, 1, 2, 3, 4 };
uint32 dataBit, data;
byte color;
int shift;
color = *src++;
data = READ_LE_UINT24(src);
src += 3;
shift = 24;
int x = width;
while (1) {
if (!transpCheck || color != _transparentColor)
writeRoomColor(dst, color);
dst += _vm->_bytesPerPixel;
--x;
if (x == 0) {
x = width;
dst += dstPitch - width * _vm->_bytesPerPixel;
--height;
if (height == 0)
return;
}
FILL_BITS(1);
if (READ_BIT) {
FILL_BITS(1);
if (READ_BIT) {
FILL_BITS(3);
color += delta_color[data & 7];
shift -= 3;
data >>= 3;
} else {
FILL_BITS(_decomp_shr);
color = data & _decomp_mask;
shift -= _decomp_shr;
data >>= _decomp_shr;
}
}
}
}
#undef READ_BIT
#undef FILL_BITS
void Gdi::drawStrip3DO(byte *dst, int dstPitch, const byte *src, int height, const bool transpCheck) const {
if (height == 0)
return;
int decSize = height * 8;
int curSize = 0;
do {
uint8 data = *src++;
uint8 rle = data & 1;
int len = (data >> 1) + 1;
len = MIN(decSize, len);
decSize -= len;
if (!rle) {
for (; len > 0; len--, src++, dst++) {
if (!transpCheck || *src != _transparentColor)
*dst = _roomPalette[*src];
curSize++;
if (!(curSize & 7))
dst += dstPitch - 8; // Next row
}
} else {
byte color = *src++;
for (; len > 0; len--, dst++) {
if (!transpCheck || color != _transparentColor)
*dst = _roomPalette[color];
curSize++;
if (!(curSize & 7))
dst += dstPitch - 8; // Next row
}
}
} while (decSize > 0);
}
#define READ_BIT (cl--, bit = bits & 1, bits >>= 1, bit)
#define FILL_BITS do { \
if (cl <= 8) { \
bits |= (*src++ << cl); \
cl += 8; \
} \
} while (0)
void Gdi::drawStripComplex(byte *dst, int dstPitch, const byte *src, int height, const bool transpCheck) const {
byte color = *src++;
uint bits = *src++;
byte cl = 8;
byte bit;
byte incm, reps;
do {
int x = 8;
do {
FILL_BITS;
if (!transpCheck || color != _transparentColor)
writeRoomColor(dst, color);
dst += _vm->_bytesPerPixel;
againPos:
if (!READ_BIT) {
} else if (!READ_BIT) {
FILL_BITS;
color = bits & _decomp_mask;
bits >>= _decomp_shr;
cl -= _decomp_shr;
} else {
incm = (bits & 7) - 4;
cl -= 3;
bits >>= 3;
if (incm) {
color += incm;
} else {
FILL_BITS;
reps = bits & 0xFF;
do {
if (!--x) {
x = 8;
dst += dstPitch - 8 * _vm->_bytesPerPixel;
if (!--height)
return;
}
if (!transpCheck || color != _transparentColor)
writeRoomColor(dst, color);
dst += _vm->_bytesPerPixel;
} while (--reps);
bits >>= 8;
bits |= (*src++) << (cl - 8);
goto againPos;
}
}
} while (--x);
dst += dstPitch - 8 * _vm->_bytesPerPixel;
} while (--height);
}
void Gdi::drawStripBasicH(byte *dst, int dstPitch, const byte *src, int height, const bool transpCheck) const {
byte color = *src++;
uint bits = *src++;
byte cl = 8;
byte bit;
int8 inc = -1;
do {
int x = 8;
do {
FILL_BITS;
if (!transpCheck || color != _transparentColor)
writeRoomColor(dst, color);
dst += _vm->_bytesPerPixel;
if (!READ_BIT) {
} else if (!READ_BIT) {
FILL_BITS;
color = bits & _decomp_mask;
bits >>= _decomp_shr;
cl -= _decomp_shr;
inc = -1;
} else if (!READ_BIT) {
color += inc;
} else {
inc = -inc;
color += inc;
}
} while (--x);
dst += dstPitch - 8 * _vm->_bytesPerPixel;
} while (--height);
}
void Gdi::drawStripBasicV(byte *dst, int dstPitch, const byte *src, int height, const bool transpCheck) const {
byte color = *src++;
uint bits = *src++;
byte cl = 8;
byte bit;
int8 inc = -1;
int x = 8;
do {
int h = height;
do {
FILL_BITS;
if (!transpCheck || color != _transparentColor)
writeRoomColor(dst, color);
dst += dstPitch;
if (!READ_BIT) {
} else if (!READ_BIT) {
FILL_BITS;
color = bits & _decomp_mask;
bits >>= _decomp_shr;
cl -= _decomp_shr;
inc = -1;
} else if (!READ_BIT) {
color += inc;
} else {
inc = -inc;
color += inc;
}
} while (--h);
dst -= _vertStripNextInc;
} while (--x);
}
#undef READ_BIT
#undef FILL_BITS
/* Ender - Zak256/Indy256 decoders */
#define READ_BIT_256 \
do { \
if ((mask <<= 1) == 256) { \
buffer = *src++; \
mask = 1; \
} \
bits = ((buffer & mask) != 0); \
} while (0)
#define READ_N_BITS(n, c) \
do { \
c = 0; \
for (int b = 0; b < n; b++) { \
READ_BIT_256; \
c += (bits << b); \
} \
} while (0)
#define NEXT_ROW \
do { \
dst += dstPitch; \
if (--h == 0) { \
if (!--x) \
return; \
dst -= _vertStripNextInc; \
h = height; \
} \
} while (0)
void Gdi::drawStripRaw(byte *dst, int dstPitch, const byte *src, int height, const bool transpCheck) const {
int x;
if (_vm->_game.features & GF_OLD256) {
uint h = height;
x = 8;
for (;;) {
*dst = _roomPalette[*src++];
NEXT_ROW;
}
} else {
do {
for (x = 0; x < 8; x ++) {
byte color = *src++;
if (!transpCheck || color != _transparentColor)
writeRoomColor(dst + x * _vm->_bytesPerPixel, color);
}
dst += dstPitch;
} while (--height);
}
}
void Gdi::unkDecode8(byte *dst, int dstPitch, const byte *src, int height) const {
uint h = height;
int x = 8;
for (;;) {
uint run = (*src++) + 1;
byte color = *src++;
do {
*dst = _roomPalette[color];
NEXT_ROW;
} while (--run);
}
}
void Gdi::unkDecode9(byte *dst, int dstPitch, const byte *src, int height) const {
byte c, bits, color, run;
int i;
uint buffer = 0, mask = 128;
int h = height;
i = run = 0;
int x = 8;
for (;;) {
READ_N_BITS(4, c);
switch (c >> 2) {
case 0:
READ_N_BITS(4, color);
for (i = 0; i < ((c & 3) + 2); i++) {
*dst = _roomPalette[run * 16 + color];
NEXT_ROW;
}
break;
case 1:
for (i = 0; i < ((c & 3) + 1); i++) {
READ_N_BITS(4, color);
*dst = _roomPalette[run * 16 + color];
NEXT_ROW;
}
break;
case 2:
READ_N_BITS(4, run);
break;
}
}
}
void Gdi::unkDecode10(byte *dst, int dstPitch, const byte *src, int height) const {
int i;
byte local_palette[256], numcolors = *src++;
uint h = height;
for (i = 0; i < numcolors; i++)
local_palette[i] = *src++;
int x = 8;
for (;;) {
byte color = *src++;
if (color < numcolors) {
*dst = _roomPalette[local_palette[color]];
NEXT_ROW;
} else {
uint run = color - numcolors + 1;
color = *src++;
do {
*dst = _roomPalette[color];
NEXT_ROW;
} while (--run);
}
}
}
void Gdi::unkDecode11(byte *dst, int dstPitch, const byte *src, int height) const {
int bits, i;
uint buffer = 0, mask = 128;
byte inc = 1, color = *src++;
int x = 8;
do {
int h = height;
do {
*dst = _roomPalette[color];
dst += dstPitch;
for (i = 0; i < 3; i++) {
READ_BIT_256;
if (!bits)
break;
}
switch (i) {
case 1:
inc = -inc;
color -= inc;
break;
case 2:
color -= inc;
break;
case 3:
inc = 1;
READ_N_BITS(8, color);
break;
}
} while (--h);
dst -= _vertStripNextInc;
} while (--x);
}
#undef NEXT_ROW
#undef READ_BIT_256
#ifdef USE_RGB_COLOR
void GdiHE16bit::writeRoomColor(byte *dst, byte color) const {
WRITE_UINT16(dst, READ_LE_UINT16(_vm->_hePalettes + 2048 + color * 2));
}
#endif
void Gdi::writeRoomColor(byte *dst, byte color) const {
// As described in bug #1294513 "FOA/Amiga: Palette problem (Regression)"
// the original AMIGA version of Indy4: The Fate of Atlantis allowed
// overflowing of the palette index. To have the same result in our code,
// we need to do an logical AND 0xFF here to keep the result in [0, 255].
*dst = _roomPalette[(color + _paletteMod) & 0xFF];
}
#pragma mark -
#pragma mark --- Transition effects ---
#pragma mark -
void ScummEngine::fadeIn(int effect) {
if (_disableFadeInEffect) {
// fadeIn() calls can be disabled in TheDig after a SMUSH movie
// has been played. Like the original interpreter, we introduce
// an extra flag to handle this.
_disableFadeInEffect = false;
_doEffect = false;
_screenEffectFlag = true;
return;
}
updatePalette();
switch (effect) {
case 0:
// seems to do nothing
break;
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
// Some of the transition effects won't work properly unless
// the screen is marked as clean first. At first I thought I
// could safely do this every time fadeIn() was called, but
// that broke the FOA intro. Probably other things as well.
//
// Hopefully it's safe to do it at this point, at least.
_virtscr[kMainVirtScreen].setDirtyRange(0, 0);
transitionEffect(effect - 1);
break;
case 128:
unkScreenEffect6();
break;
case 129:
break;
case 130:
case 131:
case 132:
case 133:
scrollEffect(133 - effect);
break;
case 134:
dissolveEffect(1, 1);
break;
case 135:
dissolveEffect(1, _virtscr[kMainVirtScreen].h);
break;
default:
error("Unknown screen effect, %d", effect);
}
_screenEffectFlag = true;
}
void ScummEngine::fadeOut(int effect) {
VirtScreen *vs = &_virtscr[kMainVirtScreen];
vs->setDirtyRange(0, 0);
if (_game.version < 7)
camera._last.x = camera._cur.x;
#ifndef DISABLE_TOWNS_DUAL_LAYER_MODE
if (_game.version == 3 && _game.platform == Common::kPlatformFMTowns)
_textSurface.fillRect(Common::Rect(0, vs->topline * _textSurfaceMultiplier, _textSurface.pitch, (vs->topline + vs->h) * _textSurfaceMultiplier), 0);
#endif
// TheDig can disable fadeIn(), and may call fadeOut() several times
// successively. Disabling the _screenEffectFlag check forces the screen
// to get cleared. This fixes glitches, at least, in the first cutscenes
// when bypassed of FT and TheDig.
if ((_game.version == 7 || _screenEffectFlag) && effect != 0) {
// Fill screen 0 with black
memset(vs->getPixels(0, 0), 0, vs->pitch * vs->h);
// Fade to black with the specified effect, if any.
switch (effect) {
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
transitionEffect(effect - 1);
break;
case 128:
unkScreenEffect6();
break;
case 129:
// Just blit screen 0 to the display (i.e. display will be black)
vs->setDirtyRange(0, vs->h);
updateDirtyScreen(kMainVirtScreen);
#ifndef DISABLE_TOWNS_DUAL_LAYER_MODE
if (_townsScreen)
_townsScreen->update();
#endif
break;
case 134:
dissolveEffect(1, 1);
break;
case 135:
dissolveEffect(1, _virtscr[kMainVirtScreen].h);
break;
default:
error("fadeOut: default case %d", effect);
}
}
// Update the palette at the end (once we faded to black) to avoid
// some nasty effects when the palette is changed
updatePalette();
_screenEffectFlag = false;
}
/**
* Perform a transition effect. There are four different effects possible:
* 0: Iris effect
* 1: Box wipe (a black box expands from the upper-left corner to the lower-right corner)
* 2: Box wipe (a black box expands from the lower-right corner to the upper-left corner)
* 3: Inverse box wipe
* All effects operate on 8x8 blocks of the screen. These blocks are updated
* in a certain order; the exact order determines how the effect appears to the user.
* @param a the transition effect to perform
*/
void ScummEngine::transitionEffect(int a) {
int delta[16]; // Offset applied during each iteration
int tab_2[16];
int i, j;
int bottom;
int l, t, r, b;
const int height = MIN((int)_virtscr[kMainVirtScreen].h, _screenHeight);
const int delay = (VAR_FADE_DELAY != 0xFF) ? VAR(VAR_FADE_DELAY) * kFadeDelay : kPictureDelay;
for (i = 0; i < 16; i++) {
delta[i] = transitionEffects[a].deltaTable[i];
j = transitionEffects[a].stripTable[i];
if (j == 24)
j = height / 8 - 1;
tab_2[i] = j;
}
bottom = height / 8;
for (j = 0; j < transitionEffects[a].numOfIterations; j++) {
for (i = 0; i < 4; i++) {
l = tab_2[i * 4];
t = tab_2[i * 4 + 1];
r = tab_2[i * 4 + 2];
b = tab_2[i * 4 + 3];
if (t == b) {
while (l <= r) {
if (l >= 0 && l < _gdi->_numStrips && t < bottom) {
_virtscr[kMainVirtScreen].tdirty[l] = _screenTop + t * 8;
_virtscr[kMainVirtScreen].bdirty[l] = _screenTop + (b + 1) * 8;
}
l++;
}
} else {
if (l < 0 || l >= _gdi->_numStrips || b <= t)
continue;
if (b > bottom)
b = bottom;
if (t < 0)
t = 0;
_virtscr[kMainVirtScreen].tdirty[l] = _screenTop + t * 8;
_virtscr[kMainVirtScreen].bdirty[l] = _screenTop + (b + 1) * 8;
}
updateDirtyScreen(kMainVirtScreen);
}
for (i = 0; i < 16; i++)
tab_2[i] += delta[i];
// Draw the current state to the screen and wait a few secs so the
// user can watch the effect taking place.
waitForTimer(delay);
}
}
/**
* Update width*height areas of the screen, in random order, until the whole
* screen has been updated. For instance:
*
* dissolveEffect(1, 1) produces a pixel-by-pixel dissolve
* dissolveEffect(8, 8) produces a square-by-square dissolve
* dissolveEffect(virtsrc[0].width, 1) produces a line-by-line dissolve
*/
void ScummEngine::dissolveEffect(int width, int height) {
VirtScreen *vs = &_virtscr[kMainVirtScreen];
int *offsets;
int blits_before_refresh, blits;
int x, y;
int w, h;
int i;
// There's probably some less memory-hungry way of doing this. But
// since we're only dealing with relatively small images, it shouldn't
// be too bad.
w = vs->w / width;
h = vs->h / height;
// When used correctly, vs->width % width and vs->height % height
// should both be zero, but just to be safe...
if (vs->w % width)
w++;
if (vs->h % height)
h++;
offsets = (int *) malloc(w * h * sizeof(int));
if (offsets == NULL)
error("dissolveEffect: out of memory");
// Create a permutation of offsets into the frame buffer
if (width == 1 && height == 1) {
// Optimized case for pixel-by-pixel dissolve
for (i = 0; i < vs->w * vs->h; i++)
offsets[i] = i;
for (i = 1; i < w * h; i++) {
int j;
j = _rnd.getRandomNumber(i - 1);
offsets[i] = offsets[j];
offsets[j] = i;
}
} else {
int *offsets2;
for (i = 0, x = 0; x < vs->w; x += width)
for (y = 0; y < vs->h; y += height)
offsets[i++] = y * vs->pitch + x;
offsets2 = (int *) malloc(w * h * sizeof(int));
if (offsets2 == NULL)
error("dissolveEffect: out of memory");
memcpy(offsets2, offsets, w * h * sizeof(int));
for (i = 1; i < w * h; i++) {
int j;
j = _rnd.getRandomNumber(i - 1);
offsets[i] = offsets[j];
offsets[j] = offsets2[i];
}
free(offsets2);
}
// Blit the image piece by piece to the screen. The idea here is that
// the whole update should take about a quarter of a second, assuming
// most of the time is spent in waitForTimer(). It looks good to me,
// but might still need some tuning.
blits = 0;
blits_before_refresh = (3 * w * h) / 25;
// Speed up the effect for CD Loom since it uses it so often. I don't
// think the original had any delay at all, so on modern hardware it
// wasn't even noticeable.
if (_game.id == GID_LOOM && (_game.version == 4))
blits_before_refresh *= 2;
for (i = 0; i < w * h; i++) {
x = offsets[i] % vs->pitch;
y = offsets[i] / vs->pitch;
#ifndef DISABLE_TOWNS_DUAL_LAYER_MODE
if (_game.platform == Common::kPlatformFMTowns)
towns_drawStripToScreen(vs, x, y + vs->topline, x, y, width, height);
else
#endif
_system->copyRectToScreen(vs->getPixels(x, y), vs->pitch, x, y + vs->topline, width, height);
if (++blits >= blits_before_refresh) {
blits = 0;
waitForTimer(30);
}
}
free(offsets);
if (blits != 0) {
waitForTimer(30);
}
}
void ScummEngine::scrollEffect(int dir) {
VirtScreen *vs = &_virtscr[kMainVirtScreen];
int x, y;
int step;
const int delay = (VAR_FADE_DELAY != 0xFF) ? VAR(VAR_FADE_DELAY) * kFadeDelay : kPictureDelay;
if ((dir == 0) || (dir == 1))
step = vs->h;
else
step = vs->w;
step = (step * delay) / kScrolltime;
byte *src;
int m = _textSurfaceMultiplier;
int vsPitch = vs->pitch;
switch (dir) {
case 0:
//up
y = 1 + step;
while (y < vs->h) {
moveScreen(0, -step, vs->h);
#ifndef DISABLE_TOWNS_DUAL_LAYER_MODE
if (_townsScreen) {
towns_drawStripToScreen(vs, 0, vs->topline + vs->h - step, 0, y - step, vs->w, step);
} else
#endif
{
src = vs->getPixels(0, y - step);
_system->copyRectToScreen(src,
vsPitch,
0, (vs->h - step) * m,
vs->w * m, step * m);
_system->updateScreen();
}
waitForTimer(delay);
y += step;
}
break;
case 1:
// down
y = 1 + step;
while (y < vs->h) {
moveScreen(0, step, vs->h);
#ifndef DISABLE_TOWNS_DUAL_LAYER_MODE
if (_townsScreen) {
towns_drawStripToScreen(vs, 0, vs->topline, 0, vs->h - y, vs->w, step);
} else
#endif
{
src = vs->getPixels(0, vs->h - y);
_system->copyRectToScreen(src,
vsPitch,
0, 0,
vs->w * m, step * m);
_system->updateScreen();
}
waitForTimer(delay);
y += step;
}
break;
case 2:
// left
x = 1 + step;
while (x < vs->w) {
moveScreen(-step, 0, vs->h);
#ifndef DISABLE_TOWNS_DUAL_LAYER_MODE
if (_townsScreen) {
towns_drawStripToScreen(vs, vs->w - step, vs->topline, x - step, 0, step, vs->h);
} else
#endif
{
src = vs->getPixels(x - step, 0);
_system->copyRectToScreen(src,
vsPitch,
(vs->w - step) * m, 0,
step * m, vs->h * m);
_system->updateScreen();
}
waitForTimer(delay);
x += step;
}
break;
case 3:
// right
x = 1 + step;
while (x < vs->w) {
moveScreen(step, 0, vs->h);
#ifndef DISABLE_TOWNS_DUAL_LAYER_MODE
if (_townsScreen) {
towns_drawStripToScreen(vs, 0, vs->topline, vs->w - x, 0, step, vs->h);
} else
#endif
{
src = vs->getPixels(vs->w - x, 0);
_system->copyRectToScreen(src,
vsPitch,
0, 0,
step, vs->h);
_system->updateScreen();
}
waitForTimer(delay);
x += step;
}
break;
}
}
void ScummEngine::unkScreenEffect6() {
// CD Loom (but not EGA Loom!) uses a more fine-grained dissolve
if (_game.id == GID_LOOM && (_game.version == 4))
dissolveEffect(1, 1);
else
dissolveEffect(8, 4);
}
} // End of namespace Scumm